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13.1 Routing to minimize congestion

We are given a graph G = (V, E) and k “commodities”. Each commodity i has a source s; and
a destination t;. The goal is to find an (s;, t;) path in the graph G for every commodity 4, while
minimizing the maximum congestion along any edge. The latter can be written formally as
Minimize congestion C' = max.|{i : P; 5 e}|, where P; is the (s;, t;) path of commodity i and e is
an edge.

It can be noted that this problem is similar to a network flow problem. But it is not a net-
work flow problem because for each commodity ¢, we need to have a single path between s; and ;.
We cannot have the flow splitting along multiple branches.

This problem is an NP-hard problem. So we will solve it by formulating it as an ILP problem,
relaxing it to an LP problem, solving the LLP, and rounding the solution to an ILP solution.

13.1.1 ILP formulation with exponential number of variables and constraints

Let i =1,...,k be the k£ commodities.
Let P; be the set of all paths from s; to ¢;.
We have a variable xp for every P € P;, Vi

Minimze ¢ s.t

> xp=1,Vi (13.1.1)

PEP;
Y Y ap<tVecE (13.1.2)
i PeP;ecP
t>0 (13.1.3)
zp € {0,1}vP (13.1.4)

Note that the actual objective function which is in a min-max form is not linear. So, we employ
a trick of introducing a new variable ¢. We introduce the constraint (13.1.2) that congestion on
any edge < t, and so all we need to do now is minimze ¢, which is equivalent to minimizing the
maximum congestion. The constaint 13.1.1 makes sure that we select exactly one path for each
commodity.

The problem with this ILP formulation is that we can have an exponential number of paths between
s; and t; (for example, in a completely connected graph). So even if we relax it to an LP problem,



we will still have an exponential number of variables and constraints. We would like a formulation
with a polynomial (polynominal in |V|, |E|, and k) number of variables and constraints. Next we
consider an alternative ILP formulation.

13.1.2 ILP formulation with polynomial number of variables and constraints

Rather than looking at all the paths, we look at an edge granularity and see if a commodity is
routed along any edge.

We have variables z.;, Ve € E,i =1,...,k

Zei = 1, if e € P;, and 0 otherwise. [F; is the chosen (s;, t;) path of commodity 7]

The ILP formulation is

Minimize ¢ s.t

Y Bei= Y, zei=1Vi (13.1.5)

ecdt(t;) ecd(s;)
Vi,VU 7& Si,ti Z Teji = Z Teyi (13.1.6)
e€dt(v) e€d—(v)
> @i <t¥e€E (13.1.7)
l t>0 (13.1.8)
Tey € {0, 1} (13.1.9)

In the above formulation, 6T indicates the flow coming into a vertex, and §~ indicates the flow
going out of a vertex. Constraint 13.1.5 makes sure that we have a unit flow being routed out
of every s;, and a unit flow being routed into every t;. Constraint 13.1.6 is like flow conservation
at every other vertex. Congestion along an edge is just the number of commodities being routed
along that edge, and constraint 13.1.7 ensures that ¢ > congestion along any edge. The objective
function is to minimze t.

The problem can be relaxed to an LP problem by letting z.; € [0,1]. It can be noted that
this formulation (let’s call it edge formulation) is equivalent to the formulation in Section 13.1.1
(let’s call it path formulation). From the LP solution to this edge formulation, one can obtain the
LP solution to the path formulation. (This is left as an exercise to the reader). Now, we have a
fractional solution {xp} for each variable zp. We also know that the solution to the LP ¢t < C*,
where C* is the optimal solution to the ILP. Now, we need to round the LP solution to an ILP
solution such that we achieve a reasonable approximation to ¢, the LP solution.

13.1.3 Deterministic rounding

First, we can note that a deterministic rounding doesn’t help us get a good approximation. For
example, let us look at a deterministic strategy. A reasonable strategy would be to look at all
P € P;, and round the one with highest value to 1, and others to 0. Say if P; has n paths, it might



be the case that in the LP solution, all the n paths have a weight of % So while rounding, the
value of a path can increase by a factor of n. Now the optimal congestion ¢ on an edge is caused by
some paths, and if the value of each of these paths increase by a factor of n during the rounding, we
can only get an n factor approximation. Since n can be an exponential number, this is not a very
useful approximation factor. Likewise it can be seen that other deterministic rounding strategies
do not help in getting a good approximation factor.

13.1.4 Randomized rounding

For every commodity i, consider the probability distribution on P; given by {zp}pecp,, and pick
one of the P;’s according to this probability distribution. For example, say we have three paths
with values 0.5, 0.3, and 0.2. Get a random number between 0 and 1. If the number is between 0
and 0.5, pick the first path. If the number is between 0.5 and 0.8, pick the second path, and if the
number is between 0.8 and 1, pick the third path.

For any edge e, Prjcommodity 7 is routed along e] = ;.

Let X, be a random variable , and let X, = number of commodities ¢ with P, 5 e. In other words,
X, is a random variable which indicates the level of congestion along an edge e. To get the E[X,],
we can use indicator random varibales.

Let X.; = 1, if P; > e, and 0 otherwise.

Xe = Zz Xe,z'

= E[X.| =), E[X.;] [By linearity of expectation]

= Zz Tej <t
This means that the expected value of congestion along any edge < t, the solution to the LP prob-
lem. Now if we can show that for any edge, Pr[X, > \t] < %, the by the union bound, Pr[3 edge

est Xe > M| < L%‘ < %, and we can get a A approximation with a high probability.

Xe = Z Xe,i
i

E[Xe] =p<t
Pr(X. > M\t] < Pr[X. > Ay
Using Chernoff’s bounds:

A—1y\ K
Pr[X. > M] < <€M>

~ AT
~ AT

(Taking u ~ 1, atleast edge picked once in expectation.) Now,

l
M=nd=A1=0 o9
loglogn

. We have with high probability, A approximation.



13.2 LP Duality

The motivation behind using an LP dual is they provide lower bounds on LP solutions. For instance,
consider the following LP problem.
Minimize 7x + 3y, such that

T+y>2

3x+y >4
z,y >0

Say, by inspection, we get a solution z = 1,y = 1, with an objective function value of 10. We can
show that this is the optimal solution in the following way.

Proof: If we multiply the constraints with some values and add them such that the coeffiecients
of x and y are < 7 and 3, respectively, we can get a lower bound on the solution. For instance, if
we add the two constraints, we get 4x + 2y > 6, and since z,y > 0, we have 7z + 3y > 4x + 2y > 6.
So, 6 is a lower bound to the optimal solution. Likewise, if we multiply the first constraint with 1,
and the second constraint with 2, we have

Tr+3y=(z+y) +203x+y) >2+2(4) =10

Hence, 10 is a lower bound on the solution, and so (z = 1,y = 1) with an objective function value
of 10 is an optimal solution. [ |
Similar to the above example, LP duality is a general way of obtaining lower bounds on the LP
solution. The idea is we multiply each constraint with a multiplier and add them, such that the
sum of coefficients of any variable is < the coefficient of the variable in the objective function. This
gives us a lower bound on the LP solution. We want to choose the multipliers such that the lower
bound is maximized (giving us the tightest possible lower bound).

13.2.1 Converting a primal problem to the dual form

To convert the primimal to the dual, we do the following.

1. For each constraint in the primal, we have a corresponding variable in the dual. (this variable
is like the multiplier).

2. For each variable in the primal, we have a corresponding constraint in the dual. These con-
straints say that when we multiply the primal constraints with the dual variables and add them,
the sum of coefficients of any primal variable should be less than or equal to the coefficient of the
variable in the primal objective function.

3. The dual objective function is to maximize the sum of products of right hand sides of primal
constraints and the corresponding dual variables. (This is maximizing the lower bound on the
primal LP solutions).

The following is a more concrete example showing the primal to dual conversion.

A linear programming problem is of the form:

Minimize ), ¢;z;, such that,

4



x; > 0Vi
We call this the primal LP. This LP can be expressed in the matrix form as:
Minimize ¢!z, such that,

Ax > b

x>0

The corresponding dual problem is: Maximize ) ; bjyj, such that,

ZAijyj < CiVi
J

y; = 0V

Expressed in matrix form, the dual problem is, Maximize b’ y, such that
ATy <e¢
y=>0

Note that the dual of a dual LP is the original primal LP.

Theorem 13.2.1 Weak LP duality theorem If x is any primal feasible solution and y is any
dual feasible solution, then Valp(x) > Valp(y)

Proof:

demi =Y Y Ay | @

=> (Z Am%) Yj
IR
> by,
J

So, the weak duality thoerem says that any dual feasible solution is a lower bound to the primal
optimal solution. This is a particularly nice result in the context of approximation algorithms. In
the previous lectures, we were solving the primal LP exactly and using the LP solution as a lower
bound to the optimal ILP solution. By using the weak duality theorem, instead of solving the LP
exactly to obtain a lower bound on the optimal value of a problem, we can (more easily) use any
dual feasible solution to obtain a lower bound.

Theorem 13.2.2 Strong LP duality theorem If the primal has an optimal solution x* and the
dual has an optimal solution y*, then ¢'x* = bTy*, i.e, the primal and the dual have the same
optimal objective function value.



In general, if the primal is infeasible (there is no feasible point which satisfies all the constraints),
the dual is unbounded (the optimal objective function value is unbounded). Similarly, if the dual is
infeasible, the primal is unbounded. However, if both the primal and dual are feasible (have atleast
one feasible point), the strong LP duality theorem says that the optimal solutions to the primal
and the dual have the exact same objective function value.



