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14.1 Last Time

We finished our discussion of randomized rounding and began talking about LP Duality.

14.2 Constructing a Dual

Suppose we have the following primal LP.

min ), ¢x; s.t.
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In this LP we are trying to minimize the cost function subject to some constraints. In considering
this canonical LP for a minimization problem, lets look at the following related LP.

max ). bjy; s.t.
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Here we have a variable y; for every constraint in the primal LP. The objective function is a linear
combination of the b; multiplied by the y;. To get the constraints of the new LP, if we multiply
each of the constraints of the primal LP by the multiplier y;, then the coefficients of every x; must
sum up to no more than ¢;. In this way we can construct a dual LP from a primal LP.

14.3 LP Duality Theorems

Duality gives us two important theorems to use in solving LPs.

Theorem 14.3.1 (Weak LP Duality Theorem) If x is any feasible solution to the primal and
y is any feasible solution to the dual, then Valp(x) > Valp(y).
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Figure 14.3.1: Primal vs. Dual in the Weak Duality Theorem.

On the number line we see that all possible values for dual feasible solutions lie to the left of all
possible values for primal feasible solutions.

Last time we saw an example in which the optimal value for the dual was exactly equal to some
value for the primal. This introduces the question: was it a coincidence that this was the case?
The following theorem claims that no, it was not a coincidence. In fact, this is always the case.

Theorem 14.3.2 (Strong LP Dwuality Theorem) When P and D have non-empty feasible re-
gions, then their optimal values are equal, i.e. Valp = Valy,.

On the number line we see that the maximum value for dual feasible solutions is equivalent to the
minimum value for primal feasible solutions.
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Figure 14.3.2: Primal vs. Dual in the Strong Duality Theorem.

It could happen that there is some LP with no solution that satisfies all of the constraints. In this
case the feasible region would be empty. In this case the LP’s dual will be unbounded in the sense
that you can achieve any possible value in the dual.

The Strong LP Duality Theorem has a fairly simple geometric proof that will not be shown here
due to time constraints. Recall from last time the proof of the Weak LP Duality Theorem.



Proof: (Theorem 14.3.1)

Start with some feasible solution to the dual LP, say y. Let y’s objective function value be Valp(y).
Let  be a feasible solution to the primal LP with objective function value Valp(z). Since y is a
feasible solution for the dual and x is a feasible solution to the primal we have
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So just rewriting the equations shows us that the value of the dual is no more than the value of the
primal. What happens if these values are exactly equal to one another? This happens when x and
y are optimal solutions for the primal and the dual respectively. What can we deduce from this?

First, both of the inequalities in the proof of 14.3.1 must both be equalities. If these are equal we
have

ijyj = Z(Z Aiji)y; (14.3.1)

and

Z ZAUyJ Zczxz (14.3.2)

Then each term on the left hand side of Equation 14.3.1 must equal the corresponding term on the
right hand side of Equation 14.3.1 and each term on the left hand side of Equation 14.3.2 must
equal the corresponding term on the right hand side of Equation 14.3.2. This is the case if, in
Equation 14.3.1, b; = >, A;jz; and, in Equation 14.3.2, ¢; = Zj Ajjyj. What if b; # Y. Ajjx; or
ci # Zj A;jyj, can we still have the equalities in Equation 14.3.1 and Equation 14.3.27 Equation
14.3.1 can if y; = 0 and Equation 14.3.2 can if x; = 0.

If z and y are primal feasible and dual feasible, respectively, such that Valp(y) = Valp(x), then
they must satisfy the following;:

1. Vj: either y; =0 or bj = >, Ajjx;.
2. Vi: either x; =0 or ¢; = Zj Aijy;.

If bj = >, Ajjx;, we say that the 4t constraint in the primal is tight. Condition 1 is called dual
complementary slackness (DCS). Similarly, if ¢; = Zj Aijy;, we say the the ith constraint in the
dual is tight. Condition 2 is called primal complementary slackness (PCS).



For a nicer view of the correspondence between the primal and the dual consider the following way
of viewing this property.

Primal LP Dual LP
min ), cix; st | max Y bjy; s.t.
> Ainx; > by y1 >0
> Ainxi > by y2 >0
x1 >0 > Ay > a
9 >0 > Azjyj > e
zp >0 > Anjyj = cn

Here we have associated regular constraints in the primal to non-negativity constraints in the dual
and non-negativity constraints in the primal to regular constraints in the dual along the rows of
this table. Notice that the primal has m regular constraints and n non-negativity constraints on
it and the dual has a variable for each of the m regular constraints and a regular constraint for
each of the n non-negativity constraints. Therefore, there is a one-to-one correspondence between
constraints in the primal and constraints in the dual. If  and y are optimal solutions for the primal
and the dual, then for each row in this table, either the left side or the right side of the table must
be tight, i.e. an equality rather than an inequality.

From the Strong LP Duality Theorem we have

Corollary 14.3.3 (z*,y*) are primal and dual optimal solutions respectively if and only if they
satisfy DCS and PCS.

14.4 Simple Example

Consider the following minimization LP.

min x; + 3xs + 4z3 + x5 s.t.
51+ 2x4 > 1
dxg + 323+ 24+ 25 > 2
1 +x3+35>7
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We want to compute the dual of this LP. We want to introduce a variable for each regular constraint
in the primal, so we will have variables y1, y2, and ys3 in the dual. We want to introduce a constraint



for each variable in the primal, so we will have 5 constraints in the dual. Each constraint in the
dual is written as a function of the variables y1, y2, and y3 in such a way that the coefficients of x;
sum up to no more than the coefficient of x; in the objective function of the primal. Finally, we
determine the objective function of the dual by letting the right hand sides of the constraints in
the primal be the coefficients of the y;. This gives us the following dual

max Y1 + 2y2 + 7y3 s.t.
oY1 +ysz <1
dys <3
y2 +ys < 4
201 +y2 <0
Y2 +ys <1
y1 >0
y2 >0
y3 >0

In matrix form this transposes the coefficient matrix
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0 2
4 1
0 0

into a coefficient matrix by transposing the first column of coefficients of the primal into the first
row of coefficients of the dual, the second column into the second row, and so on.
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14.5 The Power of LP-Duality

We would now like to use LP-Duality for designing algorithms. The basic idea behind why we
might want to use LP-Duality to design algorithms is to solve a problem more quickly than using
Linear Programming on its own. When we need to solve an algorithm with Linear Programming,
we relax some Integer Program so that the corresponding LP gives us a good lower bound, solve
the LP for some optimal linear solution, and round it off. It is possible to solve Linear Programs
in polynomial time for its optimal solution, but the known algorithms still run fairly slowly in
practice.



Also, we sometimes want to reduce some very large Integer Program and relax it to some exponential
sized Linear Program with a small integrality gap, so that you get a good approximation. In which
case, you cannot solve the linear program to optimality in polynomial time. LP-duality lets us
take these programs, and instead of finding the optimal point of the LP exactly, we use some
feasible solution to the Dual LP to get some lower bound on the optimal solution and often times
that suffices. In fact, sometimes this process gives us a way to design a purely combinatorial for
approximating a problem.

Instead of writing down the LP and solving the LP, we simultaneously construct feasible solutions
to both the Primal and Dual LPs in such a way that these are within a small factor of each other,
and then construct an integer solution using those. This is much faster and much simpler than
solving the LP to optimality. Sometimes, this can even be used even for LPs of exponential size.

Another nice thing about LP-duality, is that it is such a non-trivial relationship between two
seemingly different LPs, that it often exposes very beautiful min-max kinds of theorems about
combinatorial objects. One such theorem is the Max-flow Min-cut Theorem, and we will shortly
prove that using LP-Duality.

14.6 Max-flow Min-cut

Max-flow Min-cut is one of the most widely stated examples of LP-duality, when in fact there are
many other examples of the theorems of that kind that arise from this particular relationship. For
this example, though, we will talk about Max-flow Min-cut.

To explore this relationship, we would first like to create some LP that solves a Max-flow problem,
find its Dual, and then see how the Dual relates to the Min-cut problem.

For the Max-flow problem, are given a graph G = (V, E) with source s, sink ¢, and some capacities
on edges ce.

14.6.1 Max-flow LP
First we define the variables of our Max-flow LP:

Ze : amount of flow on edge e

Next we define the constraints on the variables:
Te < ce Ve - the flow on z. does not exceed the capacity on e
e > 0 Ve - the flow on e is non-negative

Ee€5+(v) Te = Zeea_(v) Ze Yv # s,t - the flow entering v equals the flow leaving v

Subject to these constraints, our objective function maximizes the amount of flow from s to ¢, by
summing over all the flow entering ¢ or all the flow leaving s:

max 2665*(5) Te



14.6.2 Alternate Max-flow LP
There exists another equivalent way of writing the Max-flow LP in terms of the flow on paths:
xp : amount of flow on an s-t path p

P : set if all paths from s-t

This LP has the constraints on the variables:
zp >0 Vp € P - the flow on p is non-negative

Zpa . Tp < ce Ve - the flow on e is no larger than the edge’s capacity

Subject to these constraints, our objective function maximizes the amount of flow on the x, paths:

max ZpeP Tp
This is an equivalent LP, and the Primal we are going to talk about, because this one will be easier
to work with when constructing the Dual.

14.6.3 The Dual to the Max-flow LP

First, we must define our variables for the Dual, where each variable in the Dual corresponds to a
constraint in the Primal. Since the Primal contains one non-trivial constraint for every edge, the
Dual must contain one variable for every edge in the Primal:

e : variable for edge e €

The Dual LP must have one constraint for every variable. Like we did in the Simple Example, for
each variable in the Primal, we look at the coefficient that you get when you multiply the Primal
constraints by the new variables, ., and sum over the number of constraints e. We want to find
the coefficient of any fixed variable, and write the constraint coresponding to that variable. For
any fixed path p, we analyze the coefficients using the constraints on xy:

Ze Zpge TpYe < Ze Cele
Zp l‘p Ze@p ye S Ze C€y€

From this analysis, we get the constraints on the variable y.:

Ye = 0 Ve

Eegp ye S 1 vp

Subject to these constraints, our objective function is

min ) yeCe

So far, we have mechanically applied a procedure to a Primal LP and determined its Dual. When
you start from a combinatorial problem and obtain its Dual, it is a good question to ask what these
variables and constraints actually mean. Do they have a nice combinatorical meaning? Usually,



if you start from some combinatorial optimization problem, then its Dual does turn out to have a
nice combinatorial meaning.

So what is the meaning of this Dual? It is saying that it wants to assign some value to every edge,
such that looking at any s-t path in the graph, the sum total of the values on the edges in that
path should be at least one. In order to understand what kind of solution this LP is asking for,
think of an integral solution to the same LP. Say that we require y. € {0,1}. What, then, is a
integral feasible solution to this program? If y. € {0,1} Ve, then we are picking some subset of the
edges, specifically the subset of edges where y. = 1. What properties should those edges satisfy?
It should be that for all s-t paths in the graph, the collection of edges that we pick should have at
least one edge from that path, and these edges form a cut in the graph G. If we were to minimize
the solution over all the cuts in the graph, this would give us a Min-cut.

Fact 14.6.1 all integral feasible solutions to the Dual form the set of all s-t cuts.

Because the Dual is minimizing over some values, any feasible solution to the Dual is going to be
greater than or equal to any feasible solution to the Primal, by the Weak Duality Theorem.
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Figure 14.6.3: Ranges of minimization vs. maximazation feasible solutions.

From this we determine the following corollary:
Corollary 14.6.2 Min-cut > Max-flow

This result is unsurprising, though determining that Min-cut = Max-flow is still non-trivial. Thank-
fully, the Strong Duality Theorem tells us:

Corollary 14.6.3 Min-fractional-cut = Max-flow

The optimal value of the Dual will be exactly equal to the optimal value of the Primal. So far,
we do not know if the optimal solution to the Dual is an integral solution or not. If the solution
to the Dual is integral, than it will prove the Max-flow Min-cut Theorem, but if it turns out to
be a fractional solution, than we cannot determine the best solution to the problem. The Strong
Duality Theorem gives us this weaker version of Max-flow Min-cut, that any fractional Min-cut is
equal to the Max-flow of the graph. A fractional Min-cut is definted by this LP, where we assign
some fractional value to edges, so that the total value of a path is less than or equal to 1. In order
to get the Max-flow Min-cut Theorem from this weaker version, we need to show that for every
fractional solution there exists integral solution that is no less optimal. We will give a sketch of the
proof of this idea.

Theorem 14.6.4 There exists an integral optimal solution to the Min-cut LP.



Proof: To prove this, we will start with any fractional feasible solution to this LP, and derive
from it an integral solution that is no worse than the fractional solution. Assume some fractional
solution to the LP, and think of the values on each edge as lengths. Then the LP is assigning a
length to every edge, with the property that any s-t path is going to have a length of at least one.
This means that the distance from s to t is at least one.

We are going to lay out the graph in such a way that these y.’s exactly represent the lengths of the
edges.

Figure 14.6.4: Distances y.’s from s to t.

Then, we will assign the distance to any point v from the source s as the minimum length of an
s-v path. For any point v, we can look at the length of all paths from s to v, and the shortest such
path gives me the distance from s to v, d(v), with lengths according to the y.’s. From this we get
the distances from s to all the points in the path, and we also know that d(t) > 1.

Then, we pick some value « € [0, 1] uniformly at random, and look at all of the vertices that are
within distance « of s. This will create a cut, because there are some number of edges crossing
over between the set of vertices within distance « those with distances greater than a.

Suppose that we pick o uniformly at random from this range, than if we look at any particular edge
in the graph, say (u,v), than the probability that the edge (u,v) is cut is no larger than its length.
Why is this? The probability that (u,v) was cut is the probability that d(u) < « and d(v) > «
(assuming d(u) < d(v)).

As we draw concentric circles of the distance « from s, then Figure 14.6.5 shows that the difference
in the radii of these circles is no more than the distance from w to v. The only way that the edge
can be cut, is if we chose an o somewhere between these two concentric circles. So the probability
that (u,v) is cut is the difference in the radii, which is no more than the length of (u,v):

Pr{(u,v) is cut] < yy.

Then, the expectation of the size of the cut will be:
El[size of cut] <) cpcePrleis cut]

E[sizeof cut] <) cpcele



Figure 14.6.5: Distance from u to v vs. possible distances on «.

This expectation represents the size of the cut. If an edge e is in the cut, it contributes c. to the
size of the cut, and 0 otherwise. So we can assign indicator random variables to every edge that
takes on a value 1 if it is in the cut, and 0 if it is not. So then the size of the cut is the weighted sum
of the indicator variables. Then its expectation is the sum of its expected values of its variables,
so it will turn out to be just the cost of each edge times the probability that the edge is in the cut,
which is summed over all the edges.

As Y cpCele is the value of the fractional solution, the expected value of the integer cut is no
greater than that of the fractional solution. If we are picking a cut with some probability and the
expected value of that cut is small, then there has to be at least one cut in the graph which has
small value. So, there exists one integral cut with value at most the value of y.

14.7 Next Time

We will see more applications of LP-duality next time, as well as an algorithm based on LP-duality.
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