
CS787: Advanced Algorithms

Scribe: Priyananda Shenoy and Shijin Kong Lecturer: Shuchi Chawla
Topic: Streaming Algorithms(continued) Date: 10/26/2007

We continue talking about streaming algorithms in this lecture, including algorithms on getting
number of distinct elements in a stream and computing second moment of element frequencies.

18.1 Introduction and Recap

Let us review the fundamental framework of streaming. Suppose we have a stream coming in from
time 0 to time T . At each time t ∈ [T], the coming element is at ∈ [n]. Frequency for any element
i is defined as mi = |{j|aj = i}|. We will see a few problems to solve under this framework. For
different problems, we expect to have a complexity of only O(log n) and O(log T) on either storage
or update time. We should only make a few passes over the stream under these strong constraints.

First problem we will solve in this lecture is getting the number of distinct elements. A simple
way to do this is to perform random sampling on all elements, maintain statistics over sampling,
and then extraploate real number of distinct elements from statistics. For example, if we pick k
of the n elements uniformly at random, and count the number of distinct elements in samples, we
can roughly estimate the number of distinct elements over all elements by multiplying the result
with n. However, in many cases where elements are unevenly distributed (e. g. some elements
dominate), random sampling with a small k will cause much lower estimation than actual number
of distinct elements. In order to be accurate we need k = Ω(n)

The second problem, computing second moment of element frequencies depends on accurate esti-
mation of mi. Again we can apply random sampling in similar way and estimate frequency of each
element. But again we will have the problem of inaccuracy in random sampling. Some elements
may not be sampled at all.

In order to better resolve those problems, we introduce another two different algorithms which
perform better than random sampling based algorithm. Before that, let’s define what an unbiased
estimator is:

Definition 18.1.1 An unbiased estimator for quantity Q is a random variable X such that E[X] =
Q.

18.2 Number of Distinct Elements

Let’s assign c to represent the number of distinct elements. We are going to prove that we can
probabilistically distinguish between c < k and c > 2k by using a single bit of memory. k is related
to a hash functions family H where,

∀h ∈ H, h : [n] → [k]

Algorithm 1:

1

Suppose the bit we have is b, initially set b = 0.

for some t ∈ [T], if h(at) = 0, then set b = 1.

Let us compute some event probabilities:

Pr[b = 0] =
(

1− 1
k

)c

Pr[b = 0|c < k] =
(

1− 1
k

)c

>
(

1− 1
k

)k

> 1
4

Pr[b = 0|c > 2k] =
(

1− 1
k

)c

6
(

1− 1
k

)2k

6 1
e2
' 1

7.4

Now we have separation between the cases c < k and c > 2k. In the next step, we can use multiple
bits to boost this separation.

Algorithm 2:

Maintain x bits b0, b1, . . . , bx and run Algorithm1 independently over each bit.

Next we pick a value between 1
4 and 1

e2 , say 1
6 . If |{j|bj = 0}| > x

6 , output c < k, else output
c > 2k.

Claim 18.2.1 The error probability of Algorithm 2 is δ if x = O(log 1
δ).

Proof: Suppose c < k, then the expected number of bits that are 0 in all x bits is atleast x
4 .

By Chernoff’s bound:

Pr
[
actual number of bits that are zero <

x

6

]
=

Pr
[
actual number of bits that are 0 <

(
1− 1

3

)
x

4

]
6 e−

1
2

1
32

x
4

Using x = O(log 1
δ) gives us the answser with probability 1− δ. Similarly if c > 2k, we can show a

similar bound on Pr
[
number of actual bits that are 0 > x

6

]
.

We repeat log n times, and set δ = δ́
log n for each time. Then, by union bound, the probability that

any run fails is ≤ log n. δ́
log n = δ́.

To get a (1 + ε) approximation, we would need O
(

log n
ε2

(
log log n + log 1

δ

))
bits

2

18.3 Computing Second Moment

Recall that the kth moment of the stream is defined as µk =
∑

i∈[n] m
k
i . We will now discuss an

algorithm to find µ2. This measure is used in many applications as an estimate of how much the
frequency varies.

Algorithm 3:
Step 1: Pick a random variable Yi ∈u.a.r {−1, 1}∀i ∈ [n]
Step 2: Let the random variable Z be defined as Z =

∑
t Ya(t)

Step 3: Define the random variable X as X = Z2

Step 4: output X

Claim 18.3.1 X is an unbiased estimator for µ2; i.e. the expected value of X equals µ2

Proof:

Z can be redefined as:

Z =
∑

i∈[n]

miYi

X = Z2 =
∑

i

m2
i Y

2
i + 2

∑

i 6=j

mimjYiYj

E[X] =
∑

i

m2
i E

[
Y 2

i

]
+ 2

∑

i6=j

mimjE[YiYj]

Since Yi ∈ {−1, 1}, Y 2
i = 1. Also the second term evaluates to 0 since YiYj will evaluate to -1 or

+1 with equal probability

E[X] =
∑

i

m2
i = µ2 (18.3.1)

To get an accurate value, the above algorithm needs to be repeated. The following algorithm
specifies how Algorithm 3 can be repeated to obtain accurate results.

Algorithm 4:
Step 1:

FOR m = 1 to k
Execute Algorithm 3. Let Xi be the output

ENDFOR
Step 2: Calculate the mean of Xi X = (X1+X2...+Xk)

k
Step 3: output X

3

The expected value of X is taken as the value of µ2. We will see what the value of k needs to be
to get an accurate answer with high probability. To do this, we will apply Chebychev’s bound.
Consider the expected value of X2 :

E
[
X2

]
= E[

∑

i

m4
i Y

4
i + 4

∑

i 6=j

m3
i mjY

3
i Yj + 6

∑

i6=j

m2
i m

2
jY

2
i Y 2

j +

12
∑

i6=j 6=í

m2
i mjmíY

2
i YjYí + 24

∑

i6=j 6=í 6=j́

mimjmímj́YiYjYíYj́]

Assuming that the variables Yi are 4-way indepedent, we can simplify this to

E
[
X2

]
=

∑

i

m4
i + 6

∑

i6=j

m2
i m

2
j

The variance of Xi (as defined in Algorithm 3) is given by

var[X] = E
[
X2

]− (E[X])2

= (
∑

i

m4
i + 6

∑

i6=j

m2
i m

2
j)− (

∑

i

m4
i + 2

∑

i6=j

m2
i m

2
j)

= 4
∑

i6=j

m2
i m

2
j

≤ 2(
∑

i

m2
i)

2

≤ 2µ2
2

var[X] =
var[X]

k
≤ 2µ2

2

k

By Chebychev’s inequality:

Pr
[|X − µ2| ≥ εµ2

] ≤ var[X]
ε2µ2

2

≤ 2µ2
2

kε2µ2
2

≤ 2
kε2

4

Hence, to compute µ2 within a factor of (1±ε) with probability (1−δ), we need to run the algorithm
2

δε2
times.

18.3.1 Space requirements

Lets analyze the space requirements for the given algorithm. In each run on the algorithm, we
need O(log T) space to maintain Z. If we explicitly store Yi, we would need O(n) bits, which is too
expensive. We can improve upon this by contructing a hash function to generate values for Yi on
the fly. For the above analysis to hold, the hash function should ensure that any group of upto four
Yis are independent(i.e. the hash function belongs to a 4-Way Independent Hash Family). We
skip the details of how to construct such a hash family, but this can be done using only O(log n)
bits per hash function.

18.3.2 Improving the accuracy: Median of means method

In Algorithm 4, we use the mean of many trials to compute the required value. This has the
disadvantage that some inaccurate trials could adversely affect the solution. So we need a large
number of samples linear in 1

δ to get reasonable accuracy. Instead of using the mean, the following
procedure can be used to get better results. The idea is to take the median of the means of
subsamples. The reason this works better is because the median is less sensitive to the outliers in
a sample, as compared to the mean.

Group adjacent Xis into k groups of size 8
ε2

each. For each group calculate the mean. Then the
expected value of X is obtained by taking the median of the k means. The total number of samples
of X we use are k 8

ε2

mean mean mean mean

...

median

Xi

ε28/ ε28/ ε28/ ε28/

Fig 1: Median of mean method

To see how this improves the accuracy, consider a particular group as shown in the figure. Let Xi

be the mean of the group.

5

Xi

(1−ε) µ
2

< >

Pr > 3/4

2

(1+ε) µ
2

µ

Fig 2: Probability of median falling inside the range

Using Chebychev’s Inequality,

Pr
[|Xi − µ2| > εµ2

] ≤ var[X]
ε2µ2

2

≤ 2µ2
2

8
ε2

ε2µ2
2

=
1
4

Which essentially means that the probability of a value being outside the interval [(1−ε)µ2, (1+ε)µ2]
is atmost 1

4 . Using Chernoff’s bound,

Pr[median is outside the interval] = Pr[more than half the samples are outside the interval]

= e−
1
2

1
42

k

If the required probability is δ, we need to pick k so that this value is at most δ, i.e. k = O(log 1
δ)

So the number of trials required is k. 8
ε2

= O(1
ε2

log 1
δ). And the total number of bits used is

O(1
ε2

log 1
δ (log T + log n)).

6

