
CS787: Advanced Algorithms

Scribe: Archit Gupta, Pavan Kuppili Lecturer: Shuchi Chawla
Topic: Weighted Majority, Mistake Bound Model, and Winnow Algorithm Date: 11/12/2007

23.1 Prediction Problem

Last class we looked at the technique of maximizing reward using Multiplicative Update technique.
Today we look at a similar problem for online learning, where our goal is to minimize costs.
Let there be n experts giving predictions whether it’ll rain or not. Expert i predicts pi ∈ {−1, 1}
where pi = 1 if the prediction is it’ll rain and vice versa. Each expert i is associated with a weight wi.

Now we have to decide whether it’ll rain. Earlier on, we picked an expert to bet on. Note that
instead of picking an expert with probability proportional to wi, here we take a weighted vote of
experts. This algorithm is called the Weighted Majority algorithm.

Algorithm: Let wi = 1 at time t = 0. After each instance ‘t’ of a prediction, for each of the
expert i, that make a mistake: wi ← wi(1− ε).
To predict the next event t+ 1, we take the weighted vote of the experts.
We pick value 1 if

∑
(wipi) > 0

We pick value -1 if
∑

(wipi) < 0,
where wi is the weight associated with the expert i and pi is the prediction made by the expert i.

23.1.1 General case

We can generalize the above problem by letting the costs take any continuous value between 0 and
1. Now, each expert i makes a prediction pi,t which can lead to a loss li,t ∈ [0, 1] at time t of the
prediction. Our goal remains to minimize our costs.

Let wi,t be the weight of expert i at time t, li,t be the loss of expert i at time t, and let Wt

be the total weight of all experts at time t. The algorithm is as follows.

Algorithm:
For each expert initialize wi,0 = 1.
At each step, pick expert i with prob. wi,t

Wt
, where Wt =

∑
i(wi,t)

Update wi,t+1 = wi,t(1− ε)li,t where li,t is the loss of expert i.

Claim 23.1.1 WT ≥ (1 − ε)L, where T is the final time step, and L is the total loss of the best
expert.

Proof: Let n be the total number of experts, and let j be the best expert. So WT =
∑n

i=1wi,T ≥
wj,T = (1− ε)L.

1

Let Ft be the expected cost of the algorithm at time t. So Ft =
∑

i
wi,tli,t

Wt

Our total expected cost =
∑

t

∑
i

wi,tli,t
Wt

Now let us get a relation between Ft and WT , so that using claim 1, we can get a relationship
between Ft and L.

Wt+1 =
∑

i

wi,t(1− ε)li,t

≤
∑

i

wi,t(1− εli,t)

=
∑

i

wi,t − ε
∑

i

wi,tli,t

= Wt − εWtFt

Wt+1 ≤Wt(1− εFt)

This gives,
WT ≤ n

∏
t

(1− εFt)

Using claim 1,
(1− ε)L ≤ n

∏
t

(1− εFt)

L log(1− ε) ≤ log n+
∑

t

log(1− εFt)

(Note that log(1 + x) ≤ x)
L log(1− ε) ≤ log n− ε

∑
t

Ft

∑
t

Ft ≤ −L log(1− ε)/ε+ log n/ε

If ε is small, using Taylor’s series expansion, we get our total expected cost =
∑

t Ft ≈ (1 +
ε/2)L + log n/ε If instead of loss we were to gain G, the equivalent equation becomes

∑
t Ft ≤

(1− ε/2)G− 1/ε log n
Now, let ε =

√
log n/L. If L is large enough, ε is small and we get,∑

t

Ft ≈ L+O(
√
L log n)

This is a good result as our expected cost is within an additive term of O(
√
L log n) of the best

expert.

2

23.2 Mistake Bound Model for Learning

This is a variant of the prediction problem in which we believe that atleast one expert is always
correct. The goal is to minimize the number of mistakes our algorithm makes before we converge
to the “correct” expert. Note that the above multiplicative update method gives us a bound of
1/ε log n in this setting as L = 0. Can we do better?

A simple naive algorithm would be to choose a random expert at each step, and eliminate all those
experts who make a mistake. But in the worst case, this algorithm will end up making (n − 1)
mistakes, where n is the number of experts. (The worst case is when in each step, only the expert
we pick makes a mistake).

23.2.1 Halving algorithm

This algorithm makes a total of only log2 n mistakes. The algorithm is as follows.
1. Start with all the experts.
2. For each example, take a majority vote of the remaining experts, and eliminate all the experts
who make a mistake.
3. Keep repeating step 2 for each incoming example on which we need to make a prediction.

It is easy to note that whenever we make a mistake, we remove atleast half of the remaining experts
(since we voted in accordance with the majority of these experts). So the halving algorithm makes
atmost log2n mistakes before we eliminate all but the “correct” expert, and from then on we never
make a mistake.

23.3 Concept Learning

Often times, we can never maintain an explicit list of all the experts and do the Halving algorithm.
So in this section, we will look at implicit ways of doing the same thing (without maintaining an
explicit list of all remaining experts). For example, if we take the spam example, each email can
have multiple attributes. For example, ‘contains the word Viagra’ can be one attribute, ‘fraction
of spelling mistakes > 0.2’ can be one attribute, and so on. An expert is a function over these
attributes. Concept class is the class of all the experts we consider. For example, one concept class
can be the class of decision trees with at most n nodes. While this concept class is smaller than the
class of all possible experts, it is still very huge (exponential) and we cannot use the explicit halving
algorithm. Next we consider two algorithms on specific concept classes in the mistake bound model.

23.3.1 Concept class of OR functions

Here each expert is an OR of some of the attributes. So, if we have n attributes, there are a total of
2n experts (each attribute may or may not be present in the expert). The mistake bound algorithm
is as follows.
1. Start with a list L of all the attributes.
2. We predict accoring to the OR of all the remaining attributes in L.
3. If we make a mistake on an example e, we remove all the attribute in e from our list L.

3

4. Keep repeating steps 2 and 3 for each example on which we need to make predictions.

Theorem 23.3.1 The number of mistakes made by the above mistake bound algorithm on the
concpt class of OR functions ≤ n, where n is the number of attributes.

Proof: It can be noted that we maintain the invariant that L is a superset of all the attributes
in the true expert. If an example contains atleast one attribute in the true expert, the example is
true, and we also predict true. We never end up removing an attribute in the true expert. However
an example might be false, and we might predict it as true. (For example in the beginning, when
we have all the attributes in L). However, each time we make a mistake, we remove atleast one at-
tribute. So we make atmost nmistakes before we elminate all the attributes not in the true expert.

23.3.2 Concept class of OR functions of maximum size k

Here, |C| =
∑k

i=0

(
n
k

)
≈ nk. So, we want a mistake bound model which has a maximum of O(k log n)

mistakes. Let A be the set of n attributes. Let wi be the weight of the ith attribute which we
keep updating. In any example, let xi = 1, if the example contains the ith attribute, and xi = 0,
otherwise. The following Winnow algorithm makes a maximum of O(klogn) mistakes.

Winnow algorithm:
1. Initialize wi = 1, ∀i ∈ A.
2. If

∑
iwixi ≥ n, predict positive, else predict negative.

3. On a mistake, if the true label was positive, wi = 2wi, ∀ attributes i present in the example.
4. On a mistake, if the true label was negative, wi = wi

2 ,∀ attributes i present in the example.
5. Keep repeating steps 2, 3, and 4 on all incoming examples on which we need to make predictions.

Claim 23.3.2 Let P be the number of mistakes made on positive examples (the true label on the
example is positive). P ≤ k log2 n.

Proof: Let us focus on any particular attribute j in the true expert. Whenever we make a
mistake on an example containing the attribute j, we double the weight of that attribute. So we
make atmost log2n mistakes on positive examples containg attribute j before wj becomes more
than n, and from then on we do not make any mistakes on positive examples containg attribute j.
Since we have atmost k such attributes in the true expert, we make atmost klog2n mistakes before
we stop making mistakes on positive examples.

Claim 23.3.3 Let N be the number of mistakes made on negative examples (the true label on the
example is negative). N ≤ 2P + 2.

Proof: Whenever we make a mistake on a positive example (the sum of weights on attributes in
that example < n), the increase in sum of weights is atmost n. Likewise when we make a mistake on

4

a negative example (the sum of weights on attributes in that example ≥ n), the reduction in sum of
weights ≥ n

2 . The initial sum of weights of attributes is n. After P mistakes on positive examples,
and N mistakes on negative examples, the sum of weights of all attributes ≤ n + nP − n

2N . The
total weight never falls below 0. So, n+ nP − n

2N ≥ 0. So, N ≤ 2P + 2.

Theorem 23.3.4 The bound on total number of mistakes is O(k log n) using the above two claims.

23.4 r out of k Concept Class

Here the true expert again has k attributes, and if any r of them are present in the example, then
the example is true, else false. In the next class, we will see how the Winnow algorithm (using a
multiplicative factor of (1+ε) instead of 2) can be used to get a mistake bound of O(krlogn) (using
ε = 1

2r).

5

