
CS787: Advanced Algorithms

Scribe: Evan Driscoll, Daniel Wong Lecturer: Shuchi Chawla
Topic: Random Walks & Markov chains: the resistance method. Date: December 7, 2007

28.1 Introduction

For this lecture, consider a graph G = (V,E), with n = |V | and m = |E|. Let du denote the degree
of vertex u.

Recall some of the quantities we were interested in from last time:

Definition 28.1.1 The transition matrix is a matrix P such that Puv denotes the probability of
moving from u to v: Puv = Pr[random walk moves from u to v given it is at u].

Definition 28.1.2 Stationary Distribution for the graph starting at v, π∗, is the distribution over
nodes such that π∗ = π∗P

Definition 28.1.3 The hitting time from u to v, huv, is the expected number of steps to get from
u to v.

Definition 28.1.4 The commute time between u and v, Cuv, is the expected number of steps to
get from u to v and then back to u.

Definition 28.1.5 The cover time of a graph, C(G), is the maximum over all nodes in G, of the
expected number of steps starting at a node and walking to every other node in G.

Last time we showed the following:

• For a random walk over an undirected graph where each vertex v has degree dv, π∗
2m = dv

2m is
a stationary distribution

• In any graph, we can bound the commute time between adjacent nodes: if (u, v) ∈ E then
Cuv ≤ 2m

• In any graph, we can bound the cover time: C(G) ≤ 2m(n− 1)

28.2 Resistive Networks

Recall the relationships and values in electrical circuits.

The 3 principle values we will be looking at are voltage, V , current, i, and resistance r. For
more information on the intuition of these properties I direct the reader to the wikipeida entry on
Electrical circuits, http://en.wikipedia.org/wiki/Electrical circuits.

Ohm’s Law:

Definition 28.2.1 V = ir

Kirchoff’s Law:
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Definition 28.2.2 At any junction, iin = iout

In other words, current is conserved.

Here is an example circuit diagram.

Slightly more complicated circuit:

Recall that for resistors in series the net resistance is the sum of the individual resistances, rnet =∑
r in series r. Similarly for resistors in parallel the multiplicative inverse of the net resistance is the

sum of the multiplicative inverses of each individual resistor, 1
rnet

=
∑

r in parallel
1
r .

28.3 Analysis of Random Walks with Resistive Networks

Consider an undirected unweighted graph G. Replace every edge by a 1Ω resistor. Let Ruv be the
effective resistance between nodes u and v in this circuit.

As you can see by applying these operations to a star graph, the effective resistance is 2Ω between
the indicated u and v.
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Lemma 28.3.1 Cuv = 2mRuv

Proof:

The proof of Lemma 28.3.1 will be shown by considering two schemes for applying voltages in
resistive networks and then showing that the combination of the two schemes show the lemma.

Part 1. We will analyze what would happen if we connect v to ground, then apply a current to
each other vertex w of amount dw amps. (dw is the degree of w.) The amount of current that flows
into the ground at v is 2m − dv, since each edge contributes one amp at each end. Let φw be the
voltage at node w.

Consider each neighbor w′ of w. There is a 1Ω resistor going between them. By Ohm’s law, the
current across this resistor is equal to the voltage drop from w to w′, which is just φw − φw′ . Look
at the sum of this quantity across all of w’s neighbors:

dw =
∑

w′:(w,w′)∈E

(φw − φw′) = dwφw −
∑

w′:(w,w′)∈E

φw′

Rearranging:

φw = 1 +
1
dw

∑
w′:(w,w′)∈E

φw′ (28.3.1)

At this point, we will take a step back from the interpretation of the graph as a circuit. Consider
the hit time hwv in terms of the hit time of w’s neighbors, hw′v. In a random walk from w to v, we
will take one step to a w′ (distributed with probability 1/dw to each w′), then try to get from w′

to v. Thus we can write huv as:

hwv = 1 +
1
dw

∑
w′:(w,w′)∈E

hw′v (28.3.2)

However, note that equation (28.3.2) is the same as equation (28.3.1)! Because of this, as long as
these equations have a unique solution, huv = φw. We will argue that this is the case. The voltage
at a node is one more than the average voltage of its neighbors. Consider two solutions φ(1) and
φ(2). Look at the vertex w where φ

(1)
w − φ

(2)
w is largest. Then one of the neighbors of w must also

have a large difference because of the average. In both solutions, φv = 0, so the difference in v’s
neighbors has to average out to zero.

Part 2. We will now analyze what happens with a different application of current. Instead of
applying current everywhere (except v) and drawing from v, we will apply current at u and draw
from everywhere else.

We are going to apply 2m − du amps at u, and pull dw amps for all w 6= u. (We continue to keep
v grounded.) Let the voltage at node w under this setup be φ′

w.

Through a very similar argument, hwu = φ′
u − φ′

w. Thus hvu = φ′
u − 0 = φ′

u.

Part 3. We will now combine the conclusions of the two previous parts. At each node w, apply
φw +φ′

w volts. We aren’t changing resistances, so currents also add. This means that each w ( 6= u
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and 6= v) has no current flowing into or out of it, and the only nodes with current entering or
exiting are u and v.

At v, 2m − dv amps were exiting during part 1, and dv amps were exiting during part 2, which
means that now 2m amps are exiting. By a similar argument (and conservation of current), 2m
amps are also entering u.

Thus the voltage drop from u to v is given by Ohm’s law:

(φu + φ′
u)− 0 = Ruv · 2m

But φu = huv and φ′
u = hvu, so that gives us our final goal:

huv + hvu = Cuv = 2mRuv

28.4 Application of the resistance method

A couple of the formulas we developed last lecture can be re-derived easily using lemma 28.3.1.
Lemma 27.5.1 says that, for any nodes u and v, if there is an edge (u, v) ∈ E, then Cuv ≤ 2m. This
statement follows immediately by noting that Ruv ≤ 1Ω. If a 1Ω resistor is connected in parallel
with another circuit (for instance, see the following figure), the effective resistance Ruv is less than
the minimum of the resistor and the rest of the circuit.

In addition, last lecture we showed (in lemma 27.6.1) that C(G) ≤ 2m(n−1). We can now develop
a tighter bound:

Theorem 28.4.1 Let R(G) = maxu,v∈V Ru,v be the maximum resistance between any two points.
Then mR(G) ≤ C(G) ≤ mR(G)2e3 lnn + n.

Proof: The lower bound is fairly easy to argue. Consider a pair of nodes, (u, v), that satisfy
Ruv = R(G). Then max{huv, hvu} ≥ Cuv/2 because either huv or hvu makes up at least half of the
commute time. Lemma 28.3.1 and the above inequality shows the lower bound.

To show the upper bound on C(G), we proceed as follows. Consider running a random walk over
G starting from node u. Run the random walk for 2e3mR(G) steps. For some vertex v, the chance
that we have not seen v is 1/e3. We know that from 28.3.1 the hitting time from any u to v is at
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most 2mR(G). From Markov’s inequality:

Pr
[
# of steps it takes to go from u to v ≥ 2e3mR(G)

]
≤ E[# of steps it takes to go from u to v]

2e3mR(G)

≤ 2mR(G)
2e3mR(G)

≤ 1
e3

(Note that this holds for any starting node u ∈ V .)

If we perform this process ln n times — that is, we perform lnn random walks starting from u
ending at u′ the probability that we have not seen v on any of the walks is (1/e3)ln n = 1/n3.
Because huv ≤ 1/e3 for all u, we can begin each random walk at the last node of the previous walk.
By union bound, the chance that there exists a node that we have not visited is 1/n2.

If we have still not seen all the nodes, then we can use the algorithm developed last time (generating
a spanning tree then walking it) to cover the graph in an expected time of 2n(m− 1) ≤ 2n3.

Call the first half of the algorithm (the ln n random walks) the “goalless portion” of the algorithm,
and the second half the “spanning tree portion” of the algorithm.

Putting this together, the expected time to cover the graph is:

C(G) ≤ Pr[goalless portion reaches all nodes] · (time of goalless portion)
+ Pr[goalless portion omits nodes] · (time of spanning tree portion)

≤
(

1− 1
n2

)
· (2e3mR(G) · lnn) + (1/n2) · (n3)

≤ 2e3mR(G) ln n + n

28.5 Examples

28.5.1 Line graphs

Last lecture we said that C(G) = O(n2). We now have the tools to show that this bound is tight.
Consider u at one end of the graph and v at the other; then Ruv = n − 1, so by lemma 28.3.1,
Cuv = 2mRuv = 2m(n− 1), which is exactly what the previous bound gave us.

28.5.2 Lollipop graphs

Last lecture we showed that C(G) = O(n3). Consider u at the intersection of the two sections of
the graph, and v at the end. Then Ruv = n/2, so Cuv = 2mn

2 = 2Θ(n2)n
2 = Θ(n3). Thus again

our previous big-O bound was tight.
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28.6 Application of Random Walks

We conclude with an example of using random walks to solve a concrete problem. The 2-SAT
problem consists of finding a satisfying assignment to a 2-CNF formula. That is, the formula takes
the form of (x1 ∨ x2) ∧ (x3 ∨ x1) ∧ . . .. Let n be the number of clauses.

The algorithm works as follows:

1. Begin with an arbitrary assignment

2. If the formula is satisfied, halt

3. Pick any unsatisfied clause

4. Pick one of the variables in that clause UAR and invert it’s value

5. Return to step 2

Each step of this algorithm is linear in the length of the formula, so we just need to figure out how
many iterations we expect to have before completing.

This algorithm can be viewed as performing a random walk on a line graph with n + 1 nodes.
Each node corresponds to the number of variables in the assignment that differ from a satisfying
assignment (if one exists). When we invert some xi, either we change it from being correct to
incorrect and we move one node away from 0, or we change it from being incorrect to being correct
and move one step closer to the 0 node.

However, there is one problem with this statement, which is that our results are for random walks
where we take any outgoing edge uniformly. Thus we should argue that the probability of taking
each edge out of a node is 1

2 . In the case where the algorithm chooses a clause with both a correct
and incorrect variable, the chances in fact do work out to be 1

2 in each direction. In the case where
the algorithm chooses a clause where both variables are incorrect, it will always move towards the
0 node. Thus the probability the algorithm moves toward 0 is at least 1

2 . It may be better, but
that only biases the results in favor of shorter running times.

Thus the probability of the random walk proceeding from i to i−1, and hence closer to a satisfying
assignment, is at least 1/2. Because of this, we can use the value of the hitting time we developed
for line graphs earlier. Hence the number of iterations of the above we need to perform, is O(n2).

28.7 Next time

Next time we will return to a question brought up when we were beginning discussions of random
walks, which is how fast do we converge to a stationary distribution, and under what conditions
are stationary distributions unique.
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