
CS787: Advanced Algorithms Lecture 13: Semi-definite programming

In this lecture we will study an extension of linear programming, namely semi-definite programming.
Semi-definite programs are much more general than linear program and can encode certain kinds of
quadratic programs (that is, those involving quadratic constraints or a quadratic objective). They
cannot be solved optimally in polynomial time (because the optimal solution may be irrational),
but can be approximated up to arbitrarily precision.

We will illustrate the use of semi-definite programming in algorithm design through the max-cut
problem.

13.1 Semi-Definite Programming

Semi-definite programming, as a generalization of linear programming, enables us to specify in
addition to a set of linear constraints a “semi-definite” constraint, a special form of nonlinear
constraints. In this section, we introduce the basic concept of semi-definite programming.

13.1.1 Definitions

First Let us define a positive semi-definite (p.s.d.) matrix A, which we denote as A � 0.

Definition 13.1.1 A matrix A ∈ Rn×n is positive semi-definite if and only if (1) A is symmetric,
and (2) for all x ∈ Rn, xTAx =

∑n
i=1

∑n
j=1Aijxixj ≥ 0.

Then we define a semi-definite program (SDP) as follows.

Definition 13.1.2 An SDP is a mathematical program with four components:

• a set of variables xij;

• a linear objective function to minimize/maximize;

• a set of linear constraints over xij;

• a semi-definite constraint X = [xij] � 0.

The semi-definite constraint is what differentiates SDPs from LPs. Interestingly, the constraint
can be interpreted as an infinite class of linear constraints. This is because by Definition 13.1.1, if
X � 0, then for all v ∈ Rn, vTXv ≥ 0. Each possible real vector v gives us one linear constraint.
Altogether, we have an infinite number of linear constraints. We will use this interpretation later
in this section.

13.1.2 A Different View of Semi-Definite Programming

In fact, semi-definite programming is equivalent to vector programming. To show this, we first
present the following theorem.

Theorem 13.1.3 For a symmetric matrix A, the following statements are equivalent:

1

1. A � 0.

2. All eigenvalues of A are non-negative.

3. A = CTC, where C ∈ Rm×n.

Proof: We prove the theorem by showing statement 1 implies statement 2, statement 2 implies
statement 3, and statement 3 implies statement 1.

1⇒ 2: If A � 0, then all eigenvalues of A are non-negative.

Recall the concept of eigenvectors and eigenvalues. The set of eigenvectors ω for A is defined as
those vectors that satisfy Aω = λω, for some scalar λ. The corresponding λ values are called
eigenvalues. Moreover, when A is a symmetric matrix, all the eigenvalues are real-valued. Now
let us look at each eigenvalue λ. First of all, we have Aω = λω, where ω is the corresponding
eigenvector. Multiplying both sides by ωT , then we have:

ωTAω = λωTω (13.1.1)

The LHS of Equation 13.1.1 is non-negative by the definition of positive semi-definite matrix A.
On the RHS of the equation, ωTω ≥ 0. Thus λ ≥ 0.

2⇒ 3: If all eigenvalues of A are non-negative, then A = CTC for some real matrix C.

Let Λ denote the diagonal matrix with all of A’s eigenvalues: λ1 0
. . .

0 λn

 .
Let W denote the matrix of the corresponding eigenvectors [ω1 ω2 · · · ωn]. Since eigenvectors are
orthogonal to one another (i.e., ωTi ωj = 1 if i = j; 0, otherwise), W is an orthogonal matrix. Given
Λ and W , we obtain the matrix representation of eigenvalues: AW = WΛ. Multiplying both side
by W T , we have:

AWW T = WΛW T . (13.1.2)

Since W is an orthogonal matrix, WW T = I and thus the LHS of Equation 13.1.2 is equal to A.
Since all the eigenvalues are non-negative, we can decompose Λ into Λ

1
2 (Λ

1
2)T , where Λ

1
2 is defined

as:  (λ1)
1
2 0

. . .
0 (λn)

1
2

 .
Thus WΛW T = WΛ

1
2 (Λ

1
2)TW T = WΛ

1
2 (WΛ

1
2)T . Let CT = WΛ

1
2 . Equation 13.1.2 is equivalent

to A = CTC.

2

3⇒ 1: If A = CTC for some real matrix C, then A � 0.

We prove it from the definition of A being p.s.d.:

A = CTC

⇔ xTAx = xTCTCx, where x ∈ Rn

⇔ xTAx = yT y, where y = Cx

⇒ xTAx ≥ 0, since yT y ≥ 0

Note that by statement 3, a positive semi-definite matrix can be decomposed into CTC. Let
C = [C1, C2 · · · Cn], where Ci ∈ Rm. Thus Aij is the dot product of Ci and Cj . This gives us the
following corollary.

Corollary 13.1.4 SDP is equivalent to vector programming.

13.1.3 Feasible Region of an SDP

Similar to an LP, a linear constraint in an SDP produces a hyper-plane (or a flat face) that restricts
the feasible region of the SDP. The semi-definite constraint, which is nonlinear, produces a non-
flat face. In fact, as we discussed at the end of Section 13.1.1, this nonlinear constraint can be
interpreted as an infinite number of linear constraints. As an example, the feasible region of an
SDP can be visualized as in Figure 13.1.3. In the figure, C1, C2 and C3 are three linear constraints,
and C4 is the nonlinear constraint. Constraints Ca and Cb are two instances among the infinite
number of linear constraints corresponding to C4. These infinite linear constraints produces the
non-flat face of C4.

C1

C2
C3

C4

Cb

Ca

Figure 13.1.1: The feasible region of an SDP

The optimal solution to an SDP can lie on the non-flat face of the feasible region and thus can be
irrational. Below we give a simple example of an irrational optimum to illustrate this point.

Example: Minimize x subject to the constraint:[
x
√

2√
2 x

]
� 0.

3

For positive semi-definite matrices, all the leading principal minors are non-negative. The leading
principal minors of an n× n matrix are the determinants of the submatrices obtained by deleting
the last k rows and the last k columns, where k = n− 1, n− 2, . . . , 0. In the example, the matrix
has two leading principal minors:

m1 =
∣∣[x]
∣∣ = x, and

m2 =
∣∣∣ [x

√
2√

2 x

] ∣∣∣ = x2 − 2.

Thus we have x ≥ 0 and x2 − 2 ≥ 0. It immediately follows that the minimum value of x is
√

2.

Finally we state without proving the following theorem on SDP approximation.

Theorem 13.1.5 We can achieve a (1+ε)-approximation to an SDP in time polynomial to n and
1/ε, where n is the size of the program.

13.2 Max-Cut

Recall that for the Max-Cut problem we want to find a non-trivial cut of a given graph such that
the edges crossing the cut are maximized, i.e.

Given: G = (V,E) with ce =cost on edge e.
Goal: Find a partition (V1, V2), V1, V2 6= φ, max

∑
e∈(V1×V2)∩E ce.

13.2.1 Representations

How can we convert Max-Cut into a Vector Program?

13.2.1.1 Quadratic Programs

First write Max-Cut as a Quadratic Program.

Let xu = 0 if vertex u is on the left side of the cut and xu = 1 if vertex u is on the right side of the
cut. Then we have

Program 1:

maximize
∑

(u,v)∈E (xu(1− xv) + xv(1− xu))cuv s.t.
xu ∈ {0, 1} ∀u ∈ V

Alternatively, let xu = −1 if vertex u is on the left side of the cut and xu = 1 if vertex u is on the
right side of the cut. Then we have

Program 2:

maximize
∑

(u,v)∈E
(1−xuxv)

2 cuv s.t.
xu ∈ {−1, 1} ∀u ∈ V

4

Note that xuxv = −1 exactly when the edge (u, v) crosses the cut.

We can express the integrality constraint as a quadratic constraint yielding

Program 3:

maximize
∑

(u,v)∈E
(1−xuxv)

2 cuv s.t.
x2
u = 1 ∀u ∈ V

In these programs an edge contributes cuv exactly when the edge crosses the cut. So in any solution
to these quadratic programs the value of the objective function exactly equals the total cost of the
cut. We now have an exact representation of the Max-Cut Problem. If we can solve Program 3
exactly we can solve the Max-Cut Problem exactly.

13.2.1.2 Vector Program

Now we want to relax Program 3 into a Vector Program.

Recall:
A Vector Program is a Linear Program over dot products.

So relax Program 3 by thinking of every product as a dot product of two n-dimensional vectors,
xu.

Program 4:

maximize
∑

uv∈E
(1−xu·xv)

2 cuv s.t.
xu · xu = 1 ∀u ∈ V

This is something that we know how to solve.

13.2.1.3 Semi-Definite Program

How would we write this as a Semi-Definite Program?

Recall:

Definition 13.2.1 A Semi-Definite Program has a linear objective function subject to linear con-
straints over xij together with the semi-definite constraint [xij] � 0.

Theorem 13.2.2 For any matrix A, A is a Positive Semi-Definite Matrix if the following holds.

A � 0 ⇒ vTAv ≥ 0 ∀v ∈ V
⇔ A = CTC, where C ∈ Rm×n

⇔ Aij = Ci · Cj

To convert a Vector Program into a Semi-Definite Program replace dot products with variables and
add the constraint that the matrix of dot products is Positive Semi-Definite.

So our Vector Program becomes

Program 5:

5

maximize
∑

(u,v)∈E
(1−yuv)

2 cuv s.t.
yuu = 1 ∀u ∈ V
[yij] � 0

If we have any feasible solution to this Semi-Definite Program (Program 5), then by the above
theorem there are vectors {xu} such that yuv = xu · xv∀u, v ∈ V . The vectors {xu} are a feasible
solution to the Vector Program (Program 4). Thus the Semi-Definite Program (Program 5) is
exactly equivalent to the Vector Program (Program 4).

13.2.2 Solving Vector Programs

We know how to get arbitrarily close to the exact solution to a Vector Program. So we get some set
of vectors for which each vertex is mapped to some n-dimensional vector around the origin. These
vectors are all unit vectors by the constraint that xu · xu = 1, so the vectors all lie in some unit
ball around the origin.

Figure 13.2.2: The unit vectors in the Vector Program solution.

Now we have some optimal solution to the Vector Program. Just as in the case when we had an
exact representation as an Integer Program and relaxed it to a Linear Program to get an optimal
solution that was even better than the optimal integral solution to the Integer Program, here we
have some exact representation of the problem and we are relaxing it to some program that solves
the program over a larger space. The set of integral solutions to Program 3 form a subset of
feasible solutions to Program 4, i.e., Program 4 has a larger set of feasible solutions. Thus the
optimal solution for the Vector Program is going to be no worse than the optimal solution to the
original problem.

Fact: OPTV P ≥ OPTMax−Cut.

Goal: Round the vector solution obtained by solving the VP to an integral solution (V1, V2) such
that the total value of our integral solution ≥ αOPTV P ≥ αOPTMax−Cut.

Our solution will put some of the vectors on one side of the cut and the rest of the vectors on
the other side of the cut. Our solution is benefitting from the edges going across the cut that
is produced. Long edges crossing the cut will contribute more to the solution than short edges

6

crossing the cut because the dot product is smaller for the longer edges than the shorter edges. We
want to come up with some way of partitioning these vertices so that we are more likely to cut long
edges.

13.2.3 Algorithm

In two dimensions good cut would be some plane through the origin such that vectors on one side
of the plane go on one side of the cut and vectors that go on the other side of the plane go on the
other side of the cut. In this way we divide contiguous portions of space rather than separating the
vectors piecemeal.

Figure 13.2.3: A sample Gaussian variable, x.

1. Pick a “random” direction - unit vector n̂.

2. Define V1 = {v|xv · n̂ ≥ 0}, V2 = {v|xv · n̂ < 0}.

3. Output (V1, V2).

To pick a “random” direction we want to pick a vector uniformly at random from the set of all unit
vectors. Suppose we know how to pick a normal, or gaussian, variable in one dimension. Then pick
from this normal distribution for every dimension.

This gives us a point that is spherically symmetric in the distribution. The density of any point
x in the distribution is proportional to exp−

1
2
x2

. So if each of the components, xi is picked using
this density, the density of the vector is proportional to

∏
i exp

− 1
2
x2

i = exp(− 1
2

P
i x

2
i), which depends

only on the length of the vector and not the direction. Now normalize the vector to make it a unit
vector.

7

We now want to show that the probability that an edge is cut is proportional to it’s length. In this
way we are more likely to cut the longer edges that contribute more to the value of the cut. So
what is the probability that we will cut any particular edge?

Figure 13.2.4: An example cut across the unit circle.

From Figure 13.2.4 we can see that

Pr[our algorithm cuts edge (u, v)] = θuv
π .

This is for two dimensions, what about n dimensions? If the cutting plane is defined by some
random direction in n dimensions, then we can project down to two dimensions and it is still
uniformly at random over the n dimensions. So we have the same probability for n dimensions. So
the expected value of our solution is

E[our solution] =
∑

(u,v)∈E
θuv
π cuv

In terms of θuv the value of our Vector Program is

V alV P =
∑

(u,v)∈E (1−cos(θuv)
2)cuv

Now we want to say that E[our solution] is not much smaller than V alV P . So we look at the ratio
of E[our solution] to V alV P is not small.

Claim 13.2.3 For all θ, 2θ
π(1−cosθ) ≥ 0.878

As a corollary we have the following theorem. (Note: 1.12 ≈ 1/0.878.)

Theorem 13.2.4 We get a 1.12-approximation.

13.2.4 Wrap-up

This algorithm is certainly better than the 2-approximation that we saw before. Semi-Definate
programming is a powerful technique, and for a number of problems gives us stronger approxima-
tions than just Linear Programming relaxations. As it turns out, the Semi-Definate solution for
Max-cut is the currently best-known approximation for the problem.

There is reason to believe that unless P = NP , you cannot do better than this approximation.
This result is highly surprising, given that we derived this number from a geometric argument,

8

Figure 13.2.5: A visual representation of the .878-approximation to the solution.

which seems like it should have nothing to do with the P = NP problem.

9

