’CS787 : Advanced Algorithms Lecture 15: Random walks and Markov chains

15.1 Introduction

As we have seen in previous lectures, randomization can be a useful tool for developing simple and
efficient algorithms. So far, most of these algorithms have used independent coin tosses to generate
randomness. In this lecture we will look at a different type of randomized algorithms whose basic
function is to traverse a fixed graph randomly.

Definition 15.1.1 A random walk is a process for traversing a graph where at every step we
follow an outgoing edge chosen uniformly at random. A Markov chain is similar except the
outgoing edge is chosen according to an arbitrary fized distribution.

Given a random walk or a Markov chain we are usually interested in two things:

e How quickly can we reach a particular node; How quickly can we cover the whole graph?

e How quickly does our position in the graph become “random”?

In this lecture we will mostly focus on random walks on undirected graphs and in the first set of
questions.

15.1.1 Uses and examples of random walks

One use of random walks and Markov chains is to sample from a distribution over a large universe.
Informally, we set up a graph over the universe such that if we perform a long random walk over
the graph, the distribution of our position approaches the distribution we want to sample from.

While random walks and Markov chains are useful algorithmic techniques, they are also useful in
analyzing some natural processes. Consider, for example, the following betting game: a player bets
$1, and either loses it or wins an addition dollar with probability % Since the probability of either
thing happening is equal, we can think of this as a random walk on a line graph, where each node
represents the amount of wealth at any point of time. This allows us to learn about numerous
aspects of the game, such as the probability distribution of the amount of money at a given time.
We can also ask about the probability of the player running out of money before winning a certain
amount, and if that happens, what is the expected amount of time before that happens.

Another example is shuffling a deck of cards. One possible way of drawing a permutation u.a.r. is
to start at an arbitrary permutation and to apply a local shuffling operation multiple times. This
can be thought of as a random walk on a graph of all permutations. Our graph would contain nodes
for each of the 52 permutations, and the connectivity of the graph would be determined by what
local operations are allowed. For example, if we could just randomly choose 1 card, and move it
to the top, each node would have degree 52 (if we include self-loops). Analyzing this random walk
may allow us to determine how many local steps we would need to take in order to be reasonably
close to the uniform distribution over permutations (a perfectly shuffled deck).



15.2 Properties of random walks

Transition matrix. A random walk (or Markov chain), is most conveniently represented by its
transition matrix P. P is a square matrix denoting the probability of transitioning from any vertex
in the graph to any other vertex. Formally, P,, = Pr[going from u to v, given that we are at u].
Thus for a random walk, P,, = i if (u,v) € E, and 0 otherwise (where d,, is the degree of u).

Below is an example of a graph and the transition matrix for the random walk on this graph.
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Stationary distribution. One of the properties of random walks that we are interested in is the
distribution of our position in the graph if we run a random walk for an infinite number of steps.
Formally, if we start with a distribution 7 on nodes in the graph, where 7 is an n x 1 vector, and
take a step in the random walk, then our final distribution over nodes is given by P77 where P is
the transition matrix. Then, starting at 7 and running the random walk for an infinite number of
steps gives us the following distribution on nodes in the limit:
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In general this distribution may depend on the position in the graph (or a distribution over it) that
we start the random walk, and some times the limit may not even exist. However, under certain
conditions, the limiting distribution always exists and is independent of the starting position (the
details are beyond the scope of this class). When these conditions hold, this limiting distribution
is identical to one that satisfies the following equation:

7t = pPlr>

This 7* is called the stationary distribution of the Markov chain.



Stationary distributions of random walks have special structure. The following two lemmas char-
acterize these distributions. In the following discussion we will consider a graph G = (V| E), with
n = |V| and m = |E|. Let d, denote the degree of vertex w.

Lemma 15.2.1 7, = g—:ﬂ s a stationary distribution for a random walk over G.

Proof: Suppose that we start with the distribution 7 and take a single step in the graph G. Then
the probability that we end up at node u is given by:

(P"-7)u=>_ Pum, (15.2.1)
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where the second line follows because P, = 2% if (v,u) € E and 0 otherwise. [

Another equivalent way of thinking about random walks is to consider the sequence of edges that the
random walk follows, rather than the sequence of nodes that it visits. For example, if the random
walk visits nodes v1, v, v3,v4 in that order, then it visits the edges (v1 — v2), (v2 — v3), (v3 — v4)
in that order. This process of visiting edges is a Markov chain over directed edges where each
undirected edge (u,v) has two directed copies (v — v) and (v — u). Now we can ask what is
the stationary distribution over directed edges in this Markov chain. It turns out that the uniform

distribution over edges is a stationary distribution, that is, m;_,, = ﬁ V(u — v) € E. This is
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Lemma 15.2.2 The stationary distribution induced on the edges of an undirected graph by the
random walk on that graph is uniform.

Hitting time and commute time. As mentioned earlier, one of the parameters of a random
walk that we are interested in is the amount of time it takes to get from one place to another in
the graph. We therefore define the following three quantities.

1. Hitting time, denoted h,,, is the expected time to get from u to v.
2. Commute time, denoted C,,, is the expected time to get from u to v, and back to u.

3. Cover time starting at u, denoted C,, is the expected time to visit every node starting at
node u, and the cover time for a graph is C'(G) = max, C,.

We now present a bound on the commute time. The proof below is just a sketch and certain
technical details are omitted. However, we will shortly give a different formal proof of this lemma
as well.

Lemma 15.2.3 Y(u,v) : (u,v) € E, we have Cy, < 2m.



Proof Sketch: If we view the process as a random walk on sequence of edges, we can bound the
commute time by the expected amount of time between consecutive occurences of the edge (v — u).
This is because, one way of going from u to v and back to u is to first visit u after following the
edge (v — u), then take an arbitrary path from v to v and then follow the edge (v — wu) back
to u. (The commute time could of course be much shorter, but this gives an upper bound.) The
expected length of the gap between consecutive occurences of the directed edge if we run for ¢ steps
is simply ¢ divided by the actual number of times we see the edge u — v. We also know that since
the stationary distribution over directed edges is uniform, we expect to see the edge ﬁ times. As
t goes to infinity, the actual number of times we see u — v appraoches its expectation % with
probability 1 (due to the law of large numbers). We can then approximate the actual number seen

by the expected number seen, and thus we expect the length of the gap to be - = 2m. [ |
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Cover time. If we had a bound on the commute time for all pairs (u,v) (call this bound x), we
could get a bound (in expectation) on the cover time by running the random walk for x * n steps.
Unfortunately, the bound given by lemma 15.2.3 is only valid for pairs (u, v) where there is an edge
between uw and v. However, we can still come up with a different method for bounding the cover
time.

Lemma 15.2.4 C(G) <2m(n—1)

Proof: Let T be an arbitrary spanning tree of G. For each edge (u,v) in T, add the edge
(v,u). We can then bound the cover time of G with the expected time needed to complete an
Euler tour of 7. Since each node in 7" has even degree (due to the doubling of the edges), we
know that an Euler tour must exist. If we list the vertices visited as v, v9,..., v = vy, we have
C(Q) < h(vovr) + h(vivz) + ... 4+ h(vg—1v0) = D yper M(u,v) + h(v,u) =3 cr Cuw < 2m(n — 1),
since each of the (n — 1) edges that was in T orginally shows up in both directions. For example,
the cover time of the graph given before could be bounded by using the spanning tree below, so
C(G) < hay + hig + hgy + hiz + hgs + hsz + hay + hio. u

It turns out that for some graphs, the bound given in lemma 15.2.4 is tight. One example of this is
the line graph with n vertices, depicted below (L,). According to the lemma, C(G) < 2(n —1)? =
O(n?). Also, we can note that hio <2(n—1)—1, since ho,1 = 1, and Cyy = hyy + hyy by linearity
of expectation. We will show below that the cover time for this graph is indeed ©(n?).
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However, the bound is not always tight, as in the case of the complete graph, K,. In this case,
m = n(n2—1)’ so C(K,) = O(n®) by the lemma. However, we can get a much tighter bound on
the cover time for this graph. Since in the complete graph, we can go from any node to any other
(uniformly at random) in one step, the problem of visiting all nodes can be viewed as an instance
of the coupon collector problem (see addendum at the end of this lecture). This gives us a bound
of O(nlogn).

Another example where the bound is not tight is a star graph on n vertices. This graph has n — 1
edges, and so the bound implies that the cover time on this graph is at most 2(n — 1)2. However,
once again appealing to the coupon collector problem, we see that the cover time on this graph is
no more than 2(n — 1)H,_1 = O(nlogn).

One last example is the lollipop graph (pictured below) , which has n vertices, half of which form
K z, with the remainder forming L% (and attached to the complete graph portion). The lemma in
this case gives C(G) = O(n?), which happens to be tight. This is because it takes (n?) time to get
from u to v. We can see this by the following analysis: for just the line graph, it should take Q(n?)
steps, ©2(n) of which will be spent at u, since the nodes should approach a uniform distribution.
However, if we are at u, there is a % probability of leaving the clique, see we need to visit u 2(n)
times to “escape” back to the line graph. However, if we are in the clique portion it takes Q(n)
steps to get back to u. Thus each time we end up in u from the line graph, we expect to take Q(n?)
steps to get back into the line graph. Thus the expected number of steps is 2(n3). This illustrates
that the number of edges in a graph alone doesn’t always give a good estimate of the cover time
of the graph, since both this and the complete graph example have ©(n?) edges but very different
cover times.




15.3 An application: testing s-t connectivity

A simple application of random walks is to test for connectivity in undirected graphs. In particular,
suppose that we have a graph with two special nodes s and ¢t and we wish to determine whether
there is a path between the two nodes. We can do this easily using BFS, DFS, or any other graph
traversal technique. However, these approaches use a linear amount of extra space (for example,
to mark nodes that have been visited). Can we perform this task using lesser space?

Random walks give a solution. Note that since any graph has at most n?/2 edges, the cover time
is at most n® for any graph. Thus we run a random walk starting at s for 2n3 steps and output
“connected” if we ever encounter ¢ on our walk. Then, if s and t are connected, with probability
1/2 we would have found t. If we repeat for logn times we can get the error probability down to
1/n. We use logn bits to store our current position in the graph, and O(logn) bits as a counter for
our time in the walk. This shows that s — ¢t connectivity can be solved in randomized log space.

15.4 Bounding cover time through resistive networks

We will now describe a different technique for bounding commute and cover times based on resistive
networks. Recall the laws governing electrical circuits. The three principle quantities we are
interested in are voltage, V, current, i, and resistance r. The following two laws govern these
quantities:

Definition 15.4.1 Ohm’s Law: V = ir
Definition 15.4.2 Kirchoff’s Law: At any junction, i;, = iout, that is, current is conserved.

Here are some examples of circuits.
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One application of these laws is that they allow us to compute the “effective resistance” of a
circuit. The effective resistance is equal to the voltage drop across the circuit when a unit current
flows through it. For example, for resistors in series the net resistance is the sum of the individual
resistances, net = D ., in sories 7~ Similarly for resistors in parallel the multiplicative inverse of the net

resistance is the sum of the multiplicative inverses of each individual resistor, - 1 o= Y orin parallel %
ne




The relationship between commute time and effective resistances

Consider an undirected unweighted graph G. Replace every edge by a 1{2 resistor. Let Ry, be the
effective resistance between nodes u and v in this circuit. The following lemma relates the commute
time in the graph to the effective resistance.

Lemma 15.4.3 Cy, = 2mR,,
Proof:

The proof of Lemma 15.4.3 will be shown by considering two schemes for applying voltages in
resistive networks and then showing that the combination of the two schemes show the lemma.

Part 1. We will analyze what would happen if we connect u to ground, then apply a current to
each other vertex w of amount d,, amps. (d,, is the degree of w.) The amount of current that flows
into the ground at v is 2m — d,, since each edge contributes one amp at each end. Let ¢,, be the
voltage at node w.

Consider each neighbor w’ of w. There is a 1€ resistor going between them. By Ohm’s law, the
current across this resistor is equal to the voltage drop from w to w’, which is just ¢, — ¢,. Look
at the sum of this quantity across all of w’s neighbors:

dw = Z ((z)w — d)w’) = dw¢w - Z ¢w’

w':(w,w')EE w':(w,w')EE
Rearranging:

1
bu=lto D, buw (15.4.4)

w':(w,w')eE

At this point, we will take a step back from the interpretation of the graph as a circuit. Consider
the hitting time h,,, in terms of the hitting time of w’s neighbors, h,s,. In a random walk from w
to u, we will take one step to a w’ (distributed with probability 1/d,, to each w’), then try to get
from w’ to u. Thus we can write Ay, as:

By = 1 + dlw > (15.4.5)

w':(ww')EE

Note that the system of equations (15.4.5) is identical to the system of equations (15.4.4)! Both
hitting times and voltages are solutions to this system of equations. So as long as these equations
have a unique solution, hy,, = ¢,,. We will argue that this is the case. The voltage at a node is one
more than the average voltage of its neighbors. Consider two solutions ¢(!) and #(?). Look at the

)

difference in the two solutions. Then, assuming that the graph is connected, gi)q(}) and qﬁq(f) must
have the same difference. However, by assumption, ¢l = qf)i = 0, so we get a contradiction.

vertex w where gi)z(j ) ¢§3 is largest. Then all of the neighbors of w must also have the same large

Therefore, for all w, hyy = Gw.

Part 2. We will now analyze what happens with a different application of current. Instead
of applying current everywhere and drawing from w, we will apply current at v and draw from
everywhere else.



We are going to apply 2m — d, amps at v, and pull d,, amps for all w # v. (We continue to keep
u grounded.) Let the voltage at node w under this setup be ¢,.

Through a very similar argument, hy, = ¢, — ¢.,. Thus hy, = ¢, — 0= ¢l.
Part 3. We will now combine the conclusions of the two previous parts. At each node w, apply
¢ + ¢, volts. We aren’t changing resistances, so currents also add. This means that each w ( # u

and # v) has no current flowing into or out of it, and the only nodes with current entering or
exiting are u and v.

At u, 2m — d, amps were exiting during part 1, and d,, amps were exiting during part 2, which
means that now 2m amps are exiting. By a similar argument (and conservation of current), 2m
amps are also entering v.

Thus the voltage drop from u to v is given by Ohm’s law:

(du + Qb,u) — 0= Ry -2m
But ¢, = hyy and @) = hy,, so that gives us our final goal:

huv + hvu = Cuv = QmRuv

Application of the resistance method

A couple of the formulas we developed previously can be re-derived easily using lemma 15.4.3.
Lemma 15.2.3 says that, for any nodes u and v, if there is an edge (u,v) € E, then Cy,, < 2m. This
statement follows immediately by noting that R,, < 1€. If a 1€ resistor is connected in parallel

with another circuit (for instance, see the following figure), the effective resistance Ry, is less than
the minimum of the resistor and the rest of the circuit.
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Furthermore, we previously showed (in lemma 15.2.4) that C'(G) < 2m(n—1). We can now develop
a tighter bound:

Theorem 15.4.4 Let R(G) = maxy ey Ry be the mazimum resistance between any two points.
Then mR(G) < C(G) < mR(G)2e3Inn + n.



Proof: The lower bound is fairly easy to argue. Consider a pair of nodes, (u,v), that satisfy
R., = R(G). Then max{hyy, hpu} > Cuvn/2 because either hy, or h,, makes up at least half of the
commute time. Lemma 15.4.3 and the above inequality shows the lower bound.

To show the upper bound on C(G), we proceed as follows. Consider running a random walk over
G starting from node u. Run the random walk for 2e3mR(G) steps. For some vertex v, the chance
that we have not seen v is 1/e3. We know that from 15.4.3 the hitting time from any u to v is at
most 2mR(G). From Markov’s inequality:

E[# of steps it takes to go from u to

v]

Pr [# of steps it takes to go from u to v > 2e3mR(G)] <

2e3mR(G)
2mR(Q)
2e3mR(G)
< 1
(Note that this holds for any starting node u € V.)
If we perform this process Inn times — that is, we perform Inn random walks starting from u

ending at v/ the probability that we have not seen v on any of the walks is (1/e3)"" = 1/n3.
Because h,, < 1/e? for all u, we can begin each random walk at the last node of the previous walk.

By union bound, the chance that there exists a node that we have not visited is 1/n?.

If we have still not seen all the nodes, then we can use the algorithm developed last time (generating
a spanning tree then walking it) to cover the graph in an expected time of 2n(m — 1) < 2n3.

Call the first half of the algorithm (the Inn random walks) the “goalless portion” of the algorithm,
and the second half the “spanning tree portion” of the algorithm.

Putting this together, the expected time to cover the graph is:

C(G) < Prlgoalless portion reaches all nodes] - (time of goalless portion)
+ Pr[goalless portion omits nodes| - (time of spanning tree portion)
< <1 — le> - (26>mR(G) - Inn) + (1/n?) - (n?)
< 23mR(G)Inn+n
|
Examples

Line graphs. Above we noted that that C(L,) = O(n?) for line graphs. We now have the tools
to show that this bound is tight. Consider u at one end of the graph and v at the other; then
Ry, = n — 1, so by lemma 15.4.3, Cy, = 2mRy, = 2m(n — 1), which is exactly what the previous
bound gave us.

Lollipop graphs. For lollipop graphs we previous argued (informally) that C(G) = Q(n3) for
lollipop graphs on n nodes. We will now confirm this. Consider u at the intersection of the



two sections of the graph, and v at the other end of the line segment. Then R,, = n/2, so
Cuv =2m% = 20(n?)% = O(n*). Thus again our previous big-O bound was tight.

15.5 Another application: 2-SAT

We conclude with an example of using random walks to solve a concrete problem. The 2-SAT
problem consists of finding a satisfying assignment to a 2-CNF formula. That is, the formula takes
the form of (z1 V x2) A (3 V Z1) A.... Let n be the number of variables.

The algorithm works as follows:

1. Begin with an arbitrary assignment.

2. If the formula is satisfied, halt and output satisfiable.

3. If the number of iterations exceeds n?3, halt and output unsatisfiable.

4. Pick any unsatisfied clause. Pick one of the variables in that clause u.a.r. and invert its value.

5. Return to step 2.

Assume that the formula is satisfiable. Each step of this algorithm is linear in the length of the
formula, so we just need to figure out how many iterations we expect to have before finding a
satisfying assignment.

Consider any satisfying assignment for the formula. We will measure progress by counting how
far from this satisfying assignment we are in terms of how many variables we differ from. In the
worst case, we start by being “wrong” on all the n variables, and the algorithm terminates (no later
than) when the number of “wrong” variables goes down to 0. The algorithm can thus be viewed as
performing a random walk on a line graph with n+ 1 nodes. Each node corresponds to the number
of variables in the assignment that differ from the satisfying assignment we chose. When we invert
some variable x;, either we change it from being correct to incorrect and we move one node away
from 0, or we change it from being incorrect to being correct and move one step closer to the 0
node.

However, there is one problem with this analogy, which is in random walks on line graphs we assume
that we go left or right with equal probability. Thus we need to argue that the probability of going
left or right is % In the case where the algorithm chooses a clause with both a correct and an
incorrect variable, the chances in fact do work out to be % in each direction. In the case where the
algorithm chooses a clause where both variables are incorrect, it will always move towards the 0
node. Thus the probability the algorithm moves toward 0 is at least % While this is different from
the random walk we studied previously, it only biases the results in favor of shorter running times.

Thus the probability of the random walk proceeding from ¢ to ¢ — 1, and hence closer to a satisfying
assignment, is at least 1/2. Because of this, we can use the value of the hitting time we developed
for line graphs earlier. Hence the number of iterations we need to perform in expectation before
finding a satisfying assignment is < 2n?. Running for n? steps gives us a high probability result
via Markov’s inequality.
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