
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow

In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how
it can be efficiently solved using the Ford-Fulkerson algorithm. We also proved the Min Cut-Max
Flow Theorem which states that the size of the maximum flow is exactly equal to the size of the
minimum cut in the graph.

In this lecture, we will see how various different problems can be solved by reducing the problem
to an instance of the network flow problem.

5.1 Bipartite Matching

A Bipartite Graph G = (V,E) is a graph in which the vertex set V can be divided into two disjoint
subsets X and Y such that every edge e ∈ E has one end point in X and the other end point in Y .
A matching M is a subset of edges such that each node in V appears in at most one edge in M .

X

Y

Figure 5.1.1: A bipartite graph

We are interested in matchings of large size. Formally, maximal and maximum matchings are
defined as follows.

Definition 5.1.1 (Maximal Matching) A maximal matching is a matching to which no more
edges can be added without increasing the degree of one of the nodes to two; it is a local maximum.

Definition 5.1.2 (Maximum Matching) A maximum matching is a matching with the largest
possible number of edges; it is globally optimal.

Our goal is to find the maximum matching in a graph. Note that a maximal matching can be found
very easily — just keep adding edges to the matching until no more can be added. Moreover, it can
be shown that for any maximal matching M , we have that |M | ≥ 1

2 |M
∗| where M∗ is the maximum

matching. Therefore we can easily construct a “2-approximation” to the maximum matching.

The problem of finding the maximum matching can be reduced to maximum flow in the following
manner. Let G(V,E) be the bipartite graph where V is divided into X and Y . We will construct a

1



directed graph G′(V ′, E′), in which V ′ which contains all the nodes of V along with a source node
s and a sink node t. For every edge in E, we add a directed edge in E′ from X to Y . Finally we
add a directed edge from s to all nodes in X and from all nodes of Y to t. Each edge is given unit
capacity.

X

Y

s t

Let f be an integral flow of G′ of value k. Then we can make the following observations:

1. There is no node in X which has more than one outgoing edge where there is a flow.

2. There is no node in Y which has more than one incoming edge where there is a flow.

3. The number of edges between X and Y which carry flow is k.

By these observations, it is straightforward to conclude that the set of edges carrying flow in f
forms a matching of size k for the graph G. Likewise, given a matching of size k in G, we can
construct a flow of size k in G′. Therefore, solving for maximum flow in G′ gives us a maximum
matching in G. Note that we used the fact that when edge capacities are integral, Ford-Fulkerson
produces an integral flow.

Let us now analyze the running time of this algorithm. Constructing the graph G′ takes O(n + m)
time where n = |V | and m = |E|. The running time for the Ford-Fulkerson algorithm is O(m′F )
where m′ is the number of edges in E′ and F =

∑
e∈δ(s)(ce). In case of bipartite matching problem,

F ≤ |V | since there can be only |V | possible edges coming out from source node. So the total
running time is O(m′n) = O((m + n)n).

An interesting thing to note is that at any iteration of the algorithm, any s-t path in the residual
graph will have alternating matched and unmatched edges. Such paths are called alternating
paths. This property can be used to find maximum matchings even in general graphs.

5.1.1 Perfect Matching

A perfect matching is a matching in which each node has exactly one edge incident on it. One
possible way of finding out if a given bipartite graph has a perfect matching is to use the above
algorithm to find the maximum matching and checking if the size of the matching equals the number
of nodes in each partition. There is another way of determining this, using Hall’s Theorem.

2



Theorem 5.1.3 A Bipartite graph G(V,E) has a Perfect Matching iff for every subset S ⊆ XorS ⊆
Y , the size of the neighbors of S is at least as large as S, i.e |Γ(S)| ≥ |S|
This theorem can be proven using induction. We will not discuss the proof in detail here.

5.2 Scheduling Problems

We will now see how the Max Flow algorithm can be used to solve certain kinds of scheduling
problems. The first example we will take will be of scheduling jobs on a machine.

Let J = {J1, J2, ..., Jn} be the set of jobs, and T = {T1, T2, .., Tk} be slots available on a machine
where these jobs can be performed. Each job J has a set of valid slots Sj ⊆ T when it can be
scheduled. The constraint is that no two jobs can be scheduled at the same time. The problem is
to find the largest set of jobs which can be scheduled.

This problem can be solved by reducing it to a bipartite matching problem. For every job, create
a node in X, and for every timeslot create a node in Y . For every timeslot T in Sj , create an edge
between J and T . The maximum matching of this bipartite graph is the maximum set of jobs that
can be scheduled.

We can also solve scheduling problems with more constraints by having intermediate nodes in the
graph. Let us consider a more complex problem: A hospital has n doctors, each with a set of
vacation days when he or she is available. There are k vacation periods, each spanning multiple
contiguous days. Let Dj be the set of days included in the jth vacation period. We need to maximize
the assignment of doctors to days (one doctor per day) under the following constraints:

1. Each doctor has a capacity ci which is the maximum total number of days he or she can be
scheduled.

2. For every vacation period, any given doctor is scheduled at most once.

We will solve this problem by network flow. As was done earlier, for every doctor i we create a
node ui and for every vacation day j we create a node vj . We add a directed edge from start node
s to ui and from vj to sink t. Other edges and capacities are added as follows to satisfy the above
constraints:

• The doctor capacities are modeled as capacities of the edge from the source to the vertex
corresponding to the doctor.

• The capacities of edges from nodes vj to the sink t are all set to 1, to represent choosing one
doctor for each vacation day.

• To prevent the doctor to be scheduled more than once in a vacation period, we introduce
intermediate nodes. For any doctor i and a vacation period j, we create an intermediate node
wij . We create an edge with unit capacity from ui to wij . For every day in the vacation
period that the doctor is available, we create an edge from wij to the node corresponding to
that day with unit capacity.

3



s

doctors

t

intermediate nodes

vacation periods

ci

1
1

1

Figure 5.2.2: Scheduling problem with constraints

Let us see if the an integral flow through the graph produces a valid schedule. Since the edge
connecting s to the node corresponding to the doctor has the capacity equal to the total availability
of the doctor, the flow through the doctor node cannot exceed it. So the first constraint is satisfied.
From any doctor to any vacation period the flow is atmost one, since the intermediate node has
only one incoming edge of unit capacity. This makes sure that the second criteria is met. So the
flow produced satisfies all the constraints.

If k is the size of an integral flow through the graph, then the total number of vacation days which
have been assigned is also k, since the edges which connect the nodes corresponding to the vacation
days to the sink node have unit capacity each. So the size of the scheduling is equal to the size of
the flow. From this we can conclude that the largest valid scheduling is produced by the maximum
flow.

5.3 Partitioning Problems

Now we will see how certain kinds of paritioning problems can be solved using the network flow
algorithm. The general idea is to reduce it to a min-cut rather than a max-flow instance. The first
example we will see is the image segmentation problem.

5.3.1 Image Segmentation

Consider the following simplification of an image segmentation problem. Assume every pixel in
an image belongs to either the foreground of an image or the background. Using image analysis
techniques based on the values of the pixels its possible to assign probabilites that an individual
pixel belongs to the foreground or the background. These probabilites can then be translated to
“costs” for assigning a pixel to either foreground or background. In addition, since adjacent pixels
are expected to be mapped in the same way, there are costs for assigning a pixel to the foreground
and its neighbor to the background. The goal then is to find an assignment of all pixels such that
the costs are minimized.

4



Formally, let fi be the cost of assigning pixel i to the foreground, bi be the cost of assigning pixel
i to the background, and sij be the cost of separating neighboring pixels i and j into different
regions.

Goal: Find a partition of pixels into S, the set of foreground pixels, and S, the set of background
pixels, such that the global cost of this assignment is minimized.

Let (S, S) be the partition of pixels into foreground and background respectively. Then the cost of
this partition is defined as:

cost(S) =
∑
i∈S

fi +
∑
i/∈S

bi +
∑

i∈S,j /∈S
i and j are neighbors

sij (5.3.1)

We need to find an S which minimizes cost. This problem can be reduced to a min-cut max-flow
problem. The natural reduction is to a min-cut problem.

Let each pixel be a node, with neighboring pixels connected to each other by undirected edges with
capacity sij . Create additional source and sink nodes, B and F , respectively which have edges to
every pixel. The edges from B to each pixel have capacity fi. The edges from each pixel to F have
capacity bi.

f_i

b_i

B

F
v_i

s_ij

background
foreground

Figure 5.3.3: Image segmentation flow graph

Any cut in the graph will then naturally separate the pixels into two groups — S (the foreground)
representing the group of pixels not reachable from B (see the figure above). Now it’s easy to
see that for any B-F cut, the cost of the cut is exactly equal to the cost associated with the
corresponding partition. The min-cut max-flow algorithm will find such a partition of minimum
cost.

5.3.2 Image Segmentation cont.

Consider a modification of the original problem. Replace fi and bi with values representing the
“benefit/value” for assigning the pixel i to either the foreground or background.

5



B

F
v_i

s_ij

background foreground

b_i

f_i

Figure 5.3.4: Flow graph for maximizing benefit

Goal: Find a partition of all pixels into S, the set of foreground pixels, and S, the set of background
pixels, such that the global value is maximized. Here value is defined as

val(S) =
∑
i∈S

fi +
∑
i/∈S

bi −
∑

i∈S,j /∈S
i and j are neighbors

sij (5.3.2)

Since the min-cut approach is a minimization problem, we need to convert it into a minimization
problem in order to reduce it to min-cost. Let (S, S̄) be the partition of pixels into foreground and
background respectively.

We can relate cost (defined as per 5.4.1) and val by assuming cost to mean “lost benefit”:

cost(S) =
∑
i

(bi + fi)− val(S) (5.3.3)

Since
∑

i(bi + fi) is a constant for any given instance, the problem of maximising val reduces to
minimizing the cost.

We can reformulate cost as

cost(S) =
∑
i∈S

bi +
∑
i/∈S

fi +
∑

i∈S,j /∈S
i and j are neighbors

sij (5.3.4)

Comparing this to the previous problem, we see that this is the same as interchanging bi and fi in
the graph we used to solve the first problem; i.e. the weight of the nodes from B to vi is set as
fi and weight of vi to F is set as bi. Solving this using min-cut will give us the partition which
maximizes the benefit.

6



5.4 Finding maximum flows via linear programming

We now discuss a different way of finding maximum flows in polynomial time.

5.4.1 Linear programming

Linear Programming is a kind of optimization problem where one optimizes a linear multivariate
function over linear constraints.

Definition 5.4.1 A linear program is a collection of linear constraints on some real-valued vari-
ables with a linear objective function.

Example: Maximize 5x + y subject to the constraints

2y − x ≤ 3
x− y ≤ 2

x, y ≥ 0

Figure 5.4.5: The feasible region in some linear programming problem.

To get an idea of what this looks like plot the set of pairs (x, y) that satisfy the constraints. See
Figure 5.4.5 for a plot of the feasible region.

The feasible region, the region of all points that satisfy the constraints, is the shaded region. Any
point inside the polytope satisfies the constraints. Our goal is to find a pair that maximizes 5x+ y.
The solution is the point (x, y) = (7, 5). Note that the optimum is achieved at a corner point of
the feasible region.

Definition 5.4.2 (Convex Polytope) A polytope is an n-dimensional body with “flat” faces. A
polytope is called convex if for any two points in the polytope, the line segment joining the two points
lies entirely within the polytope. The feasible region of a linear program is a convex polytope.

Definition 5.4.3 (Extreme point or basic solution) An extreme point or a basic solution is
a corner point of the feasible region. An equivalent definition of an extreme point is any point that
cannot be expressed as the convex combination of two or more points in the polytope.

7



The optimal solution to a linear program always occurs at an extreme point.

The following are standard ways of writing a linear program:

maximize cTx subject to
Ax ≤ b

x ≥ 0

or,

minimize cTx subject to
Ax ≥ b

x ≥ 0

Here A is an m by n real matrix, A ∈ <m×n, b is an m × 1 real vector, c is an n × 1 real vector,
and x is an n× 1 vector of variables. It is easy to see how to convert any given linear program into
standard form. For example,

maximize 3x + 5y − z subject to
x ≤ 2

z − 5y ≥ 4
2y + z = 1

y, z ≥ 0

can be written as

maximize 3(x1 − x2) + 5y − z subject to
x1 − x2 ≤ 2
5y − z ≤ −4
2y + z ≤ 1
−2y − z ≤ −1

x1, x2, y, z ≥ 0

5.4.2 Solving a Linear Program

Given a linear program, three things can happen:

1. The feasible region is empty

2. The feasible region and the optimal value are unbounded

3. The feasible region is a bounded convex polytope and an optimal value exists.

8



Generally the goal is to determine whether (1) happens, and if (3) happens, what the optimal value
is. These problems are reducible to each other.

Linear programs can be solved in time polynomial in n and m, where n is the number of variables
and m is the number of constraints.

There are three ways of solving a linear program:

1. The simplex method. This approach starts on an extreme point of the polytope and
follows the edges of the polytope from one extreme point to another doing hill-climbing of
some sort, until it reaches a local optimum. Note that a local optimum is always a global
optimum due to convexity. The worst-case complexity of this algorithm is exponential (the
polytope may contain an exponential number of extreme points). However its “average case
complexity”, defined appropriately, is polynomial-time. In practice, the simplex method is
the most frequently used approach to solve linear programs.

2. The ellipsoid method. This was the first polynomial time algorithm developed for linear
programming. The idea is to start with some ellipsoid containing the feasible region. The
center of the ellipsoid is then checked for feasibility. If it is found to be feasible, the algorithm
terminates. Otherwise, there is some constraint that is violated. This constraint divides
the ellipsoid into two equal halves, one of which entirely contains the feasible region. The
algorithm then encloses this half into a smaller ellipsoid and continues. The main insight
behind the algorithm is that the size of the ellipsoid is cut by a constant fraction at every
iteration. Unfortunately this algorithm is quite slow in practice.

3. Interior point methods. These methods start with a feasible point and move towards
the optimum within the interior of the polytope, as opposed to the exterior in the simplex
method. This approach leads to polynomial time algorithms that are also reasonably efficient
in practice.

5.4.3 Max flow via linear programming

Linear Programming is interesting to us because 1. it is solvable in polynomial time, 2. a closely
related problem (Integer Programming) is NP-hard, and 3. LP-duality, which we will study a little
later, gives us insights connecting different optimization problems. We will see later that we can
take any NP-complete problem, reduce it to an instance of Integer Programming, and then try to
solve the new problem using the same techniques that solve Linear Programming problems.

For now, we show that max flow can be reduced to linear programming. Consider an instance
G = (V,E) of the max flow problem with edge capacities ce for e ∈ E. Let fe be the variable
representing the amount of flow on edge e. Then the following LP encodes the max flow problem.

9



maximize
∑

v:(s,v)∈E

fs,v subject to

∑
u:(u,v)∈E

f(u,v) =
∑

u:(v,u)∈E

f(v,u) ∀v ∈ V, v 6= s, t (Conservation)

fe ≤ ce ∀e ∈ E (Capacity constraints)

fe ≥ 0 ∀e ∈ E

Note that the Ford-Fulkerson algorithm is greatly preferable to this approach in terms of running
time as well as because the linear program doesn’t necessarily return an integral solution, which
may sometimes be preferable. Nevertheless this reduction lets us determine quickly what variants
of max-flow are likely to be solvable in polynomial time.

References

[1] Eva Tardos, Jon Kleinberg Algorithm Design. Pearson Education, 2006.

10


