
CS787: Advanced Algorithms Lecture 8: NP-Completeness

In this lecture we will define the class NP, a class of problems that we currently do not know how
to solve in polynomial time. We will define the hardest problems in this class using the notions of
poly-time reducibility and NP-completeness.

8.1 P and NP

When analyzing the complexity of algorithms, it is often useful to recast the problem into a decision
problem. By doing so, the problem can be thought of as a problem of verifying the membership
of a given string in a language, rather than the problem of generating strings in a language. Pis
the class of languages for which the membership problem can be decided in time polynomial in
the size of the input string. For some languages we do not have a polynomial time algorithm for
membership. However we can verify in polynomial time whether the given string is in the language
or not, using another “witness” string. NP is the class of languages for which membership can be
verified in polynomial time, given a witness string of polynomial length. More formally, L ∈ NP iff
∃ a poly-time verifier V such that

∀x ∈ L,∃w with |w| = poly(|x|) such that V (x,w) accepts

∀x 6∈ L,∀w with |w| = poly(|x|), V (x,w) rejects

The class Co-NP is the class of complements of the languages in NP, and is defined similarly: L ∈
Co-NP iff ∃ a polytime verifier V such that

∀x 6∈ L,∃w with |w| = poly(|x|) such that V (x,w) accepts

∀x ∈ L,∀w with |w| = poly(|x|), V (x,w) rejects

An example of a language in the class NP is Vertex Cover. The language contains all pairs of graphs
G = (V,E) with integer k for which there exists a set S ⊆ V with |S| = k such that ∀e ∈ E, e is
incident on a vertex in S. The following is a verifier for this language: V takes as input the pair
G, k and a witness set S ⊆ V and verifies that all edges e ∈ E are incident on at least one vertex in
S and that |S| ≤ k. If G has no vertex cover of size less than or equal to k then there is no witness
w which can be given to the verifier which will make it accept.

8.2 P-time reducibility

The notion of reducibility allows us to convert one problem into another in polynomial time, so that
if we can solve the latter, then we can also solve the former problem. The contrapositive is that if
the former is an NP-hard problem, then so is the latter. When talking about decision problems, a
problem A is said to reduce to problem B if there exists a polynomial time algorithm which takes as
input an instance of problem A, and outputs an instance of problem B which is guaranteed to have
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the same result as the instance in problem A. That is, if LA is the language of problem A, and LB

is the language of problem B, and if there is a polynomial time algorithm which maps any l ∈ LA

into lB ∈ LB and any l′ 6∈ LA into l′B 6∈ LB, then problem A polynomial-time reduces to problem B,
denoted A ≤P B. This reduction is also called a Cook reduction. The practical implication of this
is that if an efficient algorithm exists for problem B, then problem A can be solved by converting
its instance into an instance of problem B, and applying the efficient solver to them.

8.3 NP-Completeness

Whether Pand NP are equal is one of the most prominent and important open problems in Computer
Science. One tool that proves useful when considering this question is the concept of a problem
being complete for a class.

Informally, the hardest problems in NP are called NP-Hard. These are problems to which every
problem in NP can be poly-time reduced. Thus, a polynomial time algorithm for any one of these
problems would imply that every problem in NP can be solved in polynomial time, or NP ⊆ P. We
already know that P ⊆ NP because every P-time algorithm can be thought of as an NP algorithm
which takes a 0-length witness. Therefore, P = NP iff there exists a poly-time algorithm which
decides any NP-Complete problem.

Formally, L ∈ NP-Hard iff
∀L′ ∈ NP, L′ ≤P L

If a problem is in NP-Hard and in NP, then it is called NP-Complete.

It is worth noting that for proving NP-Completeness, typically a more restrictive form of reduction
is used, namely a Karp reduction. It follows the same basic structure, but requires that only one
query be made to the solution for the problem being reduced to, and that the solution be directly
computable from the result of the query.

8.4 Cook-Levin Theorem

The first problem proved to be in NP-Complete was Boolean SAT, which asks, given a Boolean
expression, is there a setting of variables which allows the entire expression to evaluate to True?
The NP-completeness of SAT was proved independently by Cook and Levin, and is called the
Cook-Levin theorem. The Cook-Levin Theorem shows that SAT is NP-Complete, by showing that
a reduction exists to SAT for any problem in NP. Before proving the theorem, we give a formal
definition of the SAT problem (Satisfiability Problem):

Given a boolean formula φ in CNF (Conjuctive Normal Form), is the formula satisfiable? In
other words, we are given some boolean formula φ with n boolean variables x1, x2, . . . , xn, φ =
C1 ∧C2 ∧ · · · ∧Ck, where each of the Ci is a clause of the form (li1 ∨ li2 ∨ . . .∨ lil), with each lij is a
literal drawn from the set {x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n}. We need to decide whether or not there
exists some setting of the variables x1, x2, . . . , xn that causes the formula φ to be satisfied (take on
a boolean value of true).

Theorem 8.4.1 Cook-Levin Theorem: SAT is NP-complete.
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Proof: Suppose L is a NPproblem; then L has a polynomial time verifier V :

1. If x ∈ L, ∃ witness y, V (x, y) = 1

2. If x 6∈ L, ∀ witness y, V (x, y) = 0

We can build a circuit with polynomial size for the verifier V , since the verifier runs in polynomial
time (note that this fact is nontrivial; however, it is left to the reader to verify that it is true). The
circuit contains AND, OR and NOT gates. The circuit has |x|+ |y| sources, where |x| of them are
hardcoded to the values of the bits in x and the rest |y| are variables.

Now to solve problem L, we only need to find a setting of |y| variables in the input which causes
the circuit to output a 1. That means the problem L has been reduced to determining whether
or not the circuit can be caused to output a 1. The following shows how the circuit satisfication
problem can be reduced to an instance of SAT.

Each gate in the circuit can be represented by a 3CNF (each clause has exactly three terms). For
example:

1. The functionality of an OR gate with input a, b and output Zi is represented as: (a∨ b∨ Z̄i)∧
(Zi ∨ ā) ∧ (Zi ∨ b̄).

2. The functionality of a NOT gate with input a and output Zi is represented as: (a∨Zi)∧(ā∨Z̄i).

Notice that although some of the clauses have fewer than 3 terms, it is quite easy to pad them with
independant literals to form clauses in 3CNF. The value of an independent literal won’t affect the
overall boolean value of the clauses.

Suppose we have q gates in V marked as Z1, Z2, . . . , Zq with Zq representing the final output of V .
Each of them either takes some of the sources or some intermediate output Zi as input. Therefore
the whole circuit can be represented as a formula in CNF:

φ = C1 ∧ C2 ∧ . . . ∧ Cq ∧ Zq

where

Ci = (t1 ∨ t2 ∨ t3), t1, t2, t3 ∈ (x, y, Z1, Z2, . . . Zq, Z̄1, Z̄2, . . . , Z̄q)

As we said before, even if the last clause of φ has only one term Zq, we may extend φ to an equivalent
formula in 3CNF by adding independent variables. Thus, we have shown that the circuit can be
reduced to φ, a formula in 3CNF which is satisfiable if and only if the original circuit could be
made to output a value of 1. Hence, L 6p SAT. Since SAT can be easily shown to be in NP (any
satisfying assignmant may be used as a certificate of membership), we may conclude that SAT is
NP-Complete.

Furthermore, it should be noted that throughout the proof, we restricted ourselves to formulas that
were in 3CNF. In general, if we restrict the formulas under consideration to be in k-CNF for some
k ∈ Z, we get a subproblem of SAT which we may refer to as k-SAT. Since the above proof ensured
that φ was in 3CNF, it actually demonstrated not only that SAT is NP-Complete, but that 3-SAT
is NP-Complete as well. In fact, one may prove in general that k-SAT is NP-Complete for k ≥ 3;
for k = 2, however, this problem is known to be in P.
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8.5 Vertex Cover

One example of an NP-Complete problem is the vertex cover problem. Given a graph, it essentially
asks for the smallest subset of the vertices which cover the edges of the graph. It can be phrased
both as a search problem and as a decision problem. Formally stated, the search version of the
vertex cover problem is as follows:

Given: A graph G = (V,E)

Goal: A subset V ′ ⊆ V such that for all (u, v) ∈ E, either u ∈ V ′ or v ∈ V ′, where |V ′| is minimized.

For a concrete example of this problem, consider the following graph:

Figure 8.5.1: The nodes 1 and 4 form a minimal vertext cover

The decision variant of this problem makes only two changes to its specification: a positive integer
k is added to the givens; and rather than searching for a V ′ of minimal size, the goal is to decide
whether a V ′ exists with |V ′| = k.

Furthermore, we can reduce the search version of this problem to the decision version. We know
that the size of a minimal vertex cover must be between 0 and V , so if we are given access to a
solution for the decision version we can just do a binary search over this range to find the exact
value for the minimum possible size for a vertex cover. Once we know this, we can just check
vertices one by one to see if they’re in a minimal vertex cover. Let k be the size we found for a
minimal vertex cover. For each vertex, remove it (and its incident edges) from the graph, and check
whether it is possible to find a vertex cover of size k − 1 in the resultant graph. If so, the removed
vertex is in a minimal cover, so reduce k by 1 and continue the process on the resulting graph. If
not, add the vertex back into the graph, and try the next one. When k reaches 0, we have our
vertex cover. This property of being able to solve a search problem via queries to an oracle for its
decision variant is called self-reducibility.

Theorem 8.5.1 The decision version of Vertex Cover is NP-Complete.

Proof: It is immediate that Vertex Cover ∈ NP. We can verify a proposed vertex cover of the
appropriate size in polynomial time, and so can use these as certificates of membership in the
language.

All we need to show then is that VC is NP-Hard. We do so by reducing 3-SAT to it. Given some
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Figure 8.5.2: The gadget Xi Figure 8.5.3: The gadget Ci

Figure 8.5.4: Connecting the gadgets

formula φ in 3-CNF, with n variables x1, . . . , xn and m clauses c1, . . . , cm, we will build a graph,
starting with the following gadgets.

For each variable xi, we will build a gadget Xi. Xi will have two vertices, one corresponding to
each of xi and x̄i, and these two vertices will be connected by an edge (see figure 8.5.2). Notice
that by construction, any vertex cover must pick one of these vertices because of the edge between
them.

For each clause ci, we will build a gadget Ci. Since φ is in 3-CNF, we may assume that ci =
(li1 ∨ li2 ∨ li3) for some set of literals li1, li2, li3. The gadget Ci will consist of a complete graph of
size 3, with a vertex corresponding to each of the literals in the clause ci (see figure 8.5.3). Notice
that since all of the vertices are connected by edges, any vertex cover must include at least two of
them.

Given the preceding gadgets for each of the variables xi and each of the clauses ci, we describe how
the gadgets are connected. Consider the gadget Ci, representing the clause ci = (l1i ∨ l2i ∨ l3i).
For each of the literals in ci, we add an edge from the corresponding vertex to the vertex for the
appropriate boolean value of the literal. So if li1 = xk, we will add an edge from the vertex for
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li1 in the clause gadget Ci to the vertex for xk in the variable gadget Xk; similarly, if li1 = x̄k, we
add and edge to the vertex for x̄k in Xk. Figure 8.5.4 gives the connections for an example where
ci = (x1 ∨ x̄2 ∨ x4).

Now that we have our graph, we consider what we can say about its minimum vertex cover. As
previously noted, at least one vertex from any variable gadget must be included in a vertex cover;
similarly, at least 2 vertices from any clause gadget must be included. Since we have n variables
and m clauses, we can thus see that no vertex cover can have size strictly less than n + 2m.
Furthermore, we show that a vertex cover of exactly this size exists if and only if the original
formula φ is satisfiable.

Assume that such a vertex cover exists. Then, for each of the gadgets Xi, it contains exactly one
vertex. If we set each xi so that the node in the vertex cover corresponds to a boolean value of true,
we will have a satisfying assignment. To see this, consider any clause ci. Since the vertex cover
is of size exactly n + 2m, only two of the vertices in the gadget Ci are included. Now, the vertex
which wasn’t selected is connected to the node corresponding to its associated literal. Thus, since
we have a vertex cover, that node must be in it. So, the unselected literal must have a boolean
value of true in our setting of the xi, and so the clause is satisfied.

Similarly, if an assignment of the xi exists which satisfies φ, we can produce a vertex cover of size
n+2m. In each gadget Xi, we simply choose the vertex corresponding to a boolean value of true in
our satisying assignment. Then, since it is a satisfying assignment, each clause contains at least one
literal with a boolean value of true. If we leave the corresponding vertex, and include the others,
we get a vertex cover. The edges inside the gadget Ci are satisfied, since we have chosen all but
one of its vertices; the edges from it to variable gadgets are satisfied, since for each one, either the
vertex in Ci has been included or the vertex in the corresponding Xi has been chosen.

Thus, we can see that the original formula is satisfiable if and only if the constructed graph has a
vertex cover of size n+ 2m. Thus, since 3SAT is NP-Hard, we get that VC is NP-Hard as well. As
we have previously noted, VC ∈ NP, and hence VC is NP-Complete.
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