CS787: Advanced Algorithms

Topic: Local Search Algorithms Presenter(s): Theodora Hinkle, Ning Zhang

In this note, we will survey the local search heuristics for the metric k-median and facility
location problems. We define the locality gap of a local search heuristics for a minimization
problem as the maximum ratio of local optimal solution (produced by local search heuristics) to
the global optimal solution. For k-median, the local search with single swap has a locality gap of 5.
Moreover, if we allow p facilities to be swapped simultaneously, the locality gap will be 3+%. For
(uncapacitated) facility location, the local search, which permits adding, dropping, and swapping
a facility, has a locality gap of 3. All above results are currently the best ones by using local search
heuristics.

17.2.1 Introduction

17.2.1.1 Background for k-median and facility location problems

Facility location problems capture a common need of many real world businesses: to decide where
to locate their facilities in a way that most effectively serves their clients. Many aspects of the real
world problem make finding solutions difficult, and even the simplified models of metric k-median
and metric uncapacitated facility location are hard problems.

A facility location problem generally has a set of possible facility locations and a set of clients to
be served. There can be distances defined between the clients and facilities, leading to a measure
of effectiveness of a solution can vary depending on the service cost, the distance between clients
and the facilities they are assigned to in the solution. There can also be unequal costs to opening
different facilities, leading to a measure of effectiveness depending on the facility cost, the total
cost to open the facilities chosen by a solution.

Using various combinations of these two measures as objective functions to be minimized leads to
interesting problems. In metric k-median, the number of facilities which may be open is at most
k and the total service cost to all clients is minimized. In metric uncapacitated facility location,
the sum of the total facility cost and service cost is minimized, and there are no restrictions on the
number of clients any facility can serve. We will formally define these two problem shortly.

17.2.1.2 Background for local search heuristics

Local search is a metaheuristic for solving computationally hard optimization problems. Local
search can be used on problems that can be formulated as finding a solution maximizing a criterion
among a number of candidate (feasible) solutions. Local search algorithms move from solution to
solution in the space of candidate solutions (the search space) until the local optimal solution is
found (or a time bound is elapsed). Now, the question is how local search algorithm starts from

a candidate solution and then iteratively moves to a better solution? This is only possible if a
neighborhood relation is defined on the search space. As an example, the neighborhood of a
vertex cover could be defined as another vertex cover only differing by one node.

Now, we define the local search algorithm (Algorithm 1) formally. A generic local search algorithm
can be described by a set S* of all feasible solutions, a cost function ¢: S* — R, a neighborhood
structure N: S* — 25 and an oracle that, given any solution S, finds a solution S’ € N(S)
such that ¢(S") < ¢(S). A solution S € S* is called local optimal if ¢(S) < ¢(5’) for all S €
N(S). For example, Algorithm 1 always returns the local optimal solution. The cost function and
neighborhood structure N will be different for different problems and algorithms.

Algorithm 1 Local Search Algorithm

S is an arbitrary feasible solution in S*

while 35’ € N(S) such that ¢(S’) < ¢(S) do
S5

end while

return S

For an instance I of a minimization problem, let global(I) denote the cost of the global optimum and
local(I) be the cost of a locally optimum solution provided by a certain local search heuristic. We
call the supremum of the ratio local(I)/global(I) the locality gap of this local search procedure.
Our proof of the locality gap proceeds by considering a suitable, polynomially large subset @) C
N(S) of neighboring solutions and arguing that

D (e(S") = e(89) < a-c(0) - ¢(S)

S'eQ

where O is the global optimal solution and a > 1 is a constant. This implies that ¢(S) < a - ¢(O),
which « gives the locality gap.

17.2.2 Notations and Problem formulation

In the k-median and facility location problem, we are given two sets: F', the set of facilities, and
C, the set of clients. Let c¢;; > 0 denote the cost of serving client ¢« € C by a facility j € F'; we
will think of this as the distance between client ¢ and facility j. The goal in these problems is
to identify a subset of facilities S C F' and to serve all clients by facilities in S such that some
objective function is minimized. The facilities in S are said to be open. The metric versions of
these problems assume that distances ¢;; are symmetric and satisfy the triangle inequality. The
problems considered in this paper are defined as follows.

1. metric k-median problem: Given integer k, identify a set .S C F' of at most k facilities to
open such that the total cost of serving all clients by open facilities is minimized.

2. metric uncapacitated facility location (UFL) problem: For reach facility i € F', given
a cost f; > 0 of opening facility i. The goal is to identify a set of facilities S C F' such that
the total cost of opening the facilities in S and serving all the clients by open facilities is
minimized.

17.2.3 k-median problem and analysis

17.2.3.1 Local search with single swap

In this section, we consider a local search using single swap. A swap is effected by closing a facility
s € S and opening a facility s’ € F' and is denoted by < s,s’ >; hence the neighborhood of S is
defined as B(S) = {S — s+ §'|s € S}. We start with an arbitrary set of k facilities S and keep
improving the solution S with a single swap at a time until we reach a local optimal solution (we
can not improve the solution by a single swap). The algorithm is described in Algorithm 1.

17.2.3.2 Analysis

Let S be the local optimal solution returned by the local search and O be a global optimal solution.
We will show that this local search has a locality gap of 5, that is ¢(S) < 5-¢(O). First, we use
Ng(s) to denote the set of clients that facility s serves in S and Np(o) to denote the set of clients
that facility o serves in O. The mathematical presentations are as follows:

Ng(s) ={i e C,o(i) = s}
No(o) ={ie C,0%(i) = s}
Here 0*(i) and o(i) are the global and local optimal location of the facility serving the client ¢

respectively. Now we define the “improvement” of a swap when adding o € O to local solution S,
as follows:

o(S)—c(S+o0)= Y cw@ — Cig=(3) (17.2.3.1)

IGNO

If we consider adding each facility of O individually to S, we have

> [e(S) = (S +0)] = ¢(S) — ¢(0) (17.2.3.2)

0e0

Then, we need to know how to bound the impact of dropping a facility of S. Toward this end, we
define the notion of capture:

Definition 17.2.3.1 For a local solution S and optimal solution O, we say s € S captures o € O
if at least half of 0’s clients are served by s, i.e.,

[No(o)]
N, N >
[Ns(s) (Y No(o)| > =2

It is easy to see that a facility o € O is captured by at most one facility in S. We will consider the

following two cases when bounding the impact of dropping s.

1. A facility s € S captures exactly one o € O. In this situation, we just swap this pair < s,0 >.

2. Some facilities in S capture more than one facilities in O, and some facilities in O may not
have been captured by any facility in S. Here none of the facilities s € S which captures more
than one optimal choices should be swapped, instead we will swap the facilities in O with the
facilities in S which capture no facilities in O.

We will first show that the local algorithm described above is a 3-approximation algorithm, if all
facilities in O were of CASE 1.

The challenge in our analysis of the swapping process is that after swapping, some of the clients
served by some facilities in .S must be reassigned to other facilities since the original ones have
been swapped out. We should find a way to estimate the change of the cost in this reassignment
process. So for i € Ng(s)\No(0) in a swapping on < s,0 >, we use a 1-1 and onto mapping function
7 : No(0o) — No(o) satistying the following property,

Property 17.2.3.2 Let the node set N2 = Ng(s) () No(o0). If s does not capture o, then w(NZ) (| NS =

0
We outline how to obtain one such mapping 7. Let m = |Np(0)|. Order the clients in N (o) as
€0y - - - , Cm—1 such that for every s € S with a nonempty N? , the clients in N? are consecutive;

that is, there exists p,q, 0 < p < ¢ < m — 1, such that N? = {¢p, ..., ¢q}. Now for client i € Np(0),
set (i) =i+ |%]. The proof of this property is omitted due to the page limits. For the complete
proof, please refer to [1].

For a given swapping between < s,0 >, since S is locally optimal, we have

c(S)—c(S+0—35)<0 (17.2.3.3)

Consider a swap < s,0 >. We place an upper bound on the increase in the cost due to this swap
by reassigning the clients to the facilities in S — s 4 o as follows. The clients j € Np(0) are now
assigned to o. Consider a client ¢ who is served only by s but not o, i € Nfl for o' # 0. As s
only captures o and does not capture o/, by Property 17.2.3.2 of m, we have that 7 (i) ¢ Ng(s) and
(i) € No(0'). Let j = (i) € Ng(s'). Note that the distance that the client i travels to the nearest
facility in .S — s+ 0 is at most ¢;¢. From the triangle inequality, ¢;s < Cigx(s) + Cjg(j) + Cjo=(j)- The
clients which do not belong to Ng(s)|J No(0) continue to be served by the same facility.

We would like to give an intuitive explanation of what we just did. Consider a client ¢ served by

facility o in the globally optimum solution O. Suppose in the locally optimum solution S, i is served
by facility s. If there is a swap < s,0 >, ¢ must be assigned to a facility besides s. Thus, the cost

of serving ¢ may change. What we did above is to create a mapping 7 from clients served by o in
O, to different clients served by o in O, so that if there is a client like ¢ who loses their original
facility, we can say that the new cost of serving them is no greater than routing them to o, then
routing them to 7(7), then routing them to the facility serving = (i) in the S after the swap.

Since we need to add o while dropping s, for the clients who are served only by s but not o, the
cost will increase since they should be reassigned. So

c(S)—c(S+o—s) = Z (Cia(i)_cio*(i))+ Z (Cicr(i)_Cia*(i)_Cﬂ(i)a(w(i))_Cw(i)a*(w(i))) <0
i€No (0) i€N5(s),i¢No (o)
(17.2.3.4)

Then for the clients i € Ng(s) — No(o), after the swapping of < s,0 >, i should be reassigned.
Here we will map i to j = 7(i) € No(0), and the cost of reassigning can be estimated,

Due to the triangle inequality, we have,
Cio(j) < Cjo=(5) T Cio*(i) T Cia(i)

Therefore, we have the following equation,

Cio*(i) ¥ Cioi) T Cio~(G) ~ Cioli) = Cio*(@) F G () T i (i) T Ciom () F Cioli) T Ciol) (17.9.3.5)
= 2(Cio» (i) + Cjo=(j))

From Equations 4 and 5, we can get,

Z (Cio(i) = Cio(5)) < Z 2(Cig*(5) * Cjo=(5)) (17.2.3.6)
i€No(0) i€Ng(s),i¢ No (o)

For the situation that all facilities in O were of CASE 1, according to the swap policy mentioned
above, the facility s € S and also o € O will be swapped exactly once, since for each o € O, there
is exactly one s € S which captures it. Thus, after finishing all the swaps, there will totally be at
most half of the clients ¢ which should be considered when i € Ng(s),i ¢ No(o). And also, j = 7 (i)
is a one-to-one mapping, so for the right hand side of Equation 6, we have

> 2(Cig=(i) + Cio()) < 2 ¢(O) (17.2.3.7)
i€ENg(s),i¢No (o)

From Equation 6 and 7, we will get the following by summing over all o € O:

c(s) —c¢(0) <2-¢(0)
c(s) <3-¢(0)

For CASE 2, if the number of facilities in O in CASE 2 are [, there are at least /2 facilities in
S which will not capture any of the facilities in S, because otherwise, some facilities in O are
captured more than once, which is impossible. We will consider swapping these [facilities in O
with the facilities in S which capture no facilities in O and show that the algorithm will produce a
5-approximation solution in this case.

> 2(Cig(5) + Cio()) < 4+ ¢(O) (17.2.3.8)
iENS(S),igNO (O)

Then we combine Equation 6 with 8, we will get

4-¢(0) > ¢(S)—C(0)
c(S) <5-¢(0)

The above inequality completes the whole analysis of the local search algorithm with single swap.

17.2.3.3 Local search with multiswaps

In this section, we generalize the algorithm in the above section to consider multiswaps in which
up to p > 1 facilities can be swapped simultaneously. The neighborhood structure is now defined
by

B(S) ={(S\A)UB|AC S,B C F,|A| = |B| < p}

The neighborhood captures the set of solutions obtainable by deleting a set of at most p facilities A
and adding a set of facilities B where |B| = |AJ; this swap will be denoted by < A, B >. We prove
that the locality gap of the k-median problem with respect to this operation is exactly (3 + }%)

17.2.3.4 Analysis

We extend the notion of capture as follows. For a subset A C S, we define

capture(A) ={o € O : |[Ns(A) N No(o)| > |No(0)/2|}

It is easy to observe that if X, Y C S are disjoint, then capture(X) and capture(Y') are disjoint and
if X C Y, then capture(X) C capture(Y'). We now partition S into sets Ay, ..., A, and O into sets
By, ..., By such that for all 7, 1 <i <r —1, |4;| = |B;| and B; = capture(A;). We call a facility in
S is bad if it captures at least one facility in O, and good otherwise. Our partition of S would have
the property that every A;,1 <i <r — 1 would have exactly one bad facility; thus r — 1 equals the
number of bad facilities. The set A, contains only good facilities and it follows |A,| = |By|, since
|S| = |O|. The procedure to obtain such a partition is given in Algorithm 2.

Algorithm 2 Partition

1: fori=1tor—1do

2: A; «— b, where b € S be any bad facility
3: B « capture(4;)

4: while |4;| # |B;| do

5: A; — A;Ug, where g € S\ 4; be any good facility
6 B; « capture(A;)

7. end while

8 S S\4;

9: O O\Bi

10: end for

11: A, «— S

12: B, < O

Property 17.2.3.3 Algorithm 2 terminates with partitions of S and O, satisfying the properties
listed above.

The proof for Property 3.3 can be found in [1].

Now we define the swaps as follows. If for some i, we have |4;| = |B;| < p then we consider the
swap < A;, B; >. From the local optimality of S, we have the following inequality

c((S\A) UB;) —c(S) =0

On the other hand, for some i, we have |A4;| = | B;| = ¢ > p; we swap each facility o € B; with each
of the ¢ — 1 good facilities s € A;. Note that if i # r, there are exactly ¢ — 1 good facilities in A;,
and for i = r, we select any ¢ — 1 out of ¢ good facilities in A,. For each such swap < s,0 >, we
have,

c(S)—c(S+o0—-5)<0

We add such ¢g(q — 1) inequalities and multiply them by a factor 1/(¢ —1). Thus, each good facility
in A; is considered in at most ¢q/(¢ — 1) < (p+ 1)/p swaps.

For each facility o € O, Np(o) is partitioned as follows.
1. let i, 1 <14 < r, be such that |A;| < p, so that the swap < A;, B; > is considered above. We
consider the part, pa, = Ng(A4;) N No(o).
2. let i, 1 < i <r, be such that |A;| > p. We consider the parts p; = Ng(s) N No(o) for each

SEAZ‘.

As before, for each facility o € O, we consider a 1-1 and onto mapping 7 : No(0) — No(o0) with
the following property.

Property 17.2.3.4 For all parts p = pa, or ps, such that |p| < 3|No(o)|, we have m(p) Np = 0.

As this condition is imposed only on the parts that have at most half the number of clients in
No(0), such a mapping 7 exists. While doing a swap < A;, B; > (resp. < s,0 >), we would be
able to reassign clients j € Ng(4;) — No(B;) (resp. Ns(s) — No(0)) to the facility s’ ¢ A; (resp.
s # §') that serves 7(j) in S.

The swaps defined above satisfy the following properties:

1. Each facility in O is considered for a swapped-in exactly once.
2. Each facility in S is considered for a swapped-out at most (p + 1)/p times.

3. If a swap < A, B > is considered, capture(A) C B.

Recall that in the single swap analysis, as each facility in S was considered for swapping-out at
most twice, we got a (1 + 2 x 2) approximation. Here, (p + 1)/p replaces 2 and using the same
argument gives a (1+2x (p+1)/p) =3+ % approximation.

17.2.4 Uncapacitated Facility Location and Analysis

In this problem, we can open an unlimited number of facilities, but each facility ¢ € F has a
cost f; > 0 of opening it. The UFL problem is to identify a subset S € F and to serve the
clients in C' by the facilities in S such that the sum of facility (opening) costs and service costs is
minimized. That is, if a client j € C' is assigned to a facility o(j) € S, then we want to minimize
c(S) = ies fi+ > jec Cio(j)- Note that for a fixed S, serving each client by the nearest facility in
S minimizes the service cost.

17.2.4.1 Local search algorithm

We present a local search procedure for the metric UFL problem with a locality gap of 3. The
operations allowed in a local search step are adding a facility, deleting a facility, and swapping
facilities. Hence given a solution S, the neighborhood N (S) is defined by

B(S)={S+§|s e F}u{S—slse S}u{S—s+s|seS,s eF}

17.2.4.2 Analysis

For any set of facilities S C F, let cf(S) = Y ;.5 fi denote the opening cost of the solution S. Also,
let ¢5(S) be the total cost of serving the clients in C' by the nearest facilities in S. The following
bound on the service cost of S has been proved in [2].

Lemma 17.2.4.1 ¢4(S) < ¢¢(O) + ¢,(0)

Proof: Consider an operation in which a facility o € O is added. Assign all the clients Np(0) to o.
From the local optimality of S we get fo+> . JENo (o (Cio+(j) — Cjo(j)) = 0. If we add such inequalities
for every o € O, we get the result in the lemma

]
The following lemma gives a bound on the facility (opening) cost of S
Lemma 17.2.4.2 c¢(S) < ¢t(0) +2 - ¢5(0)

Proof: As before, we assume that for a fixed o € O, the mapping 7 : No(0) — Np(o) is a 1-1 and
onto mapping and satisfies Property 3.2. In addition, we assume that if |[N¢| > £|No(0)|, then for
all j € N¢ for which 7(j) € Ns(s), we have 7(7(j)) = j and such a mapping is easy to find. Recall
that a facility s € S is called good if s does not capture any o, that is, Vo € O, |[N?| < £|No(o)|.

The opening cost of good facilities can be bounded easily as follows. Consider an operationin which
a good facility s € S is dropped. Let j € N,(s) and 7r(/) € Ng(s"). Since s is good - does not capture
any facility o € O - we have s # s'. If we assign j to s’, we have — f5+ZjGNS(S) (Cjor(j) FCr()o* (x(i)) T
Cr(j)o(n(j)) — Cjo(j)) = 0, which can be simplified as —fs + ZJGNS(S (Oj + Ox(jy + Sz — S5) = 0.
Since for all j € Ns(s), m(j) # J, then }=:cny(s).n(j)=j Oj IS zero and hence we can rewrite the
above inequality as,

~fst Y (Oi+O0xy+ 5y =S +2 Y, 0;20 (17.2.4.9)
JENs(s) JENs(8),m(4)=j

For bounding the opening cost of a bad facility s € S we proceed as follows. Suppose s captures
the facilities P € O. Let o € P be the facility nearest to s. We consider the swap < s,0 >. The
clients j € Ng(s) are now reassigned to the facilities in S — s + o as follows.

1. Suppose m(j) € Ns(s') for s # . Then j is assigned to s’. Let j € Np(o'), we have
Cjs' < Cjor + Ca(gyor + Cn(g)s = O + Or(g) + S

2. Suppose m(j) = j € Ng(s) and j € No(o). Then j is assigned to o.

3. Suppose 7(j) = j € Ng(s) and j € Np(o') for o’ # o. By Property 3.2 of mapping 7, s
captures o’ and hence o’ € P. Then client j is now assigned to o. From the triangle inequality,
Cjo < ¢js + €50 Since o € P is the closest facility to s, so we have cso < 5o < Cjs + Cjor-
Therefore, cjo < cjs + ¢js + cjor = S; + S+ O;

Thus for swap < s,0 > we get the following inequality

forfst Y (054038 =S+ > (0;=5;)+ > (5j+5+0;=55) =

JENSs(s),m(49)#] JENo(0),m(§)ENs(s) J&No(0),m(§)ENs(s)
(17.2.4.10)

Now consider an operation in which a facility o’ € P — o is added. The clients j € Np(0) for which
7(j) = j € Ns(s) are now assigned to o', and this yields the following inequality.

0

fo + > (0j —S;) >0 (17.2.4.11)
JENo(0),m(§)=F€Ns(s)

Adding Equation 10 to Equation 11 we get, for a bad facility s € .S,

Shr—fit Y (0540 +Se - S)+2 Y 0,20 (17.24.12)

o'€P JENs(8),m(§)#] JENs(s),m(§)=j
The last term on the left is an upper bound on the sum of the last two terms on the left of Equation
10 and the last term on the left of the Equation 11 added for all o’ € P — o.

Now we add Equation 5 for all good facilities s € S, Equation 12 for all bad facilities s € S, and
inequalities f, > 0 for all 0 € O, which are not captured by any s € S, to obtain

S fo= Y fet Y (05 +0uG) +Suy —S) +2 > 0;20

0€0 s€S m(§)#] m(j)=j

Note that since ZJ ()4 205 = Z ey Or(j) and Z] ()£ 255 = Z] 7 (5)#5 Sr(j), We haveZ ;AJ(O +
Or(j) +Sx(j) = Sj) = QZ]_WU)# OJ and hence ct(0)—cf(S)+2-¢5(0) > 0. This proves the deblred

lemma.]
Combining Lemma 4.1 and 4.2, we have the following result.

Theorem 17.2.4.3 The local search algorithm for the metric UFL problem with the neighborhood
structure N(S) = {S+ '} U{S —s|s € S} U{S — s+ §|s € S} has a locality gap of at most 3.

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit, Local search
heuristic for k-median and facility location problems, In SIAM J. Comput., Vol. 33, No. 3, pp,
544-562, 2004.

[2] M. Korupolu, C. Plaxton, and R. Rajaraman, Analysis of a local search heuristic for facility
location problems, In SODA, pp, 1-10, 1998.

10

