CS787: Advanced Algorithms

Topic: Cryptanalysis Presenter(s): Tycho Andersen, Todd Frederick, and Michael McKinley

17.4.1 Introduction

17.4.1.1 Cryptography terminology

Three of the most important terms in cryptography are the plaintext, the ciphertext, and the key.
The plaintext is the data the sender wishes to encode, the ciphertext is the encoded data, and
the key is a second piece of data that the sender uses to encrypt the message and the receiver uses
to decrypt.

Ciphers can be classified into two groups, based on the nature of the key. The family we’ll be
talking about is symmetric-key - the same key is used to encrypt and decrypt the data. There
is a second family, called asymmetric-key cryptography. In assymetric key cryptography, the
sender uses one key to encrypt and second to decrypt. Discussion and analysis of assymetric-key
cryptography is beyond the scope of this project.

Ciphers can also be classified by the manner in which they operate on the data. Two common
types are block ciphers and stream ciphers. Block ciphers operate on fixed-sized segments of data.
If the data a user wishes to encrypt is longer than the length of the block, the data is broken into
multiple blocks. For example, if the block size is 16 bits and the data is 48 bits, the data will
be split among 4 blocks. Each of the 4 blocks will be encrypted indepedently; that is, the second
block will not be encrypted any differently than the first block. We will be discussing block ciphers.
Some examples of block ciphers include DES, Rijndael, and Blowfish.

Stream ciphers are different; operate on the data one byte at a time. From the key, the cipher
generates a keystream. To encrypt the text, the i*" byte of the keystream is XOR’d with the i"
byte of the plaintext. An example of a stream cipher is RC4 - a broken cipher that was used in
WEP.

17.4.1.2 Block ciphers

Most block ciphers are comprised of a series of three operations: substitution, permutation,
and key-mixing. These ciphers are known as substitution-permuation networks (SPN) and Feistel
ciphers. Generally, the cipher is broken into a series of n rounds. Each round repeats a series of
operations on the data.

An important concept in block ciphers is sub-keys. In each round, a cipher will apply the key
in some manner to the data. However, for added security, it would be best if the key applied was
different in each round. To do so, most block ciphers use sub-keys. At the start of the algorithm,
n keys (where n is the number of rounds in the cipher) are generated. This is known as key
scheduling. For a block size of b, the simplest way to create sub-keys is to have a key-size of b x n.

The key is divided evenly into sub-keys of size b.
17.4.1.2.1 Key mixing

In key mixing, a sub-key is applied to the data. The most common method is to perform a bitwise
XOR on the sub-key and the data.

17.4.1.2.2 Substitution

In a substitution operation, the block of data is broken into one or more pieces. Each piece is
passed through a substitution box, often shortened to s-box. In the s-box, the piece is replaced
with another value based on a static table. The s-box introduces non-linearity into the algorithm,
making it harder to crack. A poorly-designed s-box can pose a significant weakness in the security
of a cipher [4].

We will be talking about a simple algorithm where every s-box is the same. In most real-world
algorithms, each s-box is different. That is, in one s-box, 0z F might be mapped to 029 and another
might map OxF' to 0z6. Furthermore, an s-box might have a different-length output than input.

17.4.1.2.3 Permutation

In a permutation operation, the bits are shuffled in a fixed manner. See Table 7?7 for an example.

17.4.2 The algorithm

We will be looking at a cipher described in [1]. The cipher has a 16-bit block size, a 64-bit key, and
is 4 rounds. The sub-keys are generated by dividing the key evenly.

Input value |0 |12 |3|4|5 |6 |7|8|9 |A|B|C|D|E|F
Output value |[E |4 | D (1|2 |F|B|[8[|3]|A|6 |C|5|9 |0 |7

Table 1: S-box for the cipher

Input bit position |1 |23 |4 |5|6/|7 |8 |9|10|11 |12 |13 |14 |15]| 16
Output (1|59 |13|2|6|10|14 3|7 |11 |15(4 |8 |[12] 16

Table 2: Permutation scheme for the cipher

An overview of the algorithm is presented in Figure 17.4.2.1

17.4.3 Linear Cryptanalysis

17.4.3.1 Overview

If we could find a linear expression relating the input plaintext of a cipher to its output cipher-
text, the cipher would be trivially breakable. This is why SPN ciphers use S-Boxes, to introduce
non-linearity. However, for poorly designed ciphers, we may be able to find linear expressions be-

bit 1 plaintext bit 16 bit 1. plaintext bit 16

L P P L | HEEEENEEE
| key mixing K1 | | kdy mixing K1 |
L i frrr Il (111 | NN
S11 S12 S13 S14 S11 S13 S14
| key mixing K2 | | key mixing K2 |
L i frrr Il e e e Tl
21 S22 S23 S24 21 S? S23 S24
| key mixing K3 | | key mixing K3 |
L i frrr Il e e s I
31 S32 S33 S34 S31 Sk S33 S
| key mixing K4 | | kdy mixing K4 |
L i frrr Il LTI T LI [T
Al A2 A3 A4 A1 A2 A3 A4
[TP T T L Pl I I
| key mixing K5 | | key mixing K5 |
e et et i e e et T
ciphertext ciphertext
Figure 17.4.2.1: Cipher overview Figure 17.4.2.2: Cipher path

tween certain states of the cipher that are either highly likely to hold or highly likely to not hold.
Specifically, these expressions involve bitwise XOR sums of particular bits of the input and output.

Once we have found such an expression between the plaintext and the input to the last round
of the cipher, we can obtain a part of the key using the following method: For every possible
final round key, we decrypt each known ciphertext for just the last round using this key guess.
If we have guessed the correct key, our linear expression will likely hold between the plaintext
and this partially-decrypted intermediate state. For each key guess, we count the number of
plaintext /ciphertext pairs for which the expression holds. The premise of linear cryptanalysis is
that the key for which the linear relationship holds for the greatest number of plaintext/ciphertext
pairs is likely the correct key.

Round 1
Round 2

[Round n-1
Guessed Round n Key—=

Known Ciphertext

Linear Expression to Test -

:
i

The following diagram illustrates the overall strategy of linear cryptanalysis. We now fill in the
details of the process with a specific example as provided by [1].

17.4.3.2 S-Box Expressions

The first step in finding a linear expression for the cipher is to find linear expressions for the S-Boxes
because these are the only non-linear parts of the cipher. Recall that an S-Box takes input bits X;
and produces output bits Y;. We will find expressions of the following form, where ¢ and j are sets
of indicies:

Xpa®eX,® 00X, 0Y,0Y,8 @Y, =0

For a given S-Box, we want to find expressions of this form such that the probability that the
expression holds differs significantly from 1/2. We do this by considering every possible expression
and counting the input/output pairs of the S-Box for which the expression holds.

When enumerating these expressions for an S-Box, it is useful to describe the relationship by an
input mask and an output mask. Each mask determines which bits in the input or output will be
part of the expression. For example, suppose we have input mask 5 and output mask A, and we
number bits from left to right. Then the expression is:

XodX40Y10Y3=0
For all 4-bit integers, we apply the S-Box and check if the expression holds between the input and
output. We do this for all possible expressions of this form for each S-Box used by the cipher.

For each S-Box, we summarize the results of this process in a table. The axes of the table describe
the parameters of the expression, the input and output mask. For a given expression, the value in
the table is the number of input/output pairs for which the expression holds.

Since there are 16 possible inputs to a 4-bit S-Box, the probability that an expression holds is

its value in the table divided by 16. If the S-Box were completely non-linear, the probability of
each expression holding would be 1/2; and all the values in the table would be 8. However, for
poorly designed ciphers this is not always the case. In the next part of the algorithm we consider
expressions from several S-Boxes that either hold with high probability or low probability.

17.4.3.3 Cipher Approximation Construction

Since the S-Boxes are the only non-linear components of an SPN cipher, we can combine the
approximate linear expressions we found in the previous step into an approximation of the entire
cipher. Recall that our overall strategy is to find an approximate linear expression relating some
plaintext bits to some input bits of the final cipher round, after which we test possible final round
keys in the last step. Consider the diagram representing the example SPN cipher. We must use
enough S-Box approximations so that we can construct a path from a selection of plaintext bits
to a selection of final-round input bits. The following S-Box approximations will lets us construct
such a path in the example cipher:

S : X190 X5 X4dYs =0
S : Xo@ Yo @Yy =0
S32: Xop Yo Y =0
S34: Xo @Yo DYy =0

Let U; ; denote the bit j input to the stage ¢ S-Boxes, and let V; ; denote the bit j output from
the stage i S-Boxes. The following diagram shows how we can build a path through the cipher
using these S-Box approximations that relates plaintext bits Ps, Py, Py to final-round input bits
Use, Usg, Uy 14, Us 6.

Figure 17.4.2.2 describes how we combine the S-Box approximate linear expressions to form an
approximate linear expression for the cipher. For example, consider the expression for S-Box Sis.
Then the expression for S12 becomes

Uis@Ui 70 U1s®Vig=0

Let K;; denote bit j of the round ¢ key. Then we can substitute expressions for the key mixing
phase of round 1 as follows:

(P5 D K175) D (P7 D K177) D (Pg D K178) D R1,6 =0

We continue this process for rounds 2 and 3, as well as the key-mixing phase of round 4, by using
output expressions from one round as inputs to the next round according to the path through the
cipher. We can effectively remove all K; ; from our approximate expression because the key is fixed
for all the plaintext/ciphertext pairs we will consider in the next step. The overall approximate
expression is the following;:

Use ®Uss DUs1a ®Us 16 P &P & P =0
17.4.3.4 Piling-Up Lemma

In order to estimate the number of plaintext/ciphertext pairs we need in the final step to find the
key, we must know the probability with which our overall approximate linear expression holds. For
this we use a result from [2] called the Piling-Up Lemma.

Lemma 17.4.3.1 Let X; for i = [1,n] be random binary variables, where p; is the probability that
X; =0. Then the probability that X1 & Xoa®--- B X,, =0 s

1/2 271 f[(pi —1/2)
i=1

We constructed our cipher approximation from S-Box approximations that held with the following
probabilities:

Sis 1 12/16
Sy 1 4/16
Ss5: 4/16
Ss4:4/16

So, by the Piling-Up Lemma, the cipher approximation holds with probability 15/32.
17.4.3.5 Key Testing

The final step of linear cryptanalysis is to guess keys to the final round, and for each key, count
the number of plain/ciphertext pairs for which the linear approximation holds. The key guess for
which the fraction of pairs that hold differs the most from 1/2 is likely the correct key.

The linear expression in this example involves bits 6,8,14 and 16 of the input to the final round
S-Boxes. These bits are inputs to the second and fourth final round S-Boxes specifically, and the
outputs of these S-Boxes are only combined with bits 5 through 8 and 13 through 16 of the final
round key. So, our key guesses will only involve these bits of the final key.

Let K, denote the 4-bit block of bits 5 to 8 of the final round key and K} denote bits 13 to 16. For
each possible value of K, and K}, we do the following: Take each known ciphertext C; and decrypt
the appropriate bits with K, and K. Apply the appropriate fourth-round S-Boxes in reverse to
obtain Q¢ 4, @84, @144, and Q164 that correspond to C;. Now take Ps, P7, and Py of the plaintext
P; that corresponds to C;. Check whether the cipher approximation holds for this C;/P; pair, and
increment a counter if it does.

In [1], 10000 plain/ciphertext pairs were generated using K, = 2 and K}, = 4 (hex). As expected,
the count of plaintext/ciphertext pairs for which the approximation held using the correct K, and
Ky as a key guess differed the most from 5000 out of all keys guessed.

17.4.4 Linear Cryptanalysis on DES

Using the techniques above, [3] presents the following two equations, which (on random plaintexts
and their ciphertexts) hold with a 15-round best probability of % —1.19x2731. Py, P; and Cy,Cp,
denote the high and low 32 bits of the 64-bit plain and ciphertexts, respectively. K, denotes the
n-th round 48-bit subkey in DES. F}, denotes the n-th round F' function from the 2nd to the 15th
round of 16-round DES. N denotes the given number of plaintext/ciphertext pairs.

PH[7, 18, 24] D Fl(PL, Kl)['?, 18, 24] D CH[15] QP CL[7, 18,24, 29] SP) FIG(CL7 Klﬁ)[15]
= K3[22] &b K4[44] D K5[22] &b K7[22] D K8[44] b KQ[QQ] D K11[22] &b K12 [44]@
Ki3(22] © K5[22] (1)

CH[7, 18, 24] (&) FIG(CLa Klﬁ)[?, 18, 24] &) PH[15]) PL[7, 18,24, 29] D Fl(PL, Kl)[15]
= K14[22} &b K13[44] b K12[22] D K10[22] D K9[44] D K8[22] &b K6[22] D K5[44]@
K4[22] ® K,[22] (2)

17.4.4.1 Algorithm for breaking 16-round DES

Data Counting Phase

1. Prepare 2'3 counters T'A; and initialize them to 0 (i corresponds to the value of the 13 effective

text bits of equation 1).

2. For each given plaintext P and corresponding ciphertext C, compute the value of ¢ of step 1,
and increment T A;.

Key Counting Phase

3. Prepare 2!2 counters K A; and initialize them to 0 (j corresponds to each value of the 12

effective key bits in equation 1).

4. For each j in step 3, let KA; be the sum of the T'A;’s such that the left side of equation 1,
whose values can be uniquely determined by ¢ and j, is equal to 0.

5. Sort KA by the magnitude of |[KA; — %|, and call this sorted list KAS. For each KAS;, if
KS; — % < 0, guess the right side of equation 1 is zero, else guess one.

Fach of the above 5 steps can be repeated with equation 2, yielding T'B, KB, and K BS. Since
both of these equations contain 13 effective key bits, the results give us 26 key bits. The sets KAS
and KBS are the list of probable key bits, sorted in order of likelihood.

Exhaustive Search Phase

From here, we would like to determine the remaining 56 — 26 = 30 key bits. We do this by the
following algorithm:

6. Create the list @, which is a list of the candidates in order of decreasing likelihood.

7. For each @Q);, brute force search the remaining 30 key bits until the correct key is found.

17.4.4.2 Algorithm Analysis

Next, we present an analysis of the runtime and space requirements of the above algorithm for
breaking 16-round DES.

Space requirements. The total amount of memory required by this algorithm (in bytes) is (2'2 +
213) x 4, since the value of each counter required by steps 1 and 3 can fit in 4 bytes. There is also
some small constant amount of space required for the computation of DES in the final brute for
the final two phases of the algorithm.

Computational complexity. Step 2 of the algorithm requires O(N) time, since it must compute the
value of T'A from step one for each plaintext/ciphertext pair. Since this is a very large number
(something around 2454 p/c pairs are required), this step dwarfs all the other steps in terms of
computational complexity. One caveat is the last step: the lower the number of p/c pairs, the lower
the success rate of linear cryptanalysis, and so we will probably have to iterate further through
the list @ (each iteration requires 230 executions of DES). An expression for the success rate based
on N is discussed in the next section. A final thing to note is that step 2 of the algorithm can be
parallelized, which could speed things up quite a bit. Also, in the experiments presented in [3],
most of the time was spent generated the 243 p/c pairs (40 days), compared to 10 days to execute
step 7 and actually find the key. [3] contains a much deeper experimental analysis of the number
of given p/c pairs and the expected computational complexity and success rate.

Comparison with brute force. We can compare this runtime of O(N) =~ 2% (assuming a success
rate of around 96%), see next section for more discussion on this) to that of brute force, which has
has a runtime of 2°6. This means that linear cryptanalysis gives us a 25674 = 212 = 4096 times
speedup over brute force!

Another interesting question is: how do we create the list @ in step 67 Clearly the first element is
Qo = (KASp, KBS)), since both keys have the highest probability of being correct. [3] conducts
some experiments on a smaller version of DES with only 8 rounds. The proposed result is that the
list @ should be constructed from K AS, KBS in order of increasing products of the indexes, i.e.
in order of increasing (i + 1) x (j + 1).

17.4.4.3 Algorithm Success Rate

Discussing the success rate of linear cryptanalysis is a bit of a misnomer. In fact, linear cryptanalysis
always succeeds at finding the solution. The proof for this is not hard to see: step 7 of the algorithm
iterates over the entire list), which contains all 226 possible options for the 26 key bits (they are

ordered by likelihood, but they’re all there). Each iteration of step 7 of the algorithm takes one
possible setting of the 26 key bits and brute forces the remaining 30, meaning that every possible
combination of key bits is tried, so the algorithm above will always succeed. Thus, when we talk
about the success rate of linear cryptanalysis vs DES, what we really mean is “the probability
that linear cryptanalysis will be faster than a brute force search of the keyspace”. That is, the
probability that a particular key is in the first k keys in the list @ (k is usually a small integer, say
100).

In [2], Matsui presents a rather complicated formula which approximates the probability of success
as a function of the number of given p/c pairs. The experiments performed in [2] show that the
formula is a good approximation. Evaluated at several places, the formula yields the table of success
rates seen in figure 17.4.4.3. With p = % —1.19 x 272 as it is for the linear approximations [3]

proposes for DES, the quantity |p — %*2 ~ 242 Thus, if one wants to have a probability of success
of more than 96.7%, around 6 x 2*2 p/c pairs are needed.

N Success Rate

2% |(p—3)7? | 48.6%

4x|(p—3)%] 785%

6x|(p—3)2]96.7%

8x |(p—3)%]99.9%

Figure 17.4.4.3: Success rates vs Number of plaintexts

17.4.4.4 Modern Ciphers

Since the substitution box is the only non-linear part of most ciphers, the substitution boxes in
modern ciphers are chosen very carefully to protect against linear cryptanalysis. [5] has some discus-
sion on good substitution box choices for protection against linear and differential cryptanalysis. [4]
has a nice discussion of more work on choosing good s-boxes.

References

[1] H. M. Heys. A tutorial on linear and differential cryptanalysis. Cryptologia, 26(3):189-221,
2002.

[2] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology
(CRYPTO), 1993.

[3] Mitsuru Matsui. The first experimental analysis of the data encryption standard. In Advances
in Cryptology (CRYPTO), 1994.

[4] Terry Ritter. S-box design, a literature survey. http://www.ciphersbyritter.com/RES/
SBOXDESN . HTM.

[5] A. M. Youssef and S.E. Tavares. Resistance of balanced s-boxes to linear and differential
cryptanalysis. Information Processing Letters, (56):249-252.

