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17.6.1 Introduction to Auction Design

The Internet, which started of as a research project in 1960’s, today influences almost every aspect
of our daily lives. This has increasingly led marketers to focus on online advertising. Search engines
like Google and Yahoo! source their revenues almost entirely from selling advertisement space. In
this lecture we will study profit-maximization problems related to selling advertisement space on
Internet web sites.

The online advertisement market is highly dynamic in nature, with advertisers arriving and leaving
all the time. Moreover, the number of hits received by a website changes over time, as does the
value of an Internet user clicking on an advertisement. Clearly the selling price of an advertise-
ment depends on the benefit derived by the advertisers from the display of their advertisements.
In most cases, the web site owner does not have a good estimate of the value of this benefit, as
the advertisers needs often change with time. This is unlike classical optimization problems where
the optimizer (the advertisement auctioneer in our case) knows the values of all the variables over
which the optimization is to be carried out. This makes auctions the logical choice for selling
advertisement space on web sites. The web site owners ask the advertisers themselves for their
valuations of the benefit they will receive. The value reported by the advertiser is called her bid.
However, the advertisers, being selfish agents, need not reveal their valuations truthfully if it is in
their self-interest to do so.

The goal of the web site owner is to set up a selling mechanism that uses these reported val-
ues to determine the price(s) to be offered to the advertisers, in such a way that maximizes profit
when each agent bids according to her best interest. At the same time, the web site owner would
like to keep the process of finding the optimal bidding strategy simple in order to attract more
advertisers to the online advertising market.

17.6.2 Mathematical Framework

Mechanism design deals with the construction of mechanisms, or games which are designed to
get the agents to behave in a certain way so as to achieve some desired outcome. [2] provides a
framework for algorithmic mechanism design.

• A mechanism deals with a set of agents N and wishes to choose from a collection of outcomes
O. Let n = |N | be the number of agents.

• Each agent i is assumed to have a valuation function vi : O → R. Intuitively, the valua-
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tion function describes agent i’s intrinsic preference for each outcome. An agent’s valuation
function is known only to that agent.

• T denotes the set of all possible valuation functions and v ∈ T n is the vector of valuation
functions of all agents.

The mechanism works by asking each agent to report her valuation function and computing an
outcome and a set of payments based on the reported functions.

• bi denotes the valuation function reported by agent i (also known as i’s bid), b ∈ T n denotes
the vector of bids.

• Pi : T n → R be the payment made by agent i, and P = (Pi)i∈N be the payment scheme.

Thus, a mechanism M consists of a pair (O,P ), where O : T n → O is the output function and P
is the payment scheme.

Each agent’s goal is to maximize her utility function, which is assumed to be of the form

ui(O,Pi) = vi(O)− Pi

Since the mechanism determines the outcome and the payments based on the bid vector b, we will
abbreviate ui(O(b), Pi(b)) and vi(O(b)) to ui(b) and vi(b) respectively. Clearly, an agent’s utility
depends not only on her valuation function, but also on the bid vector.

• Let b−i = (b1, . . . , bi−1, ?, bi+1, . . . bn) denote the vector of bids with agent i’s bid hidden by
a question mark. We will refer to this as the masked bid vector. We will write b as (b−i, bi).

• Similarly, let v−i denote the vector of all other agents valuation functions, T−i = T n−1 be
the space of those vectors.

A strategy Si : T → T is said to be a dominant strategy for agent i if ui(b−i, Si(vi)) ≥ ui(b−i, bi)
for all b−i ∈ T−i and bi, vi ∈ T . In other words, agent i’s best strategy is to report her valuation as
Si(vi) whenever her true valuation is vi. A mechanism is said to be a dominant strategy mechanism
if every agent has a dominant strategy.

Definition 17.6.2.1 (Truthful Mechanism) A truthful mechanism is a dominant strategy mech-
anism in which truth-telling is a dominant strategy for every agent, i.e.

ui(b−i, vi) ≥ ui(b−i, bi) ∀ b−i ∈ T−i and bi, vi ∈ T

Theorem 17.6.2.2 (Bid-independence principle) If the mechanism (O,P) is truthful, and
O(b−i, bi) = O(b−i, b

′
i), then Pi(b−i, bi) = Pi(b−i, b

′
i).
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Proof: Suppose to the contrary, i.e. Pi(b−i, bi) > Pi(b−i, b
′
i), while O(b−i, bi) = O(b−i, b

′
i).

When vi = bi and all the other agents bid b−i, agent i is better off lying and bidding b′i, contra-
dicting truthfulness.

This principle asserts that in a truthful mechanism, the bid of an agent affects the payment made
by the agent only through its effect on the outcome of the mechanism.

17.6.3 Truthfulness as a Means to Simplified Bidding

As mentioned earlier, we would like to construct mechanisms for selling advertising space on Internet
web sites under which it is easy for the advertisers to determine their optimal bidding strategies.
Unless an advertiser has a dominant strategy, she would be forced to speculate (or hire someone to
speculate for her) on how the other advertisers are going to bid in order to determine her optimal
strategy. Thus, in order to get rid of speculation and keep the process of bidding simple, we would
like each advertiser to have a dominant strategy, i.e. we would like to use a dominant strategy
mechanism. The Revelation principle stated below allows us to restrict our attention to truthful
mechanisms without missing any possible combination of outcome and payment functions (when
we view the outcome and payment as a function of valuation rather than bids).

Theorem 17.6.3.1 (Revelation principle [5, 6]) Every dominant strategy mechanism can be
converted to a truthful mechanism without changing the outcome or the payments on vector of
valuation functions of all agents.

Proof: Given a dominant strategy mechanism M , construct a truthful mechanism M ′ that
simulates each bidder’s dominant strategy in M . Let Si be agent i’s dominant strategy under
M . Then, M ′ produces the same outcome and payments on bid vector b as the mechanism M
produces on the bid vector (Si(bi))i∈N . Clearly, agent i’s dominant strategy under M ′ is to bid
bi = vi, because this is equivalent to playing the dominant strategy Si(vi) in M .

17.6.4 The Vickrey Auction

We next give an example of a classical truthful mechanism due to Vickrey [7]. Given the nature of
its payment scheme, it is also called the second-price auction. It is used for selling a single item;
so the outcome consists of the item being given to one of the agents. The valuation functions of
the agents take a very simple form: if an agent gets the item, her valuation of the outcome is vi

(here we are slightly abusing notation by using the term vi to refer to a single number); otherwise
her valuation of the outcome is 0. The auction consists of inviting bids for the item, and giving
the item to the highest bidder and charging her an amount equal to the second-highest bid. If two
bidders tie for the highest bid, the item goes to the bidder with the lower index.

Theorem 17.6.4.1 The Vickrey auction is truthful.

Proof: In order to prove truthfulness, we have to show that none of the bidders can benefit by
not revealing her true valuation function. Fix an agent i and let h be the highest bid among the
other agents. If vi > h, then the agent gets the item for an amount h whenever she bids an amount
higher than h (which includes bidding her true valuation function). In this case, her utility is vi−h.
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The only possible way she can change the outcome is by bidding no more than h in which case her
utility is 0.
On the other hand, if vi ≤ h, she makes a profit of 0 as long as she bids h or less (which includes
bidding her true valuation). She can possibly change the outcome by raising her bid above h, in
which case her utility becomes negative. This shows that bidder i cannot benefit by not bidding
her true valuation.

17.6.5 The Vickrey-Clarke-Groves Mechanism

The most celebrated result in truthful mechanism design is the Vickrey-Clarke-Groves (VCG)
mechanism [7]. It is a generalization of the Vickrey auction and can be used when the goal of a
mechanism is to maximize the total valuation of all the agents. The VCG mechanism (O,P ) is
given by:

O(b) = o∗ where o∗ ∈ argmax
o∈O

∑
i∈N

bi(o)

Pi(b) = −
∑
j 6=i

bj(o∗) + hi(b−i)

where the functions hi are arbitrary. That is, VCG selects the outcome that maximizes the total
reported valuation, and charges agent i an amount Pi that depends on bi only through its influence
on the outcome o∗, just as required by bid-independence principle. Since the hi terms in the
payment are completely independent of agent i’s bid, they are irrelevant to truthfulness. The term∑

j 6=i bj(o∗) in the payment is quite special though – it aligns the utility function of agent i with
the utilitarian objective function. This makes the mechanism truthful, as asserted by the following
theorem.

Theorem 17.6.5.1 The VCG mechanism is truthful.

The basic VCG mechanism can be augmented by weighting the agents differently and adding a
bias to the outcome function, while preserving truthfulness [3, 4]. More formally, let w ∈ Rn

+ be a
set of non-negative weights. Let H : O → R be a “bias” function. The resulting weighted, biased
VCG mechanism is defined by :

O(b) = o∗ where o∗ ∈ argmax
o∈O

∑
j∈N

wjbj(o) + H(o)


Pi(b) = − 1

wi

∑
j 6=i

wjbj(o∗) + H(o∗)

 + hi(b−i) when wi > 0

Pi(b) = H(o∗) + hi(b−i) when wi = 0

where the functions hi are arbitrary.

Theorem 17.6.5.2 For every choice of weights and bias function, the weighted, biased VCG mech-
anism is truthful.
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Proof: Clearly when the weight of agent i is zero, agent i has no incentive for being untruthful.
When wi > 0, then there are two possibilities – agent i is truthful, or agent i is untruthful. Assume
that the output of the mechanism is o∗ when i is truthful and it is o′ when i is untruthful. Then,

o∗ ∈ argmax
o∈O

wivi(o) +
∑

j∈N , j 6=i

wjbj(o) + H(o)

 and o′ ∈ argmax
o∈O

wibi(o) +
∑

j∈N , j 6=i

wjbj(o) + H(o)



where vi is the true valuation function of agent i and bi is any other valuation function. Next we
compute the utilities of agent i for outcomes o∗ and o′.

ui(o∗) = vi(o∗)− Pi(b)

= vi(o∗) +
1
wi

∑
j 6=i

wjbj(o∗) + H(o∗)

 + hi(b−i)

=
1
wi

wivi(o∗) +
∑
j 6=i

wjbj(o∗) + H(o∗)

 + hi(b−i)

Similarly,

ui(o′) =
1
wi

wivi(o′) +
∑
j 6=i

wjbj(o′) + H(o′)

 + hi(b−i)

The manner in which o∗ has been chosen makes it clear that ui(o∗) ≥ ui(o′). Therefore, the agent
has no incentive for bidding untruthfully.

17.6.6 Weaknesses of VCG Mechanism

Despite the attractiveness of the dominant-strategy property, the VCG mechanism also has several
possible weaknesses [8].

• low(or zero) auctioneer revenues.

• non-monotonicity of the auctioneer’s revenues in the set of bidders and the amount of bid.

• vulnerability to collusion by a coalition of losing bidders.

• vulnerability to the use of multiple bidding identities by a single bidder.

17.6.7 The Search Engine Problem

Consider a web page with slots where advertisements are displayed. Whenever the web page is
accessed by an Internet user, the web site owner can choose to show her advertisements.
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Definition 17.6.7.1 (Impression) The process of displaying an advertisement is called impres-
sion.

Since each of these advertisers invoke a different level of interest from the Internet users visiting
the web pages we account for it using a parameter known as click-through rate.

Definition 17.6.7.2 (Click-through rate(CTR)) Click-through rate of an advertisement is the
fraction of its impressions that result in a click by an Internet user.

In the auctions currently being used, search engines first pick the subset of advertisements to be
displayed and match them to slots based on the submitted bids. The matching criteria is referred
to as the ranking function.

Definition 17.6.7.3 (Ranking function) A ranking function is a function mapping advertise-
ments to slots by evaluating the rank of each advertisements.

The ranking function is an integral component of the existing keyword auctions. Once the ranking
function is determined, the auctioneer decides the pricing for each merchant based on both, the
bids as well as the slot allocated.

There two popular ranking methods in use are:

• The Overture(or Yahoo!) method (Direct Ranking) : Merchants are ranked in the decreasing
order of the submitted bids.

• The Google method (Revenue Ranking) : Merchants are ranked in the decreasing order of
the ranking scores, where the ranking score of a merchant is defined as the product of the
merchant’s bid and a quantity known popularly as page rank which is determined by Google.
Page ranks are usually not known to merchants.

In the following sections, we formulate a framework to help better understand the sponsored search
engine auction.

17.6.8 Model and Notation

• N denotes the number of merchants.

• K denotes the number of slots on a specific keyword(K < N).

• CTRi,j denotes click-through rate of the ith merchant if placed at slot j ≤ K.

• vi denotes the true valuation of a click-through to merchant i.

• bi denotes the bid of the ith merchant for a click-through.

• pi denotes a price-per-click charged for merchant i. pi ≤ bi.

• wi denotes a priori weight assigned to merchant i by the auctioneer. This is independent of
her bid.
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17.6.9 Assumptions

• In sponsored search, we typically work with K ≤ N . However, this can be easily generalized to
the case with K ≥ N by reducing the number of slots K to N and adding dummy merchants
with all relevant parameters set to 0.

• Slots are ordered so that the probability of clicks going through is higher for slots ranked
higher.

• CTRi,j is arbitrary and non-increasing in j. In most cases, the auctioneer is aware of the
Click Through Rates.

• vi is known to merchant i, but not to the auctioneer.

• The merchants are ranked in the order of decreasing wibi.

• The merchants are risk-neutral.

We formally define the next-price auctions as follows

Definition 17.6.9.1 (Next-price Auction) Given the rank function, R = (w1, w2, · · · , wn) and
the bid vector b = (b1, · · · , bn), the next-price auction ranks the merchants in the decreasing order
of wibi and charges the merchant ranked i an amount-per-click equal to the minimum bid she needs
to have submitted in order to retain rank i. Then the price charged to the merchant ranked i is

pi =
wi+1bi+1

wi
.

Note : Setting wi = 1 for all i is equivalent to the direct ranking function (the Overture model),
while setting wi = CTRi,1 reduces to the revenue-ranking function (the Google model).

In order to model the Click-through rates, we assume that they can be separated into a merchant-
specific factor and a position-specific factor.

Definition 17.6.9.2 (Separable Click-through Rates) The click-through rates are said to be
separable if there exist µ1, µ2, · · · , µn > 0 and θ0 ≥ θ2 ≥ · · · ≥ θK > 0 such that the click-through
rate CTRi,j of the ith merchant at the jth slot is given by µiθj

17.6.10 Need for a New Auction

In this section, we provide the motivation for designing a new auction by showing that the next-
price auctions being currently used by Google and Yahoo! are not truthful. In order to reiterate
the shortcomings of the VCG mechanism, we give instances of ranking functions for which there
does not exist any set of weights and biases for which the ranking output by the VCG mechanism
is always the same as the output by the given ranking function.
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17.6.10.1 Next-price Auction is not Truthful

Consider the following example.

• Three merchants A,B and C bidding for two slots.

• All of them have a click through rate of 0.5 at the top slot and 0.4 at the bottom slot.

• The true valuations per click of the three merchants be 200, 180 and 100 respectively.

If all the merchants bid truthfully, merchant A ends up paying a price of 180 per click, making an
expected profit of (200 − 180) × 0.5 = 10. In this case, she has an incentive to under cut B by
lowering her bid to 110, and make a net profit of (200− 100)× 0.4 = 40.

Clearly, there is no incentive to bid higher than ones true valuation under the next-price auc-
tion. This is because the price-per-click charged is the minimum bid required to retain one’s rank.
Therefore in cases where bidding higher improves one’s rank, the price-per-click charged is higher
than one’s true valuation.

17.6.10.2 Weighted VCG may not Always Apply

In this section, we show by means of a counter-example that even for the simple case of direct
ranking, there does not exist any set of (bid-independent) weights and biases for which the VCG
solution achieves the same allocation as direct ranking. This will show that, in general, VCG does
not apply to our problem. Consider the following example.

• Two merchants A and B bidding for two slots.

• Merchant A has a click-through rate of 0.4 at both the first and the second slot.

• Merchant B has a click-through rate of 0.4 at the first slot and 0.2 at the second slot.

Since any of the merchants can bid the highest and get the top slot in direct ranking, both the
merchants must have non-zero weight in order for weighted VCG to achieve the same allocation as
direct ranking.

• Let wA > 0 and wB > 0 be the weights assigned by the VCG mechanism to merchants A and
B respectively.

• H(x, y) denotes the bias assigned to ranking merchant x followed by y for x, y ∈ {A,B}.

Then the VCG mechanism will rank B before A if

wA(0.4bA) + wB(0.4bB) + H(B,A) > wA(0.4bA) + wB(0.2bB) + H(A,B).

This is true whenever
bB >

H(A,B)−H(B,A)
0.2wB

,
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Hence, the ranking of the merchants by VCG does not depend on A’s bid. However, the direct
ranking scheme will rank A before B whenever A’s bid is higher than B’s bid. Thus, the VCG mech-
anism does not apply to this example. We formally state (without proof) a few more shortcomings
of the VCG auction. (For proof, see [1].)

Theorem 17.6.10.1 Let the number of merchants with non-zero click-through rates be n > K. If
the click-through rates are not separable, then there exists a ranking function R = (w1, w2, · · · , wn)
for which there does not exist any set of weights for which unbiased, weighted VCG always yields
the same ranking as the ranking function R.

Theorem 17.6.10.2 Let the number of merchants with non-zero click-through rates be n > K. If
the click-through rates are not separable, then there exists a ranking function R = (w1, w2, · · · , wn)
for which there does not exist any set of weights for which biased. weighted VCG always yields the
same ranking as the R.

Theorem 17.6.10.3 Let the click-through rates be separable. Then the VCG mechanism having
merchant i’s VCG weight set to

wi

CTRi,1
always produces the same ordering as the ranking function

(w1, · · · , wn).

The above theorem implies that with the separability assumption, the ranking functions maximize
a certain global utility function. In particular, the revenue-ranking scheme maximize the total
utility obtained by the merchants and the auctioneer.

17.6.11 The Truthful Auction

We will assume without loss of generality that the ith merchant also has the ith rank in the auction.
The truthful auction is quite simple: For j ≤ i ≤ K, set the price-per-click pi charged to merchant
i as:

pi =
K∑

j=i

(CTRi,j − CTRi,j+1)
wj+1

wi
bj+1 (17.6.11.1)

In other words,

1. For those clicks which merchant i would have received at position i + 1, she pays the same
price as she would have paid at position i + 1.

2. For the additional clicks, merchant i pays an amount equal to the bid value of merchant i+1.

Since wibi ≥ wjbj for j > i, it follows that pi ≤ bi. Hence the price charged per click-through can be
no larger than the submitted bid. We will refer to this auction as Laddered Auction(w1, · · · , wn).

17.6.12 Analysis

For the Laddered Auction(w1, · · · , wn), we state the following theorem without proof. (For proof,
see [1].)
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Theorem 17.6.12.1 Given fixed w1, · · · , wn, the Laddered Auction(w1, · · · , wn) is truthful. Fur-
ther, it is the unique truthful auction that ranks according to decreasing wibi.

Corollary 17.6.12.2 For any fixed w1, · · · , wn, the Laddered Auction(w1, · · · , wn) is the profit-
maximizing truthful auction that ranks merchants by decreasing wibi.
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