
CS880: Approximation and Online Algorithms Scribe: Jennifer Cao, Dongqiangzi Ye

Lecture 25: Approximations for 2-Stage Stochastic Optimization Date: 11/18/2019

25.1 Two-Stage Resource Model

25.1.1 Model Formulation

Stochastic Optimization aims at capturing the uncertainty of the input data in decision making
process. A widely used sketch is the two-stage resource model[1]:

Given a distribution D over some of the realizations of future data, where each realization is called
a scenario.

• First Stage: With D, we can initial a decision and construct an anticipatory part of the
solution x, incurring a cost of c(x).

• Second Stage: Sampling a scenario A from D, we may augment the decision x that made at
stage one by taking resource actions yA, incurring a cost of fA(x, yA).

The goal is to choose the initial decisions so as to minimize the expected total cost, i.e.,

min{c(x) + EA[fA(x, yA)]} (25.1.1)

Typically, there’s a trade off between two stages: the first stage does not have precise information
while encounters a lower cost; but the second stage take advantage of actual data, which leads to
a higher cost but can make decision based on precise information.

25.1.2 Curse of Dimensionality

One core problem is how to represent scenario-distribution. A straightforward approach is to
consider it as non-stochastic input of scenarios. If we explicitly enumerate each scenario with its
probability of occurrence, distribution D may contain up to exponential size of scenarios, which
leads to a very high problem complexity.

To overcome the “curse of dimensionality”, we can restrict the distribution with a polynomial
support, which is known as polynomial-scenario model. This model assumes scenario distribution
is a product of independent (input) distributions, and ignore the correlation between input data.
On the other hand, a black-box model is described to capture more precise input information: it
assumes distribution D is supported by other polynomial-size of scenarios(“black boxes”), and we
can sample scenarios from it. Thus, black-box model can capture correlated data as well as be
reduced to a polynomial-scenario model.

Actually, a black-box model can be reduced to a polynomial-scenario model by ρ-approximation
algorithms, thus can be solved in polynomial time.

1

25.2 Stochastic Set Cover Problem

We will consider stochastic set cover problem as a illustrative problem to explain 2-stage stochastic
optimization.

Definition 25.2.1 (Stochastic Set Cover Problem(SSC)) Given a sets S1, S2, · · · , Sm over a
ground set U of n elements. For each set S, it can either be picked at stage I with cost wIS, or be
picked at stage II with cost wAS , where subset A ⊆ U is drawn according to a specified distribution.
We need to make sure that A is contained in the union of both sets selected in two stages. The goal
is to minimize the expected cost of the sets picked.

25.2.1 LP Relaxation

The stochastic set cover problem can be formulated as an integer program with the following LP
relaxation:

min
∑
S

wISxS +
∑
A⊆U,S

pAw
A
S rA,S (SSC-P1)

s.t.
∑
S:e∈S

(xS + rA,S) ≥ 1, ∀A, e ∈ A

xS , rA,S ≥ 0, ∀A,S

Where variable pA indicates the probability of scenario A (which we do not know explicitly, and
could be 0). xS denotes whether set S is picked at stage I, and rA,S indicates whether set S is
picked at scenario A. The first constraint shows that for an arbitrary scenario A, every element
in A must be covered either at stage I or stage II. In an integer program, xS , rA,S ∈ {0, 1}, and
xS = 0, rA,S = 1 or xS = 1, rA,S = 0 are exactly solutions of the above problem.

25.2.2 Rounding

[2] gives an (2ρ + ε)-approximation guarantee for stochastic set cover problem for any ε, where
ρ is the integrality gap for deterministic set cover problem. The intuition of the approach is to
prove that each of the element is at least half covered at stage I or in each scenario at stage
II, and by decoupling two stages, we can apply the deterministic result to each stage separately.
Let OPTDet denote the optimal solution of deterministic set cover problem, and OPT denote the
optimal solution of stochastic set cover problem.

Definition 25.2.2 (Deterministic Set Cover Problem(DSC)) Given a universe U of n ele-
ments and m subsets of U , with any subset S having weight wS. The goal is to choose sets with
minimum total weight such that each element e is contained in some chosen set.

2

The LP relaxation of deterministic set cover problem can be formulated as

min
∑
S

wSxS (P)

s.t.
∑
S:e∈S

xS ≥ 1, ∀e

xS ≥ 0, ∀S

where xS indicates whether S is chosen. [3] proposes a greedy algorithm which achieves lnn-
approximation: it initializes with empty set, and chooses the set that contains the largest number
of uncovered elements at each round.

Theorem 25.2.3 Suppose that we have a procedure that for every instance of DSC produces a
solution of cost at most ρ · OPTDet. Then one can convert any solution (x,r) to SSC-P1 to an
integer solution losing a factor of at most 2ρ.

Proof: Let h(·) be the objective function in SSC-P1. Suppose (x, r) is the optimal solution of
SSC-P1, and (x̃, r̃) is the integer (rounding) solution, we are going to argue that the integer solution
is obtained by a cost at most 2ρ · h(x, r).

Let E = {e :
∑

S:e∈S xS ≥
1
2}, then (2x) is the fractional set cover solution for e ∈ E, so the integer

solution of stage I costs at most ρ ·
∑

S w
I
S2xS .

For any scenario A, consider e ∈ A\E. By observation, for an arbitrary element e, it should be
covered either to an extent of at least 1

2 at stage I by xS , or to an extent of at least 1
2 at stage II by

rA,S in every scenario A contains e. Hence e ∈ A\E should be covered to an extent of more than
a half at stage II, i.e., A\E = {e :

∑
S:e∈S rA,S ≥

1
2}. Similarly, (2rA) is the fractional set cover

solution for e ∈ A\E, thus stage II costs at most ρ ·
∑

S w
A
S 2rA,S .

Sum up two parts, the cost of solution x̃ is at most 2ρ · h(x, r).

If we apply a polynomial-scenario model, by theorem 25.2.3 we obtain a 2 lnn-approximation algo-
rithm for SSC. However, in general, it is hard to solve SSC-P1 as both the variables and constraints
are in exponential size. Even if SSC-P1 is “solvable”, writing out the solution takes exponential
space and time. From the proof of theorem 25.2.3, we only need to examine E, and it only encoun-
ters variable xS in stage I. This conclusion motivates the following formulation with only stage I
variable xS :

min h(x) =
∑
S

wISxS +
∑
A⊆U

pAfA(x) (SSC-P2)

s.t. 0 ≤ xS ≤ 1 ∀S,

where fA(x) = min{
∑
S

wAS rA,S :
∑
S:e∈S

rA,S ≥ 1−
∑
S:e∈S

xS , ∀e ∈ A; rA,S ≥ 0, ∀S}

Here the second-stage decisions only appear in the minimization problem fA(x), which denotes the
recourse problem that one needs to solve for scenario A. It is obvious to show that SSC-P1 and
SSC-P2 are equivalent programs, and the object function of SSC-P2 is convex.

3

The idea is to prove that SSC-P2 can be solved efficiently and return a near-optimal first-stage
solution x, then we can obtain a 2ρ-approximation algorithm.

25.2.3 Solving the Convex Problem

Definition 25.2.4 Fully Polynomial Approximation Scheme (FPAS) for 2-stage Stochastic LPs:
The algorithm returns a solution of value within (1 + κ) times the optimum (with high probability),
for any κ > 0, in time polynomial in the input size, 1

κ , and a parameter λ, which is the maximum
ratio between the second- and first-stage costs.

Algorithm 1 High-Level Ellipsoid Method

Start: P0 ⊆ E0 [containing the feasible region within a ball]
for each step i do

if xi (current ellipsoid center) is infeasible then
One uses an inequality violated by it as the hyperplane Hi

else
One uses an objective function cut as the hyperplane Hi, to eliminate points whose objective
function value is no better than the current center. e.g. h(x) ≤ h(xi)
Update feasible region Pk+1 = Pk ∩ Ei, k ←− k + 1

end if
Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid Ei ∩Hi

end for
return x̄ : min

x0,x1,··· ,xk
h(xi)

Let P = P0 denotes the polytope {x ∈ Rm : 0 ≤ x ≤ 1 ∀S}, and xi be the current iterate.
The ellipsoid method (Algorithm 1) can be adapted to find a near-optimal solution to SSC-P2 in
polynomial time, despite the fact that evaluating object function h(.) may in general be #P-hard.
However, without the ability to evaluate the object function h(.) (or even estimate), it’s non-trivial
to find an objective function cut. One simple way is to add a constraint h(x) ≤ h(xi), which is not
a ”linear” cut. But then, in subsequent iterations, one would need to check if the current iterate is
feasible, and generate a separating hyperplane if not. Since evaluating h(.) is #P-hard, this appears
to pose a formidable difficulty.

So the core issue is how we find an objective function cut. An alternative possibility is to use cuts
generated by a subgradient, which essentially plays the role of the gradient when the function is
not differentiable.

Definition 25.2.5 Subgradient: We say that d ∈ Rm is a subgradient of a function g : Rm −→ R at
the point u, if g(v)− g(u) ≥ d · (v − u) for every v ∈ Rm

Lemma 25.2.6 If di is the subgradient at point xi, we can add the subgradient cut di · (x−xi) ≤ 0
and proceed with the (smaller) polytope Pi+1 = Pi ∩ {x : di · (x− xi) ≤ 0}. The remaining polytope
must contain OPT.

Proof: Consider what points we remove {x− : di · (x− − xi) > 0}. Since di is the subgradient at
point xi, we have h(x−)−h(xi) ≥ di · (x−−xi) > 0, then h(x−) > h(xi). But OPT ≤ h(xi), we will

4

never remove OPT and the overall objective functions of remaining feasible region will decrease.

Unfortunately, even computing a subgradient is hard to do in polynomial time for the objective
functions that arise in stochastic programs. To circumvent this obstacle, we define the notion of
an approximate subgradient which is crucial to the adapted ellipsoid algorithm.

Definition 25.2.7 Approximate Subgradient: We say that d̂ ∈ Rm is an (ω,D)-subgradient of a
function g : Rm −→ R at the point u ∈ D, if for every v ∈ D, we have g(v)−g(u) ≥ d̂ ·(v−u)−ωg(u)

The algorithm only uses (ω, P)-subgradients which we denote as ω-subgradients from now on. Later,
We will show that one can compute with high probability an ω-subgradient of h(.) at any point x,
by sampling from the black box on scenarios. Like subgradient, we can add a cut d̂i · (x− xi) ≤ 0
and proceed with the (smaller) polytope Pi+1 = Pi ∩ {x : d̂i · (x − xi) ≤ 0}. For any removed
points y ∈ Pi+1\Pi, we have that h(y) − h(xi) ≥ d̂i · (y − xi) − ωh(xi) and d̂i · (y − xi) > 0, then
h(y) > (1− ω)h(xi), which means no such point has h(.) value much smaller than h(xi).

Definition 25.2.8 Given a function g : Rm −→ R, we say that g has Lipschitz constant (at most)
K if |g(v)− g(u)| ≤ K||v − u|| for all u, v ∈ Rm

Continue this way, we obtain a polynomial number of points x0, x1, · · · , xk such that xi ∈ Pi ⊆ Pi−1

for each i, and the volume of the ellipsoid centered at xk containing Pk, and hence that of Pk is
small. If if h(.) has a bounded Lipschitz constant, then one can show that mini h(xi) is close to
the optimal value OPT with high probability. The entire adapted ellipsoid algorithm is formulated
below.

Algorithm 2 FindOpt(γ, ε)

[Returns a point x̄ such that h(x̄) ≤ OPT
1−γ + ε. Assume γ ≤ 1

2]

Set: k ←− 0, y0 ←− 0, N ←− 2m2 ln 16KR2

V ε , n ←− N log 8NKR
ε , and ω ←− γ

2n . Let E0 ←− B(0, R) and
P0 ←− P
for i = 0, 1, · · · , N do

[We maintain the invariant Ei is an ellipsoid centered at yi containing the current polytope
Pk]
if yi ∈ Pk then

Set xk ←− yi, Let d̂k be an ω-subgradient of h(.) at xk. Let H denote the half space
{x ∈ Rm : d̂i · (x− xk) ≤ 0}. Set Pk+1 ←− Pk ∩H and k ←− k + 1

else
Let a · x ≤ b be a violated inequality, that is, a · yi > b, whereas a · x ≤ b for all x ∈ Pk. Let
H be the half space {x ∈ Rm : a · (x− yi) ≤ 0}

end if
Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid Ei ∩Hi

end for
Set k ←− k − 1. We now have a collection of points x0, x1, · · · , xk such that each xl ∈ Pl ⊆ Pl−1

return FindMin(ω; x0, x1, · · · , xk)

Lemma 25.2.9 The points x0, x1, · · · , xk generated by FindOpt satisfy minki=0 h(xi) ≤
OPT+ ε

4
1−ω

Proof: Let x∗ be an optimum solution. If x∗ is removed from the feasible region P , which means

5

d̂l · (x∗−xl) ≥ 0 for some l, then h(xl) ≤ h(x∗)
1−ω since d̂l is an ω-subgradient at xl. Otherwise using a

volume reduction argument, one can show that there must be a point y lying on some hyperplane

d̂l · (x− xl) = 0 such that ||y − x∗|| ≤ ε
4K , so h(xl) ≤ h(y)

1+ω ≤
h(x∗)+ ε

4
1−ω

Since we cannot evaluate h(.) at any given x, we will not be able to choose the point x̄ =
argminih(xi). Instead, by using ω-subgradient we will find a point x̄ in the convex hull x0, x1, · · · , xk
at which the objective function value is close to mini h(xi). We start at x̄ = x0. At each step i, we
perform a bisection search to find x̄ = min(x̄, xi), using the ω-subgradient to infer which direction
to move along the line segment. The whole algorithm is showed in Algorithm 3.

Algorithm 3 FindMin(ω; x0, x1, · · · , xk)

Set ρ←− ε
4k , x̄←− x0, N ′ ←− log 8kKR

ε
for i = 1, 2, · · · , k do

[We maintain the invariant that h(x̄) ≤ mini−1
l=0 h(l)+(i−1)ρ

(1−ω)(i−1)N′]

We use binary search to find y on the x̄− xi line segment with value close to min(h(x̄), h(xi)).
Initialize y1 ←− x̄, y2 ←− xi
for j = 1, 2, · · · , N ′ do

[We maintain that h(y1) ≤ h(x̄)
(1−ω)j−1 , h(y2) ≤ h(xi)

(1−ω)j−1]

Let y = y1+y2
2 . Computer ω-subgradient d̂ of h(.) at point y. If d̂ · (y1 − y2) = 0, then exit

the loop. Otherwise exactly one of d̂ · (y1 − y) and d̂ · (y2 − y) is positive
if d̂ · (y1 − y) > 0 then

Set y1 ←− y
else

Set y2 ←− y
end if

end for
Set x̄←− y

end for
return x̄

Lemma 25.2.10 Procedure FindMin returns a point x̄ such that h(x̄) ≤ minki=0 h(xi)+
ε
4

(1−ω)kN′

Proof: From the Algorithm 3, it’s obvious that the inner ”for j = 1, 2, · · · , N ′” loop returns a
point y such that h(y) ≤ min(h(x̄),h(xi))

(1−ω)N′
+ ρ (due to the ω-subgradient d̂). So if the invariant hold at

the start of iteration i, setting x̄←− y at the end of iteration i ensures that it holds at the beginning
of i+ 1.

To convert the performance guarantee of procedure FindOpt into a purely multiplicative (1 + κ)-
guarantee, we need to obtain the lower bound on OPT (and set ε, γ accordingly), or return 0 as
optimal solution (with high probability). The procedure is summarized in Algorithm 4.

Now we proves ConvOpt works well with high probability. Before that, we make the very mild
assumption that for an optimal solution x∗, in any scenario A 6= φ, the total cost of scenario A is
at least 1, that is, wI · x∗ + fA(x∗) ≥ 1.

6

Algorithm 4 ConvOpt(κ, δ)

[Returns a point x̄ such that h(x̄) ≤ (1 + κ) ·OPT with high probability. Assume δ ≤ 1
2]

Define λ = max(1,max
A,S

wAS
wIS

). Sample M = λ ln(1
δ) times from the distribution on scenarios. Let

X = number of times a non-null scenario occurs
if X = 0 then

return x = 0 as optimal solution
else

With high probability, OPT ≥ %
λ , where % = δ

ln 1
δ

. Set ε = κ%
2λ , γ = κ

3

return FindOpt(γ, ε)
end if

Lemma 25.2.11 ConvOpt determines with probability at least 1− δ, that OPT ≥ %
λ , or that x = 0

is an optimal solution.

Proof: Note that % ≤ 1 since δ ≤ 1
2 . Since in every non-null scenario, we incur a cost of at least

1, OPT = E(minimal cost) ≥ 1 · q + 0 · (1 − q) = q, where q =
∑

A⊆U,A 6=φ
pA is the probability of

occurrence of a non-null scenario. Let r = Pr[X = 0] = (1− q)M . So r ≤ e−qM and r ≥ 1− qM . If

q ≥ − ln(δ)
M , then Pr[X = 0] ≤ δ. So with probability at least 1−δ we will say that OPT ≥ %

λ which

is true since OPT ≥ q ≥ 1
λ . If q ≤ δ

M , then Pr[X = 0] ≥ 1 − δ. We return x = 0 as an optimal

solution with probability at least 1− δ which is indeed an optimal solution, because q ≤ 1
λ = − ln(δ)

M
implies that it is always at least good to defer to stage II since the expected stage II cost of set S
is at most q ·wAS ≤W I

S . If δ
M < q < − ln(δ)

M , then we always return a correct answer since it is both
true that x = 0 is an optimal solution, and that OPT ≥ q ≥ %

λ .

The last important thing is how to compute an ω-subgradient at x ∈ P efficiently (with high
probability). Consider the dual version of SSC-P2 fA(x).

max
∑
e

(1−
∑
S:e∈S

xS)zA,e

s.t. zA ∈ QA
where QA = {z ∈ R|U | :

∑
e∈A∩S

ze ≤ wAS ∀S; ze = 0 ∀e /∈ A; z ≥ 0}

The Lemma 25.2.12 and Lemma 25.2.13 show that each component of the subgradient vector is the
expectation of a random variable with bounded variance.

The Lemma 25.2.13 also gives a bound on the Lipschitz constant K.

Lemma 25.2.12 Let d be a subgradient of h(.) at the point x ∈ P , and suppose d̂ is a vector such
that dS − ωwIS ≤ d̂S ≤ dS for all S. Then d̂ is an ω-subgradient of h(.) at x.

Lemma 25.2.13 Let x ∈ Rm, and let z∗A be an optimal dual solution for scenario A with x as
the stage I vector. The d with components dS = wIS −

∑
A

pA
∑
e∈S

z∗A,e is a subgradient at x, and

||d|| ≤ λ||wI ||.

7

Using standard Chebyshev and Chernoff bounds one can show the following.

Lemma 25.2.14 Let X ∈ [−a, b] be a random variable, a, b > 0, computed by sampling from a

distribution π. Let µ = E[X] and α = max(1, ab). Then for any c > 0, by taking 100α2

3c2
ln(1

δ)

independent samples from π, one can compute an estimate X̂ such that µ − 2cb ≤ X ≤ µ with
probability at least 1− δ.
Corollary 25.2.15 At any point x ∈ P , one can compute an ω-subgradient with probability at least
1− δ using at most 400λ2

3ω2 ln(mδ) independent samples from the probability distribution on scenarios.

By all of previous algorithms and analysis, we can conclude Lemma 25.2.16.

Lemma 25.2.16 Using the above sampling method to compute ω-subgradients, ConvOpt computes
a feasible soulution to SSC-P2 of cost at most (1 + κ)·OPT with probability at least 1− 2δ, in time
poly(input size, λ, 1

κ , ln(1
δ)).

25.3 Stochastic Facility Location Problem

The above algorithm can be generalized to solve a broad class of 2-stage stochastic problems. By
a convex programming relaxation, the rounding approach bounds the integrality gap of stochastic
problem by 2 times the integrality gap of the corresponding deterministic problem.

In this section, we take 2-stage stochastic uncapacitated facility location problem(SUFL) as an
application of the above algorithm.

Definition 25.3.1 (Deterministic Uncapacitated Facility Location(DUFL)) Given a set of
candidate facility locations F , and a set of clients D. We want to open facilities at a subset of F ,
and assign each client to an open facility. Opening a facility at location i incurs a cost of fi, while
assigning a client j to facility i costs cij. The goal is to minimize the total cost of opening facilities
and assigning clients.

The integrality gap for DUFL is ρDUFL ≤ 1.52[4].

In a 2-stage SUFL, given a probability distribution of the demand(assign which client to which
facility) of clients. facility is either opened at cost f Ii at stage I, or opened at cost fAi in scenario
A at stage II. Thus, the LP relaxation can be formulated as following:

min
∑
i

f Ii yi +
∑
A⊆U

pA(
∑
i

fAi yA,i +
∑
j∈A,i

cijxA,ij) (SUFL-P1)

s.t.
∑
i

xA,ij ≥ 1 ∀A, j ∈ A

xA,ij ≤ yi + yA,i ∀i, A, j ∈ A
yi, yA,i, xA,ij ≥ 0 ∀i, A, j ∈ A

Similarly, we can compactify SUFL-P1 to obtain a convex program:

8

min
∑
i

f Ii yi +
∑
A⊆U

pAgA(y) s.t. 0 ≤ yi ≤ 1, ∀i (SUFL-P2)

where gA(y) = min
∑
i

fAi yA,i +
∑
j∈A,i

cijxA,ij

s.t.
∑
i

xA,ij ≥ 1 ∀A, j ∈ A

xA,ij ≤ yi + yA,i ∀i, A, j ∈ A
yi, yA,i, xA,ij ≥ 0 ∀i, A, j ∈ A

Theorem 25.3.2 The integrality gap of SUFL-P2 is at most 2ρDUFL.

Proof: Let h(·) be the objective function in SUFL-P2. Suppose y is the optimal solution of
SUFL-P2, and (x∗A, y

∗
A) be the optimal solution of gA(y). The proof is similar to theorem 25.2.3,

we will show that we can decouple the two stages and solving two DUFL problems.

Fix a scenario A with client j ∈ A, i.e., xA,ij > 0. we can split it into two stages: xA,ij =
xA, ijI + xA, ijII . Thus, xIA,ij ≤ y∗i , and xIIA,ij ≤ y∗A,i. By observation, client j must either
be assigned to a facility opened at stage I, or be assigned to a facility opened at stage II, so∑

i x
I
A,ij ≥

1
2 or

∑
i x

II
A,ij ≥

1
2 .

In the first case, take a set of scenarios Sj = {j ∈ A :
∑

i x
I
A,ij ≥

1
2}. Stage I can be decoupled as a

DUFL that facility opens at cost f Ii , assigning a client j to facility i cost cij per demand, and the
demand of j is

∑
A∈Sj pA. As we know

∑
yi ≥

∑
i x

I
A,ij ≥

1
2 , for scenario A a feasible fractional

solution can be set as ˆxA,ij = min(1, 2xIA,ij), ŷi = min(1, 2y∗i). As ŷi does not depend on the

scenario, we can re-optimize the assignment (j, A) which only depends on (̂yi) variables: first reset
ˆxA,ij = 0, then put i in non-decreasing order of cij ; then for each i, set ˆxA,itj = min(ŷit , xA,ij). In

this manner we can obtain a mininum cost of assignment with current opened facilities, motivates
us to treat all clients (j, A) as j with demand

∑
A∈Sj pA. Hence, the facility cost is at most

2
∑

i f
I
i y
∗
i , and the client cost is at most 2

∑
i,j

∑
A∈Sj pAcijx

I
A,ij ≤ 2

∑
i,j

∑
A∈Sj pAcijxA,ij . So

for the set of facilities open in stage I, the integer solution costs at most 2ρDUFL · (
∑

i f
I
i y
∗
i +∑

i,j

∑
A∈Sj pAcijx

∗
A,ij).

For the remaining set Di = j ∈ A : A /∈ Sj , we have
∑

i x
II
A,ij ≥

1
2 . Similarly, the fractional solution

should be set as ˆxA,ij = min(1, 2xIIA,ij), ŷi = min(1, 2y∗A,i). So we can bound the integer solution

with a cost at most 2ρDUFL · (
∑

i f
A
i y
∗
A,i +

∑
i,j∈DA cijx

∗
A,ij).

Combine the two cases, we can conclude that the overall cost is at most 2ρDUFLOPT .

Note that without knowing the demand of client j
∑

A∈Sj pA explicitly, we may not be able to

apply rounding technique with the 1.52-approximation DUFL. However, [5] gives an approximation
algorithm for DUFL without knowing clients’ demands explicitly, which only increases the cost by
a factor of at most 1.705. Hence rounding gives a 3.225-approximation algorithm for SUFL.

9

References

[1] C. Swamy and D. B. Shmoys, “Approximation algorithms for 2-stage stochastic optimization
problems,” ACM SIGACT News, vol. 37, no. 1, pp. 33–46, 2006.

[2] D. B. Shmoys and C. Swamy, “Stochastic optimization is (almost) as easy as deterministic
optimization,” in 45th Annual IEEE Symposium on Foundations of Computer Science. IEEE,
2004, pp. 228–237.

[3] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of operations re-
search, vol. 4, no. 3, pp. 233–235, 1979.

[4] M. Mahdian, Y. Ye, and J. Zhang, “Improved approximation algorithms for metric facility
location problems,” in International Workshop on Approximation Algorithms for Combinatorial
Optimization. Springer, 2002, pp. 229–242.

[5] C. Swamy and D. Shmoys, Approximation algorithms for clustering problems. Citeseer, 2004.

10

