
CS880: Approximation and Online Algorithms Scribe: Eva, Xiating

Lecture 28: Submodular Functions and Their Applications Date: 12/4/2019

In this lecture, we introduce submodular functions and its relationship with various combinatorial
optimization problems. We will introduce and analyze (1) a greedy (1− 1/e)-approximation algo-
rithms to maximization problems for monotone submodular functions under cardinality constraints,
and (2) a greedy (1− 1/e)-approximation algorithms to maximization problems for monotone sub-
modular functions under matroid constraints. For (2), we introduce the multilinear extension,
extending the discrete submodular functions to the continuous settings and rounding the continu-
ous solution back to a discrete one.

28.1 Submodular functions

Let S be a set of elements and consider a function f : 2S → R.

Definition 28.1.1 The function f : 2S → R is submodular if for all A,B ⊆ S, we have that

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

An equivalent definition of submodularity exhibits its diminishing marginal value gain over larger
sets. Due to this property, the submodular functions have wide applications in game theory,
operation research and machine learning.

Definition 28.1.2 The function f : 2S → R is submodular if for all A ⊂ B ⊂ S and for each
i ∈ S \B, we have

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B).

Lemma 28.1.3 Definition 28.1.1 is equivalent to definition 28.1.2.

Proof: We first assume that for all A,B ⊂ S, we have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Suppose that A ⊂ B, then for any i ∈ S \B, we have that

f(A ∪ {i}) + f(B) ≥ f(A ∪B ∪ {i}) + f((A ∪ {i}) ∩B)

= f(B ∪ {i}) + f(A),

where the equality holds since A ⊂ B.

We now assume that
f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B)

for each A ⊂ B ⊂ S and i ∈ S \B.

Consider any two sets A and B. If A \B = ∅, then we have A ⊆ B, and thus

f(A ∩B) + f(A ∪B) = f(A) + f(B) ≤ f(A) + f(B).

1

Otherwise, let B \ A = {v1, v2, . . . , vn} and denote Xi = {v1, v2, . . . , vi} and X0 = ∅. Since
(A ∩B) ∪Xi ⊂ A ∪Xi We thus have

f((A ∩B) ∪Xi ∪ {vi+1})− f((A ∩B) ∪Xi) ≥ f((A ∪Xi) ∪ {vi+1})− f((A ∪Xi),

that is
f((A ∩B) ∪Xi+1)− f((A ∩B) ∪Xi) ≥ f(A ∪Xi+1)− f(A ∪Xi).

Summing from i = 0 to n− 1, and we yield

f((A ∩B) ∪Xn)− f(A ∩B) ≥ f(A ∪Xn)− f(A).

Combined with Xn = B \A, we have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

We may still define some common properties with continuous functions on submodular functions.
A submodular function f is monotone if for all sets A ⊂ B, f(A) ≤ f(B). Definition 28.1.2
resembles the definition of concave functions in the continuous setting. However, maximizing
certain submodular functions such as weighted coverage or mutual information, unlike concave
functions, is NP-hard [4, 5], which resembles convexity.

Examples

• Coverage problem: Consider a universe U of elements and n subsets A1, A2, . . . , An ⊆ U .
The problem is to pick at most k subsets from each Ai such that the number of elements
covered by the union of the picked subsets is maximized. If for each index subset S ⊆ [n],
we define the coverage function f by f(S) = |

⋃
i∈S Ai|, we see that the problem is precisely

maxS⊆[n] f(S) subject to |S| ≤ k. One may verify that f is submodular.

• Maximum cut: Recall that the MAX-CUT problem is NP-complete. Given a weighted directed
graph and a nonnegative weight function c : E → R+, the cut function f(S) = c(δ(S)) is
submodular. This is because for any vertex v, we have

f(S ∪ {v})− f(S) =
∑

u∈N+(v)\S

c(v, u)−
∑

u∈S∩N−(v)

c(u, v),

which decreases as S grows. Note that this also implies a reduction from MAX-CUT to submod-
ular maximization (even with cardinality constraints), showing that the latter is NP-hard.

28.2 Maximizing submodularity under cardinality constraints

In this section we consider the monotone submodular function maximization problem under the
cardinality constraint: Given a ground set S, a monotone submodular function f : 2S → R and a
nonnegative integer k, maximize f(X) for all X ⊆ S subject to |X| ≤ k.

2

One natural greedy algorithm GREEDY is as follows: Initialize X0 = ∅, and at each step t, we add
the element it ∈ S \Xt−1 that achieves the largest marginal gain, that is,

it = arg max
i∈S\Xt−1

f(Xt−1 ∪ {i})− f(Xt−1),

and let Xt = Xt−1 ∪ {it}, until |Xt| = k or no such it exists.

We show that the above greedy algorithm achieves an approximation ratio of 1− 1/e.

Lemma 28.2.1 GREEDY achieves an approximation ratio of 1− 1/e.

Proof:

Let X∗ = {v1, v2, . . . , vm} be the optimal solution for this problem with m ≤ k. Denote X∗j = {vi :
i ≤ j} and X∗0 = ∅. For any step t, since f is monotone, we have that

f(X∗)− f(Xt−1) ≤ f(Xt−1 ∪X∗)− f(Xt−1)

=
∑

1≤j≤m
f(Xt−1 ∪X∗j)− f(Xt−1 ∪X∗j−1)

=
∑

1≤j≤m
f(Xt−1 ∪X∗j−1 ∪ {vj})− f(Xt−1 ∪X∗j−1)

≤
∑

1≤j≤m
f(Xt−1 ∪ {vj})− f(Xt−1)

≤
∑

1≤j≤m
f(Xt−1 ∪ {it})− f(Xt−1)

=
∑

1≤j≤m
f(Xt)− f(Xt−1)

≤ k(f(Xt)− f(Xt−1)),

where the first inequality holds due to monotonicity; the second inequality holds by submodularity;
and the third inequality holds since our algorithm maximizes the marginal gain at step t.

Rearranging the inequality and letting t = k would yield

f(X∗)− f(Xk) ≤ (1− 1/k)(f(X∗)− f(Xk−1))

≤ (1− 1/k)k(f(X∗)− f(∅)) ≤ (1− 1/k)kf(X∗) ≤ e−1f(X∗),

which is equivalent to
f(Xk) ≥ (1− 1/e)f(X∗).

28.3 Matroids

The notion of a matroid is introduced in the previous lectures. It essentially extends the notion of
linear independence in linear algebra into combinatorial structures.

3

Definition 28.3.1 A matroid M is a pair M = (N, I) where N is a ground set of element and
I ⊆ 2N satisfying that

1. ∅ ∈ I;

2. If A ∈ I and B ⊆ A, then B ⊆ I; and

3. If A,B ∈ I and |B| > |A|, then there exists an element x ∈ B \A such that A ∪ {x} ∈ I.

Definition 28.3.2 Any maximal independent set is called the basis of the matroid.

A useful property that will be used later in this lecture is the bases exchange property, which
states the following

Let A,B ∈ B where A 6= B, then for any element a ∈ A \B there exists an element b ∈ B \A such
that (A \ {a})∪{b} ∈ B. This essentially means that if in a basis we exchange an element with one
from another basis, the new set is still a basis, and therefore no basis can be a subset of another.

We denote by B the set of bases of the matroid. The size of the maximum independent set for
any set N is called the rank of the set N . In the following sections we will see an algorithm that
maximizes a submodular function over a matroid constraint. To do this, we also define the matroid
polytope, which is just the convex hull of the indicator vectors if the independent sets of M. An
equivalent, maybe more intuitive characterization of this polytope is the following (this is due to
Edmonds [3]), which uses the rank function.

P(M) = {x ∈ Rn :
∑
i∈N

xi ≤ r(N), ∀N ⊆ S}

We denote P(M) by just P to simplify the notation. In what follows we consider the problem
of maximizing a monotone submodular over matroid constraints, which means our feasible vectors
are inside the matroid polytope. The solution to this, surprisingly however, utilizes tools in the
continuous setting.

28.4 Extensions of Submodular functions

Until now we tried to directly maximize the discrete function. However, similarly to Linear Pro-
gramming relaxations, it may make sense to relax the problem, solve the continuous one, and
then round back to an integral solution for the initial problem. Contrary to linear programming
relaxations, it is not enough to just allow for the input to take fractional values, but we need to
extend the function f to these new values. There are many different relaxations or extensions of
this function to continuous values; the convex/concave extensions, the Lovasz extension, each with
different applications to different types of problems. The one we are going to define here is called
the multilinear extension.

28.4.1 The Multilinear Extension

This extension which will be used in the algorithm discussed in the next section, where we maximize
a monotone submodular function over a matroid constraint. Initially note that a function F :

4

[0, 1]S → R is called multilinear if it is separately linear in every variable ; i.e. if we keep x−i
constant, then F is linear on xi, for every i. The extension we define will “agree” with f on the
integral points, but will extend f to the continuous [0, 1]S .

Definition 28.4.1 (Multilinear Basis function) Let A ⊆ S and x ∈ [0, 1]S. The Multilinear
Basis function is defined as

MA(x) =
∏
i∈A

xi
∏
i 6∈A

(1− xi)

Observe that if we think of xi as the probability that x ∈ A, the multilinear basis function is exactly
the probability we find A.

Definition 28.4.2 (Multilinear Extension) Let f : 2S → R. The multilinear extension of f
denoted by F : [0, 1]S → R is defined as

F (x) =
∑
A⊆S

f(A)MA(x)

Using the previous observation, F (x) can be thought of as the expected value of f when each value
i is drawn with probability xi. This leads to the following equivalent definition of the multilinear
extension

Definition 28.4.3 (Multilinear Extension v2) Let f : 2S → R and for x ∈ [0, 1]S denote
by Di(x) the distribution on 2S that picks each v ∈ X independently with probability x(v) The
multilinear extension of f denoted by F : [0, 1]S → R is defined as the expected value of f over
draws from Di(x)

F (x) =
∑
A⊆S

EA∼Di(x) [f(A)]

It is worth noting that the distribution we use to define F is independent in every way of the
function f .

28.4.2 Useful Properties

In this section we present some important properties of the multilinear relaxation presented above,
that will be useful in the proofs of the next section. The first property, formally presented in
Lemma 28.4.4 is monotonicity. The second one, presented in Lemma 28.4.5 is up-concavity, meaning
that the function is concave in every direction.

Lemma 28.4.4 Let f : 2S → R be a monotone submodular function, then its multilinear extension
F : [0, 1]S → R is also monotone in every direction d ≥ 0

Proof: We will first show that ∂F
∂xj
≥ 0 for every coordinate j. Denote by Aj = {N ⊆ S : j ∈ N},

and A′j = {N ⊆ S : j 6∈ N} be the sets that contain the element j and not contain it respectively,

5

out of all the possible subsets of the ground set. Then the partial derivative is

∂F

∂xj
=

∂

∂xj

 ∑
N∈Aj

f(N)xj
∏

i∈N\{j}

xi
∏
i 6∈N

(1− xj) +
∑
N∈A′j

f(N)(1− xj)
∏
i∈N

xi
∏

i 6∈N\{j}

(1− xj)


=

 ∑
N∈Aj

f(N)
∏

i∈N\{j}

xi
∏
i 6∈N

(1− xj)−
∑
N∈A′j

f(N)
∏
i∈N

xi
∏

i 6∈N\{j}

(1− xj)

 ≥ 0

where the last inequality holds since for every N ∈ Aj there is a N ′ ∈ A′j such that N = N ′∪{j}, the
sets differ at exactly one element, namely the j’th element, and since N ′ ⊆ N from the monotonicity
of f we get that f(N ′) ≤ f(N).

Let φ(λ) = F (x+λd) for some positive direction d ≥ 0, be the function F in this line of direction.
Using the chain rule, and denoting by ui the i’th argument of the function F we have

φ′(λ) =
∑
i∈S

∂F

∂ui

∂ui
∂λ

=
∑
i∈S

di
∂F

∂ui
≥ 0

proving that φ is monotone.

Lemma 28.4.5 Let f : 2S → R be a monotone submodular function, then its multilinear extension
F : [0, 1]S → R also concave in every direction d ≥ 0.

Proof: First we show that ∂2F/∂xi∂xj ≤ 0 for all i, j ∈ S. To simplify the notation, denote by

M j,u
N (x) =

∏
i∈N\{j,u} xi

∏
i∈N\{j,u}(1 − xi) . Following the proof for ∂F/∂xj , we end up with the

following expression

∂F

∂xixj
=

∑
N∈Ai∩Aj

f(N)M j,i
N (x)−

∑
N∈Ai∩A′j

f(N)M j,i
N (x)−

∑
N∈A′i∩Aj

f(N)M j,i
N (x)

+
∑

N∈A′i∩A′j

f(N)M j,i
N (x) ≤ 0

where for the last inequality we use the same argument as before, but instead of using the mono-
tonicity of f we use the submodularity from Definition 28.1.1 where we set A = Ai ∩ Aj and
B = A′i ∩A′j . Now, using the expression for φ′(λ) we calculated in the previous lemma we now find

φ′′(λ) =
∑
i∈S

di
∑
j∈S

dj
∂2F

∂ui∂uj
≤ 0

which proves the lemma.

6

Lemma 28.4.6 Let f : 2S → R be a monotone submodular function, then its multilinear extension
F : [0, 1]S → R also concave in every direction ei − ej for any i, j ∈ S.

Proof: We define φ(λ) = F (x + λ(ei − ej)), and using the chain rule we get that

φ′′(λ) =
∂2F

∂x2i
− 2

∂2F

∂xi∂xj
+
∂2F

∂x2j
≤ 0

which follows similarly to the previous lemma.

28.4.3 Evaluation

It is important to note at this point, that evaluating the multilinear extension exactly requires
that we ask the value of f exponential number of times. In order to avoid this, we evaluate F (x)
approximately using a number or randomly sampled sets, to get as close as we need to the real
value of F (x) with high probability.

Specifically, let R1, R2, . . . Rt be random sets Ri ⊆ S where every i ∈ S appears in Rj independently
with probability xi. Then we can estimate the value of F (x) using the estimator 1/t

∑t
i=1 f(Ri),

and be close to the real F (x) with high probability.

Lemma 28.4.7 ∣∣∣∣∣1t
t∑
i=1

f(Ri)− F (x)

∣∣∣∣∣ ≤ εmax
S
|f(S)|

with probability at least 1− exp(tε2/2).

Proof: Denote by M = maxS |f(S)| and by Xi = f(Ri) ∈ [−M,M] the random variables that
correspond to the value of f for the randomly sampled sets Ri. Denote by X = 1/t

∑t
i=1Xi the

estimated mean of the variables. Using the Hoeffding inequality we have that

Pr[|X − F (x)| ≥ εM] ≤ 2 exp

(
−2t2ε2M2

4tM2

)
= 2 exp

(
− tε

2

2

)

28.5 Continuous Submodular Maximization

Now that we have defined the extension and describes its properties, we describe the algorithm
to optimize it. Denote by I the set of feasible subsets of 2S ; this set is extended to a polytope
P in [0, 1]S , that contains the characteristic vectors of the sets in I. The initial problem and the
multilinear relaxation are shown in Table 1.

maximize f(A) maximize F (x)
subject to A ∈ I ⊆ 2S subject to x ∈ P ⊆ [0, 1]S

Table 1: Initial problem (left) and relaxation (right)

7

The continuous version of submodular maximization is actually very similar to the greedy discrete
algorithm that is described before, and it was first described by Vondrak in [6]. In this continuous
case, what the algorithm does is to find the direction v, in which the derivative is larger. Since the
function F is multilinear, it derivative in every direction will just be the difference between any
two values of the function (in this direction) divided by their difference. This algorithm, formally
described in 1, also gives a 1− 1/e-approximation guarantee as shown in Theorem 28.5.1.

Algorithm 1: Continuous Greedy Algorithm

Data: Polytope P, multilinear extension F
1 x(0) = 0
2 foreach t ∈ [0, 1] do
3 vmax(x(t)) = argmaxv∈P〈v,∇F (x)〉
4 Increase x(t) at rate vmax(x(t))

5 end
6 return x(1)

The main theorem shows that we loose the 1− 1/e factor when we try to optimize the continuous
F (x) (Theorem 28.5.1). After this, we can round this continuous solution to a discrete one without
loosing anything in terms of approximation, as shown in Theorem 28.5.3.

Theorem 28.5.1 Let f : 2S → R+ be any mononone submodular function, let F : [0, 1]S → R be
its multilinear extension, let P ⊆ [0, 1]S be a polytope, algorithm 1 finds a point x(1) ∈ P such that

F (x(1)) ≥ (1− 1/e)OPT

Before proving Theorem 28.5.1 we show that there exists a direction of “movement” that makes
substantial progress. This is formalized in the following lemma. Note also that the solution the
algorithm returns is a feasible point inside the polytope. To see this, think that the value x(1) is
essentially the sum of all the small “steps” we took in the direction of the derivative, so x(1) =∫ 1
0 vmax(x(t))dt. Since the algorithm stops at time 1, and each times moves in the direction of an

independent set, this is a convex combination of points inside P. Having said this, we proceed to
prove the lemma and the theorem.

Lemma 28.5.2 Let f : 2S → R+ be any monotone submodular function, let F : [0, 1]S → R
be its multilinear extension, let P ⊆ [0, 1]S be a polytope, x ∈ [0, 1]S be an arbitrary point and
OPT = maxy∈P{F (y)}. Then, there exists a feasible point v ∈ P such that

〈v,∇F (x)〉 ≥ OPT− F (x)

Proof:

Denote by d the direction d = (v − x) ∨ 0, where ∨ is the pointwise maximum of the two vectors
i.e. (a ∨ b)i = max{ai, bi}. Note that the direction vector d satisfies

v ≥ d ≥ 0 (28.5.1)

8

Let φ(λ) be the objective function along the direction d: φ(λ) = F (x + λd). From the properties
of F we know that it is concave in every direction, which means that φ(λ) is also concave. From
this fact we get that

φ(1)− φ(0) ≤ φ′(0) (28.5.2)

using the equation above, and substituting the values of φ we get

F (x + d)− F (x) ≤ 〈d,∇F (x)〉 ≤ 〈v,∇F (x)〉

where for the last inequality we used inequality (28.5.1). Observe now that x+d ≥ x+((v−x)∨0) ≥
v (this is immediate from the definition of ∨). Since F is non-decreasing in every direction, we get
that F (x + d) ≥ F (v). Now we choose v such that F (v) = OPT, to get the desired result

〈v,∇F (x)〉 ≥ OPT− F (x)

Proof of Theorem 28.5.1:

Initially, we apply the chain rule on F (x(t)) to obtain a relation with the directional derivative
〈v,∇F (x)〉 we had in the previous lemma, to reach a differential equation.

dF (x(t))

dt
=
∑
i∈S

dx(t)

dt
·DiF =

〈
dx(t)

dt
,∇F (x)

〉
= 〈vmax,∇F (x)〉 ≥ 〈v,∇F (x)〉 (28.5.3)

where in the last equality we used the definition of dx(t)/dt and in the last inequality the fact that
we choose vmax as the maximum over every v ∈ P. By using Lemma 28.5.2 and inequality (28.5.3)
we get

dF (x(t))

dt
+ F (x(t)) ≥ OPT

in order to solve this differential equation we multiply everywhere by et, and using the monotonicity
of the integral we get

etF (x(t)) ≥
t∫

0

eyOPTdy = (et − 1)OPT

This gives us F (x(t)) ≥ (1− e−t)OPT, which for the time t = 1 yields the desired result

F (x(t)) ≥ (1− 1/e)OPT

Note that in order to implement this continuous algorithm we need to discretize the process in the
following way: we fix an increment δ and run the algorithm for N steps each time incrementing by
x(t+ δ) = x(t) + δvmax.

9

Now that we have found a solution x0 ∈ [0, 1]S we need to use this to find a discrete solution
xd ∈ 2S to our initial submodular maximization problem; this is formalized in Theorem 28.5.3.
The rounding presented here is swap rounding and was first introduced in [2].

Theorem 28.5.3 Let f : 2S → R+ be a submodular function, let F : [0, 1]S → R be its multilinear
extension, a matroid M = (N, I) and a point x0 ∈ P(M) there is an algorithm that outputs an
independent set S ∈ I such that f(S) ≥ F (x0).

Proof: Since the starting point x(1) that is returned by the algorithm is inside the matroid
polytope, it can be written as a convex combination of the bases vectors χBi where Bi is the basis
i. Therefore x(1) =

∑
i βiχBi such that

∑
i βi = 1 and bi ≥ 0 for every i.

We round the solution in n − 1 phases, every time merging two bases, using Algorithm 2. This
algorithm essentially takes two bases and using the bases exchange property, defined in section 28.3,
many times iteratively, manages to make the bases the same.

We show that in every step of this algorithm, the expected value for the new vector x′ is at
least the old value by exploiting the fact that F is convex in the direction of ei − ej . Denote by
Y =

∑
i 6∈{1,2} βiχi be the sum of the bases that do not participate in the algorithm. From the

definition of the algorithm we have that

Ex′∼Alg
[
F (x′)

]
=

β1
β1 + β2

F (β1χ1 + β2(χ2 + ei − ej) + Y) +
β2

β1 + β2
F (β2χ2 + β1(χ1 + ej − ei) + Y)

=
β1

β1 + β2
F (x + β2(ei − ej)) +

β2
β1 + β2

F (x + β1(ej − ei) + Y)

≥ F
(

β1
β1 + β2

(x + β2(ei − ej)) +
β2

β1 + β2
(x− β1(ei − ej))

)
= F (x)

where the inequality is from the convexity of F in the direction ei − ej .
Algorithm 2: Merge Bases

Input: β1, β2, Bases B1, B2

Output: Base B
1 while B1 6= B2 do
2 Find i ∈ B1 and then find j ∈ B2 such that (B1 \ {i}) ∪ {j} ∈ I and

(B2 \ {j}) ∪ {i}) ∈ I
3 With probability β1

β1+β2
do B2 = B2 \ {j} ∪ {i}

4 Else B1 = B1 \ {i} ∪ {j}
5 end
6 return B1

One alternative rounding technique, similar to the one presented before is pipage rounding, first
introduced in [1].

10

Pipage Rounding This technique exploits the fact that F (x) is convex in every direction ei−ej ,
to move from a fractional to an integral point while achieving two things: not decreasing the value
of F and moving closer to an integer vector x. More specifically, since we know that the function
F (x) is convex in every direction, the idea is to find a direction d such that if we move either
towards αd or towards −βd (for some α, β > 0) the new vector x′ will have strictly more integer
coordinates, and the value will not be decreased. Since F is convex in this direction, in one of
the two directions F should not decrease. Figure 28.5.1 demonstrates this idea pictorially. This is
essentially the deterministic version of the rounding presented before.

x x + αd

x− βd

Figure 28.5.1: Rounding in direction d

Another alternative technique for rounding, that is also worth mentioning is contention resolution
schemes, which applies to any downward-closed body P, and not necessarily a matroid polytope,
and was first introduced by Chekuri et al. in [7].

References

[1] Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004.

[2] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In 51th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
575–584, 2010.

[3] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Optimization - Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th International
Workshop, Aussois, France, March 5-9, 2001, Revised Papers, pages 11–26, 2001.

[4] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[5] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical
models. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence,
UAI’05, pages 324–331, Arlington, Virginia, United States, 2005. AUAI Press.

11

[6] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008.

[7] Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
783–792, 2011.

12

	Submodular functions
	Maximizing submodularity under cardinality constraints
	Matroids
	Extensions of Submodular functions
	The Multilinear Extension
	Useful Properties
	Evaluation

	Continuous Submodular Maximization

