CS880: Approximation and Online Algorithms Scribe: Taylor Kemp, Mikhail Nedbai

Lecture 26: Matroid Formulation of Secretary Problem Date: Nov. 22 2019

26.1 Introduction to Matroids

A matroid is an extension of linear independence to general sets. The following is a definition for
Matroids that will be used throughout the rest of this document.

Definition 26.1.1 We say a tuple M = (E,I) is a Matroid if it satisfies the following statements

o eI
o VS’ C S C FE with S €I, we also have S’ € T
o if A, B € I with |A| > |B|, then 3x € A\B with {BUx} €[

We now provide a couple examples of Matroids to better understand how they capture and extend
linear independence.

Example: Let us first consider the case of linear vectors. Let M = (E,I) where E is the
set of vectors in R™ and [is the set of sets of linear vectors vy, vo, - - - v 8.t. vy, v2, - - - v are linearly
independent. We will now show that the following conditions are met. () € I by definition of linear
independence. Let us consider a set vy, ve,-- v, in F with vy,---v; € I, then we also have any
subset of these vectors also in I. Lastly, if we consider two sets of vectors v, - - - v denoted A and
Y1, - - Ym denoted B, then if m < k and A, B € I, if we look at A, then as the rank of A is larger
than the rank of B, there must be some element x in A that is independent from every element in
B, hence, BUx € I. As a result we have that the set of vectors in R™ under I forms a Matroid. m

26.2 Secretary Problem and Matroid Formulation

We consider the secretary problem where we have a set of candidates randomly ordered x1, x2, - - - xy,
with unknown corresponding values vy, vo, - - - v,. At step ¢ we must make a snap decision to either
hire or not hire candidate z;. If we do not hire candidate x; we cannot go back at a later step to
hire that candidate. The goal is then to hire the candidate with the highest value v;. One such
algorithm we can consider is a thresholding algorithm where we observe the first half of candidates,
then determine a threshold of MAT 12Vt Then in the second half of candidates we hire the first
candidate that exceeds this threshold. We note that with probability % the second largest value is
in the sample and the largest value is not in the sample, hence E[ALG] > %Opt. This implies a
4—approximation in expectation to this problem, and also forms a motivation for the algorithm we
will use for the more general matroid domain.

We will now consider the more general Matroid formulation of the secretary problem. In this case
we have an independent set Z and a universe 2. We again observe elements x1,xo, - -z, with

corresponding values vy, vo, - - - v,. Now however, instead of only being able to hire one candidate,
we can hire as many candidates as long as the set of hired candidates B € Z. We will assume that
the rank of the universe is k. The following result is due to [1]

26.3 Logarithmically Competitive Algorithm for Matroid Domains

Algorithm 1 Threshold Price Algorithm for Matroid Domains

Observe s = [%], and denote this sample S C 2 where {2 is the universe.

Let Ix = argmax;cg(w(l)) denote the element observed of maximum weight.
Pick j € {0,1,2,---[log(k)]} uniformly at random.
Let t = wélj*) denote the threshold.
Initialize B to be an empty set.
for alliin {s+1,s+2,---n} do

if w(l;) >t and [; U B is an independent set then

B =DBU

return B

We will now show that the above threshold algorithm obtains a 32log(k)—competitive ratio. Let
us consider B* = {z1,-- -z} with values vy, - v as the optimal solution. Let us order this set
such that v; > v;11Vi We will now consider bounding a subset of the overall value of the optimal
set B*. This will prove important in providing a bound on the value of the set B

Claim 26.3.1 Either vy > 4+ or 3¢ < k s.t. vg41 < 4

Proof: Since v; is monotonically decreasing, the above claim follows. [|
Claim 26.3.2 >0 v; > 58 o,

Proof: If ¢ = k then we are done. Let us assume ¢ < k. Then we have the following relationship

k q k

1 1
521;2- — 5(2 vit Y) (26.3.1)
i=1 i=1 i=q+1
1 q k
< 5(Z v; + Z Vgi1) (26.3.2)
=1 1=q+1
1 < b v
1
< i(Zvi—k Z) (26.3.3)
=1 i=q+1
1 q
< 2(; v; + 1) (26.3.4)
1 q q
<52 Z;ui) = z;v (26.3.5)

]
We will now look at the number of elements at certain values in the set B and B*. Let us consider

A C Q, and denote n;(A) = |{j : vj; € A,v; > v;}|, and m;(A) = |{j : v; € A,2v; > v;}]|. We will
now take a closer look at the value of B*.

Claim 26.3.3 Y7 | v; = vyng(Bx*) + 2;1:—11 (vi — vig1)ni(Bx).

Proof:

5 . .

4 | |
¢ 0 |
= (v1 — vg) - ny(Bx*)
>

2 |

(vg — v3) - no(Bx)
1 [
Vs - 115(3*)
0 : : :
1 2 3 4 5
i

This illustrative proof shows that Bx is equal to the sum of each cross sectional area eg (v; —
vi4+1)ni(B%). Summing over all i we obtain the above claim. []

This gave us a way of looking at the value of B*, we will now perform a similar computation on
showing the value of B, and then show that in expectation this is at most a 32log(k) factor off.

Claim 26.3.4 value of B is at least &(vymq(B) + Z?;ll (vi — vig1)mi(B))

Proof: 1In 26.3.1, we can consider the value the sum contributes for the i** element of B*. Let
us first look at the index with half of v;,v;41 above and below the it" value of B respectively. The
amount of value lost for this case is the i*" value of B minus %(vj —vj4+1) . Considering all values vy,
k > j, we have that the sum of (v —vg41) plus 5(vk —vg41) is equal to the i value of B. Looking
at all values of B, we have that the value of B is at least 5 (vym;(B) + S (v — w4 1)m(B)). ™

Claim 26.3.5 E[m;(B)] > gﬁf(kg

Proof: First let us consider the case where ¢ = 1. Then w.p.%, the element 2o € S C U and
x1 ¢ S. If this is the case then with probability at least % we choose x5 for our threshold, and
w.p. log%k we choose our threshold to be vy or the second largest weight. From this we have the
following relationship as if the second largest weight is the threshold and the largest value is yet
unpicked then we are guaranteed to pick the largest value.
1 (B
> _ n(Bx) (26.3.6)
4log(k) 4log(k)
Now we consider the more general case where ¢ > 1. We note that n;(B*) = i by construction
of the ordering on Bx. We then consider the event E that x; is in the observed set, and that

E[m1(B)]

Figure 26.3.1: Area of B vs %B*

57 .
47 |
B*
8] 3 |
3
E:
2 3B :
1, B
0 1
1 2 3 4 5

J* = argMaX;..(x)<2w(z;) % be the smallest j such that our threshold does not exclude any

elements greater than or equal to w(x;)27. We note that this event E must be possible do to the
1

ordering assumption on Bx, furthermore, the probability of such an event is Nog(h) If we consider

wéfj), we have that in expectation

at least % > i' of these elements are not in the observed set S when we condition on the event E.
From this we have the following relationship.

that there are at least ¢ elements {z1, - z;} at least the value of

i—1 _ i ni(Bx)
i > > - = . .
Elmi(B)|E] 2 —— 2 ; 1 (26.3.7)
But this also implies that the following also holds.
E[m;(B)] > E[m;(B)|E] Pr[E] (26.3.8)
n;(Bx) 1 n;(Bx)
> . = 26.3.
-4 2log(k) 8log(k) (26.3.9)

q .
As a result we have that E[value of B] > %%fg%kv)l > Végl;leo;(fk])g* As a result we have that this

threshold algorithm provides a 32log(k)—competitive ratio. [|

26.4 Submodular Secretary problem

We now consider the version of the Secretary problem on a matroid. Given the set of elements
Q, we consider a matroid M(£,Z) of rank k. The solution S to the problem must be in Z, and
the objective is to maximize some submodular f : 22 — R. Formally we can define submodular
functions with

F(A)+ f(B) = f(AUB)+ f(ANB) VA,BCQ

A more intuitive equivalent definition of a submodular function can be provided through the
marginal value. Let fs(A) = f(SUA) — f(S),A, S C 2% Then for A such that A = {e} the
value of fg(A) is the marginal value of f at S. From the definition of submodularity above it is
easy to see that for a submodular f, and A, B C 2 such that |B| > |A],

fa{e}) > fe({e}) VeeQ

This property of submodular f can be thought of as decreasing marginal value, that is, the addition
of an element to a large set does not increase it value by as much, as it would if it were added
to a smaller set. Submodularity of f will allow us to guarantee a good result in this proof by
showing that an algorithm that collects enough elements with high marginal weights does not
suffer from not including more elements with lower weights too much. Let w; = maxc.cq f({e}),
and let e; = argmax,cq, f({e}). Additionally let S + ¢, S € 2, ¢ € Q denote S U {e}.

The following proof is due to [2], section 4.3. At a high level, we proceed in three steps. We fist
show that there exists an algorithm that can collect an independent set of high value, relative to
a given threshold 7, over the entire universe 2. We then show a way to properly choose a value
for 7, such that the algoritm can accumulate a value close to the optimal. Finally, we show how
translate the algorithm that collects an independent set over the entire universe to the Secretary
setting.

Definition 26.4.1 Threshold Algorithm

Given a threshold T, initialize S1, So < 0. Traverse 2 in an arbitrary order. For each element e,
if f(S1+e€) >er and (S1+e€) €Z, add e to S1. Otherwise if f(So+e) > er and (Sa+e) € Z, add
e to Sy. Otherwise discard e. Qutput S1 or Sz uniformly at random.

Throughout this proof let C* be the optimal set with f(C*) = OPT. Order the elements of C*
based on their marginal values, or otherwise f(S + e) — f(5),e € Q,5 € 22. Given 7 > 0, let
C* C C* denote the subset of the optimal solution, where each element added a marginal cost of
at least 7 when it was added in this order. We first proove a mathematical lemma that will help
us along the way. As in [2], special case of claim 2.7 in [3].

Lemma 26.4.2 Given sets C, S C U, let C' =C'\ Sy, and S; CU\ 5.

Then f(S1UC)+ f(S1NC)+ f(S2ul) > f(C).

Proof:

Observe that by submodularity of f:

f(S1UC) + f(S2uC)
f(S1UC) + f(S2u)

> f(S1UCUSUC) + f((S1UC) N (Sau)
> f(S1U S UC) + f(C)
Similarly by submodularity of f:
fS1NC)+ £(C) = f(C) + f(0)
Putting the two inequalities together yields:

f(S1NC)+ f(C)+ f(S1UC) + f(S2UC")

> f(O)+ f(0) + f(S1US2UC) + f(C)
f(S1UC)+ f(S1NC)+ f(S;uC) >

f
f(C)

]
We now proceed to show that Threshold algorithm performs well.

Lemma 26.4.3 Fore= %, the set produced by the algorithm has the expected value of at least T'%'
1ozl
4

marginal cost no less than %T, we get a value of at least

or |Sa| > %. Then since our algorithm only adds elements of
ull@4
20

Otherwise, we can show that the marginal value of elements in S; and Ss is large enough, due
to their small size and the submodularity of f, and the addition of elements from C7} would not
contribute much.

Lemma 26.4.4 If 51| < 1% and |So] < 1%, then

Proof: Suppose |S1| >

|C7]
*

JACC : Az S

JAUS € Z,AUS, €T

Proof: Let

K :C:ﬂsl , KQZC:QSQ

M, =5\C;, My=5\C;

B=CI\$1\ S, n=|C
Observe that B U K is independant by the hereditary property. We know that |M;| < %. By
the exchange property, there exists some Fy : [Ey| < % — |Ky, such that B\ Ey UK UM; € Z.

Similarly for So, 35 : [Ea| <% —|K3|, and B\ Eo UKyUM; € Z. Thus if welet A = B\ E \ Eo,
then

n n
|A| > |B| — |E1| — [E2| > (n — |K1| — [K2|) — (Z —|K1]) — (Z — | Ks|)

n

2

We claim that f(S1) > f(S1UA) — f(A)er. Consider e € A. Since S; U A € Z, e was not added to
S1 not because it would violate independance, but because the marginal value of its’ addition was
less than er. Therefore

F(S1UA) = f(S1) = f5,(A) <Y fs,({e}) < |[Aler

ecA

By the same argument, f(S2) > f(S2UA) — f(A)er. Furthermore note that since no element in A
was picked, f(S1NA) = f(SaNA) = f(0) =0. Then applying lemma 0.2, we obtain

F(S1) + f(S9) > f(STUA) + f(Sa UA) + f(S1 NA) —2er|A] > f(A) — 2e7|A|

Since every element of C* had a value of at least 7 when added, and A C C7, then f(A) > |A|r.
This with the result above implies
|C7]

F(51) + f(S2) 2 [Al7(1 — 2€) 2 7(1 = 2¢) =~

Thus since € = %, the claim is proven. [|
We will now show, that an excpected value of a solution that only considers elements above a
particular threshold will not be too much smaller than the optimal solution, which will allow us to
derive the compretitve ratio of Threshold.

Lemma 26.4.5 ZQHOg (2k)]C’* | > f(C) _ OET

Proof: Consider a greedy ordering of C*, e1,ea,... e let wj = fey ey e;({€;}). Consider

Soo = Y 0 |Chy |5+, Note that each term in this summation is an upper bound on a cost of C%,
2t 27,
for a given i. For each ej € C%, the contribution of e; to Sy is at least %2. To see why, suppose

that for some 7,7 + 1, 27;“+1 < wj < G} In this case the element will fall mto C’;‘i +1, and thus it will
contribute the value of 57y > % to the summation. Thus, So > Z;:l % On the other hand
f(cx) = ijl wj, which would imply that S, > 95T,

Now consider § = Z2+log(2k |C%, |5+ Since the rank of the matroid is &, we know that |C*| < k.
21

Consider all of the elements of summation covered by Sy, but not §. By the bound on the size of
C* there are at most k such elements. Furthermore since the last index in S is 2 + log(2k), each
element not in S contributes at the most

> w w
, 2! 4k
i=2+log(k)
Finally, surely OPT > wy. Thus Soo =S < k- 3 = ¢ < OPT Therefore since Soy > OPT ,then
S> OET, and thus the theorem is proved. [|

We can use the result above as an upper bound on performance of a thresholding algorithm. Then

given 7 = 71, Threshold achieves value of
E[Threshold|r = — .
[Threshold|r] |C% l|20 5
Suppose we choose 7 uniformly at random from {wl, S5, gt By lemmas 26.4.3,26.4.5 the

expected cost of the algorithm is then

2-+log(2k)

1 OoPT
Z |C et |2 =
= 0- 2 3 + log(2k) 80

1
3 + log(2k)

Which achieves the desired logarithmic compretitve ratio. We now show how to adapt the new
Threshold Algorithm to the Secretary setting.

Definition 26.4.6 Secretary Algorithm

Sample have of the elements in the request sequence, and let W = maxX.c,n/2) f({e}). Choose
i uniformly at random from {0,1,...,2 +log(2k)}. Run the Threshold algorithm with Y 57 as the
threshold.

Lemma 26.4.7 The Secretary algorithm is O(log(k)) compretitve on the Matroid domain in the
Secretary setting.

Proof: Consider two cases

Case 1

Suppose wy > %. Then with probability ©(log(k)) we choose i = 0. With probability ”7/2 : :7121 >

i the second highest singleton weight element is in the first half, and the highest singleton weight

element is in the second half of the request sequence. Thus the expected value is at least wq, which
implies that E[Secretary| = O(log(n))

26.4.1 Case 2

Suppose wi < %. Then with high probability ¢ > 2. In this case with probability %, e1 will arrive
in the first half of the request sequence, and thus W = wy. For each e € C*\ {e;1}, with probability
at least %, e will end up in the second half of the request sequence. Thus since w; < %OPT7 the

value of the elements in the second half is at least OET in expectation:

1C|
1 OPT
E[Secretary] = Z S Wi > —
j=2
Therefore, using the result of lemma 3.3, we can conclude that we obtain the cost of Q(ngz;f)). []

References

[1] M. Babaioff, N. Immorlica, and R. Kleinberg, “Matroids, secretary problems, and online mech-
anisms,” in Proceedings of the Fighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’07, (Philadelphia, PA, USA), pp. 434-443, Society for Industrial and Applied
Mathematics, 2007.

[2] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar, “Constrained non-monotone submodular
maximization: Offline and secretary algorithms,” 2010.

[3] J.Lee, V. Mirrokni, V. Nagarjan, and M. Sviridenko, “Non-monotone submodular maximization
under matroid and knapsack constraints,” 2009.

