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10.1 Overview

• Cut Problems and their connections to metrics

• Minimum S-T Cut

• Multi-way Cut

• Multi Cut

10.2 Minimum s-t Cut

10.2.1 Problem Statement

In the minimum s-t cut problem we are given a graph G = (V,E) with edge costs ce as well as a
source node s ∈ V , and a sink node t ∈ V . The goal is then to find the minimum cost set of edges
that forms a cut C ⊂ G such that s and t lie on separate sides of the cut. e.g.

min
C

∑
e∈C

ce (10.2.1)

10.2.2 LP Formulations

let us define xe to be the indicator variable that edge e ∈ E lies in our cut C. Let us also define
P to be some choice of path in G from s to t. We can summarize the cut constraint as each path
from s to t must contain at least one edge cut. From this we can then solve for the minimum cut
using the following LP

min
∑
e

xece (10.2.2)

s.t.
∑
e∈P

xe ≥ 1∀P (10.2.3)

xe ≥ 0∀e ∈ E (10.2.4)

Alternatively, if we consider edge lengths xe, and denote dx(u, v) as the distance from u to v on
these lengths xe, we can obtain the following equivalent formulation as the distance dx(s, t) is just
the sum of edge lengths xe of the shortest path from s to t.
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min
∑
e

dx(e)ce

s.t. dx(s, t) ≥ 1

xe ≥ 0∀e ∈ E

Definition 10.2.1 We say a function d : S → R on some set S is a metric if it satisfies the
following:

• d(x, y) > 0∀x 6= y

• d(x, x) = 0

• d(x, y) ≤ d(x, z) + d(z, y)

From this definition and the previous formulation of the LP. We can reformulate the LP once again
as the following.

min
∑
e

dece

s.t. dx(s, t) ≥ 1

d is a metric

0

s v1 v2 v3 t

1

d(s, v2)

From 10.4.1 we can observe that choosing a cut is equivalent to choosing some radius r, and looking
at the set of edges that crosses the surface of the ball

Bd(s, r) = {v : d(s, b) ≤ r} (10.2.5)

Let us consider picking a random r ∼ U [0, 1].

Claim 10.2.2

exp c(δ(Bd(s, r))) ≤
∑
e

cexe
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Proof:

Pr[e ∈ δ(Bd(s, r))]
= Pr[d(s, u) ≤ r < d(s, v)]

= d(s, v)− d(s, u) ≤ xe
From this we can conclude the following

exp c(δ(Bd(s, r))) =
∑
e

cePr[e ∈ δ(Bd(s, r))]

≤
∑
e

cexe

This also implies that the LP has an integral solution.

10.3 Multiway Cut

10.3.1 Problem Statement

Similar to the minimum s-t cut problem, we are given a graph G = (V,E) with edge costs ce.
However, now we are given a set of k terminals t1, t2, · · · tk. The goal is then to find the minimum
cost cut F , s.t. ∀i, j ∈ [k], there is no path between ti, tj in the graph (V,E\F ).

t1 t2

t3

t4

t5

It is worth mentioning that we can obtain a 2−approximation for this problem by taking the min
cut to isolate each ti. This is because if we look at the optimal solution to the multiway cut
problem, each edge in the solution defines a boundary for at most two terminals, ti, tj . If we take
the boundary formed around ti in the multiway cut solution, the cost of this boundary must be
at least the cost of the min cut to isolate ti. Since this edge appears at most twice over all such
boundaries, we have that the cost of taking the min cut to isolate each ti is no greater than twice
the optimal solution to multiway cut.
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10.3.2 LP Formulation

We can formulate this similarly to the previous example, except now, we consider all distances
dx(ti, tj),∀i, j ∈ [k] instead of just the distance dx(s, t).

min
∑
e

cede

s.t. d is a metric

dx(ti, tj) ≥ 1 ∀i, j ∈ [k], i 6= j

Algorithm 1 Randomized Rounding Algorithm

1: for i∈ [k] do
2: pick r∈ U[0, 1

2 ]
3: let Fi = δ(B(ti, r))
4: end for
5: return ∪iFi

t1

t2

t3

t4

1
2

cut

Let us define the volume of a ball centered at terminal t with radius r as follows

V ol(B(t, r)) =
∑

(u,v):u∈B(t,r),v∈B(t,r),(u,v)∈E

cede +
∑

(u,v):u∈B(t,r),v /∈B(t,r),(u,v)∈E

cede
r − d(t, u)

d(t, v)− d(t, u)

This is just the volume of all edges contained completely within the ball as well as the volume of
the edges with u ∈ B(t, r) and v /∈ B(t, r) that lies within the ball.

Claim 10.3.1
∑

i Vol(ti,
1
2) ≤

∑
e cede

Proof: This follows from the fact that
∑

iVol(ti,
1
2) ≤ V ol(E) =

∑
e cede
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Claim 10.3.2 E[c(Fi)] ≤ 2V ol(ti,
1
2)∀i

Proof:

Pr[(u, v) ∈ Fi] = Pr[d(ti, u) ≤ r < d(ti, v)] (10.3.6)

=
d(ti, v)− d(ti, u)

1
2

≤ 2d(u, v) (10.3.7)

≤ 2de + 2de

1
2 − d(ti, u)

d(ti, v)d(ti, u)
(10.3.8)

Taking the expectation we obtain 10.3.2. Putting everything together now, we can write the
following in order to show the randomized rounding algorithm achieves a 2-approximation.∑

i

E[c(Fi)] ≤ 2
∑
i

V ol(ti,
1

2
) ≤ 2

∑
e

cede

It is worth mentioning that by constructing the k-1 largest of these cuts in order we are able to
tighten the analysis to a 2(1− 1

k )−approximation.

10.4 Multi Cut

10.4.1 Problem Statement

Let us consider a new problem on the graph G = (V,E) with edge weights ce, and k pairs (si, ti).
Our goal now is to find some F s.t. (V,E\F ) contains no si → ti paths ∀i ∈ [k]

t1 t2

s2

s1

t3

s3
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10.4.2 LP Formulation

Similar to the previous example, we can construct the following LP

min
∑
e

cede

d is a metric

d(si, ti) ≥ 1∀i ∈ [k]

Let us also consider adding a point mass at each terminal of V
k where V is the volume of the whole

graph. From this we would then compute the volume as

V ol(B(t, r)) =
V

k
+

∑
(u,v):u∈B(t,r),v∈B(t,r),(u,v)∈E

cede +
∑

(u,v):u∈B(t,r),v /∈B(t,r),(u,v)∈E

cede
r − d(t, u)

d(t, v)− d(t, u)

Claim 10.4.1 ∀i ∈ [k], ∃r ∈ [0, 12) s.t. c(δ(si, r)) ≤ αVol(si, r)

Let us also consider the following algorithm

1: for i∈ [k] do
2: pick ri satisfying claim 10.4.1 in (V,E\∪j<iFj)
3: let Fi = δ(B(ti, r))
4: end for
5: return ∪iFi

Proof: We will prove this by contradiction. Let us suppose ∀r ∈ [0, 12), c(δ(si, r)) > α Vol(si, r)
for some i. We will first consider the rate of change of volume of the sphere centered at terminal t.

d

dr
Vold(t, r) =

∑
(u,v)∈δ(t,r)

ce
de

d(t, v)− d(t, u)
≥ c(δ(t, r))

From this we can conclude the following given our assumption.

d

dr
V ol(si, r) ≥ c(δ(t, r)) > αV ol(si, r)

=⇒
∫ 1

2

0

dV ol(si, r)

V ol(si, r)
>

∫ 1
2

0
αdr (10.4.9)

=⇒ log(
2V
V
k

) > log(
V ol(si,

1
2)

V ol(si, 0)
) > α

1

2
(10.4.10)

=⇒ α < 2log(2k) (10.4.11)

Hence, we have that as k is just the number of terminal pairs we have, that we can choose α large
s.t. α ≥ 2log(2k) and our assumption is false. One corollary of this claim is that the provided
algorithm returns ∪iFi which is an α-approximation
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