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Lecture 10: Metric Embeddings, Multi-Cut Date: Oct. 9, 2019

10.1 Overview
e Cut Problems and their connections to metrics
e Minimum S-T Cut
e Multi-way Cut

e Multi Cut

10.2 Minimum s-t Cut

10.2.1 Problem Statement

In the minimum s-t cut problem we are given a graph G = (V, E) with edge costs c. as well as a
source node s € V', and a sink node t € V. The goal is then to find the minimum cost set of edges
that forms a cut C C G such that s and t lie on separate sides of the cut. e.g.
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10.2.2 LP Formulations

let us define z. to be the indicator variable that edge e € F lies in our cut C. Let us also define
P to be some choice of path in G from s to t. We can summarize the cut constraint as each path
from s to t must contain at least one edge cut. From this we can then solve for the minimum cut
using the following LP
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Alternatively, if we consider edge lengths z., and denote d;(u,v) as the distance from u to v on
these lengths x., we can obtain the following equivalent formulation as the distance d,(s,t) is just
the sum of edge lengths x. of the shortest path from s to t.
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s.t.dg(s,t) > 1
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Definition 10.2.1 We say a function d : S — R on some set S is a metric if it satisfies the
following:

o d(z,y) >0Wx#y
o d(z,x) =0

o d(z,y) <d(z,2) +d(z,y)

From this definition and the previous formulation of the LP. We can reformulate the LP once again
as the following.
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d is a metric
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From 10.4.1 we can observe that choosing a cut is equivalent to choosing some radius r, and looking
at the set of edges that crosses the surface of the ball

By(s,r) ={v:d(s,b) <r} (10.2.5)

Let us consider picking a random r ~ U|0, 1].

Claim 10.2.2

exp c(0(Bg(s,r))) < Zcexe
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Proof:
Prle € 6(By(s,r))]
= Pr[d(s,u) <r <d(s,v)]
=d(s,v) —d(s,u) <z,

From this we can conclude the following

expc(8(Bq(s, 1)) = Y _ cePrle € 6(Ba(s,r))]
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This also implies that the LP has an integral solution. [ |

10.3 Multiway Cut

10.3.1 Problem Statement

Similar to the minimum s-t cut problem, we are given a graph G = (V, E) with edge costs ce.
However, now we are given a set of k terminals 1, to, - - - t;. The goal is then to find the minimum
cost cut F, s.t. Vi, j € [k], there is no path between t;,t; in the graph (V, E\F).
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It is worth mentioning that we can obtain a 2—approximation for this problem by taking the min
cut to isolate each t;. This is because if we look at the optimal solution to the multiway cut
problem, each edge in the solution defines a boundary for at most two terminals, #;,¢;. If we take
the boundary formed around ?; in the multiway cut solution, the cost of this boundary must be
at least the cost of the min cut to isolate ¢;. Since this edge appears at most twice over all such
boundaries, we have that the cost of taking the min cut to isolate each t; is no greater than twice
the optimal solution to multiway cut.



10.3.2 LP Formulation

We can formulate this similarly to the previous example, except now, we consider all distances
dy(ti,t;),Vi,j € [k] instead of just the distance d(s,t).

min E Cele
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s.t. d is a metric

dy(tist;) > 1Vi,je[k],i#j

Algorithm 1 Randomized Rounding Algorithm
1. for i€ [k] do

2 pick re U[0, 3]

3: let F; = (5(3(152',7"))
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: end for
: return U; F;

Let us define the volume of a ball centered at terminal ¢ with radius r as follows
r—d(t,u)
l B t == ede ede—
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(u,w):ueB(t,r),veB(t,r),(u,v)EE (u,v)uweB(t,r),v¢B(t,r),(u,v)EE
This is just the volume of all edges contained completely within the ball as well as the volume of

the edges with u € B(t,r) and v ¢ B(t,r) that lies within the ball.

Claim 10.3.1 >, Vol(t;, 3) < 3, cede
Proof: This follows from the fact that >, Vol(t;,3) < Vol(E) =", cede ]



Claim 10.3.2 E[c(F;)] < 2Vol(t;, 3)Vi

Proof:
Pr[(u,v) € F;] = Prld(t;,u) <r < d(t;,v)] (10.3.6)
_ dtiv) - dtiu) 2d(u, v) (10.3.7)
2
L —dt
< 2d, + 2d,—2- (ti, w) (10.3.8)

“d(t;,v)d(t;, u)

Taking the expectation we obtain 10.3.2. Putting everything together now, we can write the
following in order to show the randomized rounding algorithm achieves a 2-approximation.
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It is worth mentioning that by constructing the k-1 largest of these cuts in order we are able to
tighten the analysis to a 2(1 — %)—approximation.

10.4 Multi Cut

10.4.1 Problem Statement

Let us consider a new problem on the graph G = (V, E) with edge weights c., and k pairs (s;, ;).
Our goal now is to find some F' s.t. (V, E\F) contains no s; — t; paths Vi € [k]




10.4.2 LP Formulation
Similar to the previous example, we can construct the following LP
min Z Cede
e
d is a metric
d(si,ti) > 1Vi € [k]

Let us also consider adding a point mass at each terminal of % where V is the volume of the whole
graph. From this we would then compute the volume as

Vol(B(t,r)) = % + Z Cele + Z Cede
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r—d(t,u)
d(t,v) —d(t,u)

Claim 10.4.1 Vi € [k], 3r € [0,3) s.t. c(6(s;,7)) < aVol(s;, )

Let us also consider the following algorithm

1: for i€ [k] do

2 pick 7; satisfying claim 10.4.1 in (V, E\U;<;F})
3: let F; = 5(3(752‘,’/“))

4: end for

5: return U; F;

Proof: We will prove this by contradiction. Let us suppose Vr € [0, 3), ¢(6(s;,7)) > a Vol(s;, r)
for some i. We will first consider the rate of change of volume of the sphere centered at terminal ¢.
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From this we can conclude the following given our assumption.

iVol(sl-,r) > c(6(t,r)) > aVol(s;,T)
1
2

dr
1
2 dVol(si,T)
3 d 10.4.9
/0 Vol(s;,r) >/0 o ( )
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log(—+ log(———-22 = 10.4.1
= log( % ) > Og(Vol(si,O)) > ag (10.4.10)
= a < 2log(2k) (10.4.11)

Hence, we have that as k is just the number of terminal pairs we have, that we can choose « large
s.t. a > 2log(2k) and our assumption is false. One corollary of this claim is that the provided
algorithm returns U; F; which is an a-approximation [ |



