
CS880: Approximation and Online Algorithms Scribe: Jeremy McMahan

Lecture 12: Tree Embeddings Date: 10/11/2019

12.1 Introduction

In this lecture, we discuss tree embeddings and how to use such embeddings to get good approxi-
mation algorithms. In particular, we want to take a given graph with a distance function and find a
tree and a distance function so that the distance function on the tree is very similar to the distance
function on the graph. This then allows us to use the tree as an easy to use approximation to the
graph in algorithms. The benefits to doing this are that many problems are much easier on trees,
so we can solve them on a tree approximation to G to get a good solution for G. In this lecture,
we will present a simple randomized procedure that gives a good tree embedding for any graph G.

To motivate this further, let’s consider a specific problem where the notion of a tree embedding
could be advantageous. Recall the Buy at Bulk network design problem, where we are given a
graph G = (V,E), costs ce on the edges, a concave buy at bulk function f , and k pairs of vertices
(si, ti). The goal is to find paths Pi from si to ti that minimize

∑
e cef(`e), where `e = |{i|e ∈ Pi}|.

The most crucial aspect of this problem is that the more you use an individual edge, the more you
save. Now, notice that if G is a tree, then the problem is trivial. Specifically, if G is a tree there
is a unique si to ti path for any i so there is nothing to solve! For graphs very close to trees the
situation is similar (which is illustrated by considering K3 with two unit weights and the other
weight being 2).

12.2 Preliminaries

A Metric can be represented by a set with a distance function over the elements of the set, (X, dX).
An (α, β)-distortion metric embedding from (X, dX) to (Y, dY ) is a map g : X → Y satisfying

∀u, v ∈ X, 1

α
dX(u, v) ≤ dY (g(u), g(v)) ≤ βdX(u, v)

The distortion of g is αβ. For tree embeddings, we always take α = 1 (an expanding embedding),
so we only specify the distortion as β.

Theorem: If there is an embedding from G into a tree with distortion at most α, then we can
obtain an α-approximation for Buy at Bulk Network Design Problem for G.

Proof:

Suppose cT is the tree metric with low-distortion and cG is the original graph metric. Then, by
definition,

∀u, v ∈ V, cG(u, v) ≤ cT (u, v) ≤ αcG(u, v)
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where we just need the rightmost inequality to hold for edges of G. If we have a path Pi∗ =
(ei1, ei2, ..., eik) that is an optimal solution to Buy at Bulk for the tree, then we can construct a
nearly optimal path in the original graph Qi = (Qi1, ...) where each Qij is a path connecting the
endpoints of the edge eij in the tree T . In other words, we shortcut these paths to get a path in
the original graph G, which is possible since cT (Qi`) ≥ cG(ei`). We then have cT (Qi) ≤ αcG(Pi∗).

12.3 Probabilistic Tree Embeddings

Note, if we only consider deterministic procedures for constructing tree embeddings, we will run
into trouble. Specifically, consider the cycle graph, Cn. The only way to embed it into a tree is by
removing one of its edges. The distance between the endpoints of the removed edge is then n− 1,
but originally they had distance 1. Thus, the distortion is at least n− 1, which is very bad. Thus,
it’s natural to consider using randomness in constructing tree embeddings.

A probabilistic tree embedding for metric (G = (V,E), cG) with distortion α is a distribution over
tree metrics, (VT , cT ), satisfying the following:

1. For any tree T in the support of the distribution, VT ⊇ V .

2. For any u, v ∈ V , for any tree T in the support of the distribution, cT (u, v) ≤ cG(u, v).

3. For any edge (u, v) in G, E[cT (u, v)] ≤ αcG(u, v).

Note, saying a property holds for any tree in the support is equivalent to saying it holds with
probability 1.

Theorem: For any metric (G, cG), there is a probabilistic tree embedding for (G, cG) with distor-
tion O(log n).

Idea: We present a randomized algorithm that produces such an embedding, which proves its
existence. First, make multiple cuts of G, so that each induced component has small diameter.
The partition of all the cut sets then become the children of the root, which is the total vertex set,
V . Each of the edges to the children of V are given length 2i−1, where i will be the height of the
tree and at each level down the tree we reduce the length further. In particular the second level will
have all lengths 2i−2 and so on. We then recursively subdivide each cut to make the corresponding
subtrees rooted at each child. If a cut is ever a single vertex, then we assume we propagate that
child down as the same single vertex so that the entire tree has all the leaves, each being a single
vertex of G, at the same level.

We want to make cuts having small diameter, so that we guarantee vertices that are close to each
other all have a close ancestor in the tree, whereas vertices very far apart will have a high ancestor
in the tree closer to the root. In particular, this ensures that the distances between vertices in the
tree will not be too much larger than those in the original graph.

Note, this strategy for computing the tree is called a hierarchical decomposition. The tree con-
structed is a hierarchically well separated tree (HST). It’s also an ultra metric, meaning that the
distance from the root is the same for all leaves.
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12.4 Low-Diameter Partitions

Now, we need a way to compute this sequence of cuts ensuring low-diameter pieces. To this end,
we define a low-diameter partition with parameter D > 0 to be a probabilistic partition of V into
sets S = {S1, ..., Sk} such that:

1. ∀i, diam(Si) ≤ D

2. ∀e ∈ E,Pr[S cuts edge e] ≤ ce/D

Note, the second property ensures that small edges are unlikely to be cut and so vertices that are
close to each other will likely be in the same set of the partition, which is exactly what we want.
We can use these partitions to get an O(log n)-approximation for multi-cut as well. Now, we prove
the theorem from the previous section by constructing low-diamater partitions.

Proof: We will use the use the random radius idea like we did with the multi-cut problem. The
algorithm takes the following steps:

1. Pick a uniformly random permutation π over the vertices, {1, ..., n}.

2. Pick a radius, r, uniformly from (D4 ,
D
2 )

3. For each i ∈ [n], define Si = B(π(i), r) \ ∪j<iSj .

The first property of low-diameter partitions follows immediately. For the second property, we
have that Pr[S cuts e] =

∑
w∈V Pr[ cut around w contains e]. This then equals

∑
w∈V Pr[e ∈

δ(B(w, r))]Pr[w is the first node in π to determine that e is cut |e ∈ δ(B(w, r))].

This first probability is exactly ce
|(D

4
,D
2
)| = ce

D
4

since this ball cuts e if exactly one of its endpoints was

within distance r from w, which is decided by the choice of r. The second probability is at most 1
i .

This is because for w to be the first vertex to determine e is cut, it must have been the first vertex
out of the first i in the permutation that crosses e, otherwise some other vertex decided its fate
earlier in our construction. Hence, since the first vertex to determine e’s fate is equally likely to be
any of the first i vertices in the permutation, the probability it was the last one, w, is 1

i . Hence,
the sum above is bounded above by

∑
w∈V

ce
D
4

1
i ≤

4ce
D log n. So in total, this procedure gives us a

low-diameter partition of V with parameter D
4 .

Now, we use these partitions as the children of the current root in each level of the recursion for
constructing the probabilistic tree embedding as described previously. Thus,

E[length of e in T ] ≤
∑

levels j

Pr[e is cut at level j]2j+1

=
∑

levels j

ce
2j
O(log n)2j+1

= O(log n)ce(# of levels)
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Note assuming that cG(u, v) ≥ 1∀u 6= v, the number of levels will be log ∆ where ∆ = diam(G).
Hence, this gives a probabilistic tree embedding with distortion O(log n log ∆)

We can do a more refined analysis to show that the distortion is in fact O(log n).

12.5 Next Lecture

We will discuss semi-definite programming techniques and apply them to several combinatorial
problems such as Max-Cut and Sparsest-Cut.
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