
CS880: Approximation and Online Algorithms Scribe: Jeremy

Lecture 13: Semidefinite Programming Date: 10/14/2019

13.1 Introduction

In this lecture we discuss the MaxCut problem and a general technique called Semidefinite pro-
gramming can used to tackle it. Semidefinite programming is a powerful variation of linear that
can be used to approximate very difficult problems.

13.2 MaxCut

Recall in the MaxCut problem, we are given a graph G = (V,E) and edge costs ce. Our goal is to
find a partition (S, V \ S) maximizing the cost of the cut, c(δ(S)). Simply flipping a coin for each
vertex to determine which side of the cut it will belong to yields a randomized 1

2 -approximation for
this problem.

A possible LP for MaxCut is the following:

max
∑
e

cede

subject to d is a metric
0 ≤ de ≤ 1

The idea is that we want distance 0 on edges that are not cut and distance 1 on edges that cross the
cut. Unfortunately, the constant vector having 1 as all entries is a trivial solution to this program
with large value. Thus, we cannot necessarily infer any information on the largest cut from this
LP’s solution. So, we need a different program formulation.

The next strategy we could take is to add more decision variables that have to give us information
on the cut. Consider the following ILP where we let vi ∈ {−1, 1} denote the which side of the cut
that vertex i is on, so vi = −1 indicates i ∈ V \ S and vi = 1 indicates that i ∈ S:

max
∑
e

cede

subject to if vi = vj , then dij = 0 ∀(i, j) ∈ E
if vi 6= vj , then dij = 1 ∀(i, j) ∈ E
vi ∈ {−1, 1} ∀i ∈ V

Note, we can make the if’s into linear constraints by using the fact that they are equivalent to the
constraint dij = 1

2 [2 − |vi − vj |], which can then be split into two linear inequalities. Though, the
corresponding LP relaxation has a trivial solution of making everything 0.

We need some way of constructing a program that does not have a trivial solution. A natural

1

approach would be to use the constraint that v2i = 1 to enforce vi ∈ {−1,+1}. This then leads to
the following quadratic program:

max
∑
e

cede

subject to dij = 1
2 [2− |vi − vj |] ∀i, j

v2i = 1 ∀i

However, this program exactly encodes the ILP and so is NP-hard to solve. Whether the feasibility
set is convex or not determines solvability of the program. In this case, the feasibility set is a
collection of vectors with ±1 entries, which is not convex.

13.3 Semidefinite Programs

A Semidefinite Program (SDP) is like a relaxation of a quadratic program where scalars become
vectors and products become dot products. In the case of the quadratic program above, the
constraint that v2i = 1 turns into a dot product, which is equivalent to requiring that vi is a unit
vector. The resulting SDP is:

max
1

2

∑
(i,j)∈E

cij(1− vivj)

subject to vis are unit vectors

The vis here have no limit on their dimension, so they need not be scalars, but this program is
solvable. Technically, the optimal solution to a SDP can be irrational and so unrepresentable, but
we can get solutions with arbitrary precision.

A real-valued square symmetric matrix A is called positive semidefinite (PSD), denoted A < 0, if
∀x, xTAx ≥ 0. We can view SDPs as LPs that have positive definite constraints. In other words,
they are LPs that have additional constraints of the from A < 0 for some real-valued symmetric
matrix, A. The entries of A may be variables or constants. Notice that this constraint is equivalent
to ∀x,

∑
i,j xixjAij ≥ 0, which encodes infinitely many simple linear constraints.

For example, consider the constraint

(
1 −z
z 1

)
< 0. By definition, this means x21+x22−z2x1x2 ≥ 0,

which ensures that z is not too large.

Theorem 13.3.1 The following are equivalent:

1. A is PSD

2. All eigenvalues of A are non-negative

3. There is a matrix V s.t. A = V TV .

For example, V could be a matrix of scaled eigenvectors in the last statement.

If Ai,j = vivj , then the constraints Aii = 1 and A < 0 together ensure that the vis are unit vectors.

2

13.4 Geomans-Williamson Rounding

Goemans and Williamson proposed the following randomized rounding of the SDP above. First,
pick a random unit vector u. Then, we say i is in S-side of the cut if vi · u ≥ 0 and on the V \ S
side otherwise. In other words, S = {i|vi · u ≥ 0}.
Note to do this rounding we need a spherically symmetric distribution, so we can use the Guassian
with density αe−u

2
i which is proportional to

∏
i e
−u2i = e−||ui||22.

Now, we need to relate the solution to the value of the cut. By definition, E[δ(S)] =
∑

e cePr[e ∈
δ(S)]. We need to determine the probability of some edge e being cut. By construction, e = (i, j)
crosses the cut if vi · u ≥ 0 and vj · u < 0. In other words, the hyperplane defined by u must
pass through the side of the triangle formed by connecting the two heads of the vectors vi, vj . If
the angle between vi and vj is θ, then it must be that out of the total 2π directions that u could
have with respect to the plane, u’s direction or its negative direction is one of the θ possibilities
lying between vi and vj . Hence, over the choice of u, the probability that e is cut is precisely
2θ
2π = θ

π . Since the constraints ensure vi and vj are unit vectors, we know that vi · vj = cos(θ), so
1
2(1− vi · vj) = 1−cos(θ)

2 . Hence, θ
π =

arccos (vi·vj)
π . Our approximation factor then depends on

α = min
x∈[−1,1]

arccos (vi · vj)
π

2

1− x

where x = vi · vj . Thus, the cost of our rounding is exactly,

∑
e

cePr[e ∈ δ(S)] =
∑
e

ce
arccos (vi · vj)

π

≥ 1

2

∑
e

ceα(1− vi · vj)

= α value of the SDP

≥ αOPT

Hence, this rounding gives us an α-approximation for MaxCut where α ≈ .878. This is the best
know approximation factor and it is known that α is also the integrality gap of this program, so no
better rounding based on this program can be found. In fact, under the the stronger assumption
of the unique games conjecture, no better approximation is possible whatsoever.

13.5 Sparsest Cut

In the BalancedCut Problem the goal is to find a partition (S, V \ S) with |S|, |V \ S| ∈ [13 ,
2
2]n,

that minimizes the cost of the cut. This problem has natural uses in divide and conquer algorithms
since we want to recurse on instances that are a constant factor of the original instance in order to
reduce the amount of work sufficiently. Related is a relaxation called the SparsestCut Problem
where we wish to find a partition that minimizes c(δ(S))

|S||V \S| . Note, the denominator is maximized

when |S| = |V \ S|, so this objective function is biased towards cuts that are fairly balanced. In

3

the Non-UniformSparsestCut Problem, we also have demands du,v and we wish to minimize
c(δ(S))
d(S,V \S) . The optimal solutions to these problems will always be cuts into 2 pieces, making more
fine grained cuts doesn’t help. Next time, we show how to use tree embeddings to approximate
SparsestCut.

4

