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2.1 LP Relaxation of Sparsest cut

Definition 2.1.1 (Sparsest Cut Problem) Given G = (V,E) and c : E → R+, find a partition

of V into (S, V \S) where |S| ≤ n
2 to minimize the sparsity φ(S) = c(δ(S))

|S||V \S|

In general, the objective function is φ(S) = c(δ(S))
demand(S) . The demand of sparsest cut problem is

number of pairs cross the cut, which equals to |S||V \S|. The sparsest cut is going to separate the
graph to 2 large components in the order of n. In this case, it will look like small balance cut with
nice algorithmic application to be used in divide and conquer style. In a different context, we could
sample the vertices with certain probabilities by some random walk on a graph. The total cost of
edges leaving set S relative to its size gives an indication of likelihood of a random walk to step
outside the set. Observe that the sparsity of a graph is symmetric with respect to the set S and
its complement. So it’s usually defined for |S| ≤ n

2 . Therefore φ(S) is between 1 or 2 times of c(δ(S))|S|

The ILP of cut formulation is

minimize

∑
e cede∑
u,v duv

subject to d is a cut metric

d ∈ {0, 1}

(2.1.1)

Consider all the edges leaving the component Si, they are counted twice if we sum over all the
components. The same applies to the demands.

c(S1, S2, . . . , Sk) = 2
∑
i

c(δ(Si))

dem(S1, S2, . . . , Sk) =
∑

u∈Si,v∈Sj ,i 6=j
1 = 2

∑
i

dem(Si, V \Si)

The sparsity of the entire partition is at least as good as the best individual cut. It never helps to
partition the graph to more than two components. Another implication is the sparsest cut is easy
over trees by removing one edge.

c(S1, S2, . . . , Sk)

dem(S1, S2, . . . , Sk)
=

∑
i c(δ(Si))∑

i dem(Si, V \Si)
≥ min

i

c(δ(Si))

dem(Si, V \Si)

Linear combination of metrics is also a metric because triangle inequality holds over linear com-
bination. The convex hull of a collection of cut metric is all cut metric, which we define as cut
cone.
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Definition 2.1.2 Cut cone is all metrics obtained as positive linear combination of cut metrics

We can relax the constrains of d is a cut metric with d ∈ cut cone. And based on previous
observation, the sparsity of d is not better than one of the cut metrics in the linear combination
of d. If we could optimize the objective over the cut cone, then we will get one cut metric from
it. This is not necessarily true for other cut problems. For example, it’s not true for max cut
problem and multicut problem because we may have linear combination of cut metrics to separate
all terminal pairs but no single cut metric can.

Claim 2.1.3 The cut cone is equivalent to the set of all l1 metrics.

Proof: Let l1 metric is a map from vertex u, v to vector Xu, Xv in Rn and |Xu − Xv|1 =∑n
i=1 |Xu

i −Xv
i |. Because cut metric is l1-metric and l1-metric is closed under linear combination

by appending and rescaling in each dimension, cut cone is in l1-metric. Let’s consider the other
direction -l1-metric is in cut cone. We embed distance from l1 to cut cone in each dimension and
sum them over n. We first project all points to one single dimension and place a cut for each
adjacent pairs of points. Then the linear combination of those cut metrics is equivalent to l1-metric
in that dimension.

Therefore we can optimized (2.1.1) over d is l1-metric without considering the scaling. This is
NP-hard and it captures the exact sparsest cut problem.

minimize
∑
e

cede

subject to d ∈ l1 metric∑
u,v

duv = 1

(2.1.2)

We can relax the constrain to general metric to solve it efficient. If general metric embed into l1
with distortion α, then it’s the α approximation to sparsest cut. Recall this relaxation from cut
metric to general metric is exactly what we did for multiway cut and multicut.

minimize
∑
e

cede

subject to d ∈ l1 metric∑
u,v

duv = 1

(LP relaxition)

Theorem 2.1.4 (Borgains Theorem) Every n points metric embeds into l1 metric with distor-
tion α = O(log n) in O(log2 n) dimension

Tree metric is also l1 metric. Because a tree can be represented by linear combination of cut metric
where each cut metric is represented by one edge with weight of edge length. Any graph can have
exponential many trees in it. Leighton-Rao first discovered this method of LP relaxation to general
metric with O(log n) approximation factor. The integral gap of this LP is Ω(log n) so we cannot
have better approximation with this LP.
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2.2 SDP Relaxation of Sparsest Cut

Let’s think of another way to formulate sparsest cut problem with vector dot product. We map
vectors in S to -1 and V \S to 1. Later we can obtain a SDP relaxation of this problem.
First, this is the exact description of sparsest cut problem.

minimize
1
2

∑
e ce(1− vivj)

1
2

∑
i,j(1− vivj)

subject to vi · vi = 1

(2.2.3)

We can linearize the ratio by scaling so the denominator equals to 1.

minimize
∑
e

ce(1− vivj)

subject to vi · vi = vj · vj ,∀i, j∑
i,j

(1− vivj) = 1

(2.2.4)

Next since all the vectors lies on some sphere, we can rescale them to be on the unit sphere.

minimize
∑
e

ce(1− vivj)

subject to vi · vi = 1,∀i∑
i,j

(1− vivj) = S∗

(2.2.5)

The square length of difference of two vectors |vi − vj |2 = vi · vi + vj · vj − 2vi · vj = 2(1 − vivj)2
plays the role of dij . Then we can rewrite the sum

minimize
1

2

∑
(i,j)∈E

ci,j |vi − vj |2

subject to vi · vi = 1,∀i
1

2

∑
i,j

|vi − vj |2 = S∗

(2.2.6)

Recall Geomans-Williamson method from last time. We want the contribution from random cut is
not much large than the contribution from SDP. However, the rescale of the linear line is unbounded.
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Figure 2.2.1: Approximation Factor of Geomans-Williamson Randomazition SDP method

Because the square of Euclidean length may not be metric, we want to impose both constrains.

minimize
∑

(i,j)∈E

cijdij

subject to
∑
i,j

dij = S∗

{dij} is a metric

{
√
dij} is an Euclidean metric

(Goemans-Linial Relaxation)

Definition 2.2.1 Square Euclidean metric l22 is called negative-type metric and it satisfied {dij} is
a metric and {

√
dij} is an Euclidean metric

The integral gap for this formulation is Ω(log log n) and O(
√

log n). We will talk about this result
in next lecture. Arora Rao Vazirani showed that l22 ↪→ l1 is a contracting embedding where the
average distortion is O(

√
log n). And in a followup by Lee Naor, they showed the distortion is

O(
√

log n log log n)
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