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Last time we introduced Sparsest Cut Problem by showing an efficient LP relaxation based algo-
rithm, which has an integrality gap of O(logn). Such approximation is achieved by embedding the
metric returned by LP into /; with distortion O(logn).

In today’s course, we are going to use SDP Relaxation to get a better approximation, which is

O(v/logn).

15.1 SDP Relaxation

Recall the setting of sparsest cut problem. Given a graph G = (V, E) with positive cost ¢, on every
edge e € E, and let n = |V| be the number of vertices. The goal of sparsest cut problem is to find

a partition (S, V\S) that minimizes %.

To obtain LP relaxation, we embeded the cut metrics into [; metrics. Intuitively, we can embed

the cut metrics into a smaller class of metrics that contains l; so as to get a tighter SDP relaxation.

It’s known that it is possible to optimize over negative type metric in semidefinite programming,
and a “squared-Euclidean” metric is negative type metric with a nice property: if d € [1, then
de l%. Therefore, given param ~, a semidefinite relaxation[1] can be formulated as:

min > e de
e

subject to d is a metric
Z dl‘j = 'yn2
Z7J

dij = ||lwi — x>, Vi, jeV
|zi|2 =1, VieV

where the last two constraints are obtained by definition of 13 metric.

The following theorem shows that we can get an a-approximation for sparsest cut as long as there
exists an embedding with distortion «.

Theorem 15.1.1 ([2]) Suppose there ezists an embedding f from a negative type metric d into I
such that Vi, 7,

1L|f() = FG)h < dy
2. 1) = FG)h = & X di

Then the integrality gap for sparsest cut SDP is at most .



15.2 Arora Rao Vazirani Theorem

Theorem 15.2.1 (ARV 04’[3]) Given any 3 metric d over n points, there exists a 1- dimensional
embedding f with average distortion O(/logn).

Theorem ARV shows that given any n-point /2 metric d, there exists a set S C [n] such that the
specific embedding f : X — S, f(i) = d(S,i) achieves a relative low distortion of O(y/logn). In
fact, ARV shows that there exists two sets S and T of size Q(n) such that Vi € S and j € T, there
is always

dij > v

~ O(+/logn)

Hence, to prove this theorem we want

%: |d(S,i) —d(S,7)] > O(\/@) Zdij

.3

Take a Fréchet embedding, embedding metric d(S,i) = mifql d;;, by triangle inequality it has
j€

do1d(S, i) —d(S,7)| > > d(S,j) - |S|. Hence we only need to prove
1,J Jj¢s

) 1
> d(S,5) - 18] = O(W)Zdij

j¢s 1,J

Proof: Considering ball B(u,r) = {w € V : d(u,w) < r} around v € V with radius r.
n
4>

Case 1. There exists a radius  ball of size > %, i.e., Ju € V : |B(u, )| > .
We can claim that it suffices to pick S = B(u, 7).

From figure 15.2.1, distance of two points inside set S is at most the diameter, which is 3. Thus,

Figure 15.2.1: node i and j are embeded in S = B(u, ).

for any 1, j,
d(i, j) < d(S,i) +d(S,j) +

N[22



We know that > d;; = yn?. By summing up both sides, we get
2

yn? =3 d(i, )
2,]
< VIS d(S, i)+ VIS, d(S,4) + § - n?

= 2 <9n 3 d(S,0)

= >,d(S,i)> %

] ; n n n2
= 2 d(S,5)=1S12;d(S,5) > 44>

1€S5,j

v

Case 2. There’s no ball of radius } containing at least % elements, i.e., Vu € V,|B(u,
Notice that there exists v € V' such that for S = B(u,2y), [S| > § and ) d;; > 3%771

<7

Proof of Case 2: From constraint ) d;; = yn?, we know that average distance overall is 7.

0]
Hence Ju : %Z] d(u,j) <7.

According to Markov’s inequality, then for at least § j, d(u,j) < 27. By observation of Figure

>n/2 2

Figure 15.2.2: There are at most % points inside of the ball w, and at least § — 7 =

of ball w.
15.2.2,
> d(w,j) > > dw,j)
weS,jES weS jes,j¢B(w,T)
> n
Z 41
weS )

n

4

outside



Thus, ) d;; is bounded by a constant factor, so the expected value of SDP is at most O(m).
i,jES

15.3 Hyperplane Rounding Algorithm

15.3.1 Master Theorem

Theorem 15.3.1 (Master Theorem[3]) Given n points in the unit ball in R™ with the 13 metric,
suppose > d;; > c-n? for some constant ¢ > 0, then there exists sets S and T of size Q(n) with
ij
in d;j; > .
T
Note that the above theorem is not hold if d is an arbitrary metric or square euclidean, as the
triangle inequality does not hold.

See Figure 15.3.3, the algorithm contains of two phases: projection and prunning.

Figure 15.3.3: Separating a unit ball by a hyperplane with a margin. Black circle denotes the
original vertices, and red squares are their projections on direction g. Sets S and T are found
by the hyperplane rounding algorithm. At the projection step, the algorithm starts with a “fat”
random hyperplane cut, and S and T are chosen as vertices that project far apart; at the pruning
step, pairs of points that are too close to each other are discarded.

1. Project. Pick a random Gaussian of variance 1 at each dimention, and project all points in
V on the line in this direction. Formally, we pick a random unit vector g, and let Y; := g - x; be
the projection of x; on g.

Then we define the following sets

S = {i:Y; is among the smallest ¢'n values}



T = {i : Y; is among the largest ¢’'n values}

2. Prune. While there exists pairs i € S and Jj e T with dij < \/%gn, pick any such pair and

discard it. Finally, all what is remained in S and T the required sets S <« S and T + T, and
return S and T'.

15.3.2 The Projection Step

Claim 15.3.2 There exists § > 0 such that, at the end of projection step,

Pr{ min |Y; — Y|>(5] =1-0()
1€S,j5€T

Proof: Fix some i € S and j € T. Consider the normalized projection Y; and Y; of x;, xj on a
random direction g, and note that g is distributed as a Gaussian random variable N(0,1).

When projections of x; and z; lie in the same side, or in the adjoining sides, the separation of
projection fails. Putting these cases together and by Markov’s inequality,

Pr|[(g,z; — zj)| < 5/\/di]} < constant - §’
Hence there exists Q(Cn?) pairs 4, j with d;; > 5, and the probability

Pr(lY; - Y;| < ¢’ < Pr[|Yi -Y;| < (5'\/dij} < constant

15.3.3 The Pruning Step

In this part we will give an intuitive explanation of pruning step. In this step, we need to show

that the number of points discarded from S and T is small, i.e., that no more than ¢n pairs of

points are deleted from S and 7.

Consider some (3,7), dij < \/— being small, and |Y; — Y| > 4.

As probability that a gaussian variable is streched by  is
Pr|[Gaussian variable > ¢] < exp ™t

The factor that (7,j)’s projection is larger from expected length is precisely the stretching proba-
bility, hence the probability that (7, 7) is discarded is

Pr|(i,5) is discarded] = exp 209" = o(1/n)
when t is O(

o)
logn’"
But with (i, j) getting “stretched” by a factor of (logn)'/4,

Pr|(i, j) is discarded] = exp~¥(Vlom) — (1)

This means that Euclidean distance between the first and the last point is (1) whereas their
projection is Q(+v/logn), which is large enough to get large separated sets with high probability.
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