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Lecture 16: Online Set Cover Date: 10-25-2019

16.1 Online Set Cover

In the online version of set cover we have the following problem. We are given m sets {Si} with
associated costs ci. During each step a new element j will arrive, along with a list of sets it be-
longs to. The algorithm is then tasked with maintaining a low cost collection of sets that cover all
elements seen so far.

Definition 16.1.1 Let σ be defined as the sequence of elements or requests. We define the com-
petitive ratio as

c.r. = max
σ

E[Alg(σ)]

Opt(σ)
(16.1.1)

Let us first consider developing a linear program for the offline version of set cover.

Primal: Covering

min
∑
i

cixi

s.t.
∑
i:Si3j

xi ≥ 1∀j

xi ≥ 0

Dual: Packing

max
∑
j

yj

s.t.
∑
j:j∈Si

yj ≤ ci∀i

yj ≥ 0

In the primal we are trying to minimize the number of sets we include
∑

i cixi. We also consider
that all elements j are covered

∑
i:Si3j xi ≥ 1. In the dual we are considering a packing problem

where we are trying to maximize the number of elements yj where we require that each set can
contain at most ci elements

∑
j:j∈Si yj ≤ ci. We will use these to motivate the following primal-dual

algorithm.

Algorithm 1 Online Primal-Dual Algorithm

1: When element j arrives
2: if j not covered then
3: raise the value of yj gradually
4: raise the value of xi where Si 3 j as a function xi = f(

∑
j∈Si yj)

There are then a couple properties of the function f that must be satisfied. First f(0) = 0 and
f(ci) = 1. We choose these values because if the set Si contains no elements observed so far. We
do not need to include the set in our solution eg f(0) = 0. Additionally, looking at the dual, if a
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set Si has been packed full eg
∑

j:j∈Si yj = ci, then we want to include the set Si in our solution,
hence, f(ci) = 1.

Claim 16.1.2 The following hold true

• Primal Feasibility

• Dual Feasibility

• At any point of time, ∂ Primal Cos ≤ α · ∂ Dual Cost

The first follows from the fact that at each step of the algorithm, for every element j, at least one
xi with j ∈ Si is at least one. This is due to xi = f(

∑
j∈Si yj) and f(ci) = 1. The second follows

from the fact that for every element j we observe, we do not raise the value yj beyond tightness in
the constraint

∑
j:j∈Si yj . Finally, we consider the last claim.

∂

∂yj
Primal Cost =

∑
i:Si3j

ci ·
∂xi
∂yj
≤ α (16.1.2)

In order to ensure that ci · ∂xi∂yj
≤ α · xi we define f in the following manner

f(yi) =
1

λ
e
αyi
ci + β (16.1.3)

Given that we want f(0) = 0 and f(ci) = 1. We can derive the following values for α, β.

0 = f(0) =
1

λ
e0 + β =⇒ β = − 1

λ
(16.1.4)

1 = f(ci) =
1

λ
eα − 1

λ
=⇒ α = log(λ+ 1) (16.1.5)

From this we now have the following equation for xi. Where yi =
∑

j:j∈Si yj

f(yi) =
1

λ
(e

log(λ+1)yi
ci − 1) (16.1.6)

Considering the derivative we can obtain the following.

∂xi
∂yj

=
1

λ

log(λ+ 1)

ci
e
log(λ+1)

∑
j∈Si yj

ci (16.1.7)

=
log(λ+ 1)

ci
(xi +

1

λ
) (16.1.8)

Using this we will now determine the rate of change of the primal cost.
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∂Primal Cost

∂yj
=

∑
i:Si3j

ci
∂xi
∂yj

(16.1.9)

= log(λ+ 1)
∑
i:Si3j

(xi +
1

λ
) (16.1.10)

= log(λ+ 1) · (1 +
|{i : Si 3 j}|

λ
) (16.1.11)

If we consider d = maxj |{i : Si 3 j}| as the maximum frequency. Then we have the following
relationship.

∂Primal Cost

∂yj
≤ log(λ+ 1) · (1 +

d

λ
) (16.1.12)

Using this, we have that setting λ = d gives us a competitive ratio of 2log(d+ 1).

16.1.1 Secondary Approach

We now consider an alternative approach

Claim 16.1.3 The following holds.

• Primal is feasible

• Complimentary Slackness xi > 0 =⇒
∑

j∈S yj ≥ ci e.g. f(y) = 0∀y < ci

Let us consider choosing f(y) = 0 if y < ci and f(y) = 1
de

y
ci
−1

if y ≥ ci Then primal feasibility
follows from construction, and complimentary slackness follows from the fact that if

∑
j∈Si yj ≥ ci,

xi > 0 and if
∑

j∈Si yj < ci, then xi = 0.

Claim 16.1.4 Dual constraints are violated by a factor of log(d)+1 at most.

Let us consider xi = 1. Then we have the following relationship

1 = f(y) =
1

d
e
y
ci
−1

=⇒ (16.1.13)

y = ci(log(d) + 1) (16.1.14)

Hence we have that the dual constraints are violated by at most a factor of log(d) + 1.

Claim 16.1.5 Primal Cost ≤ 2 ·DualCost
Let us consider x̂i = min(xi,

1
d),∀i. From this we can then obtain the following∑

i

cix̂i ≤
∑
i

x̂i(
∑
j∈Si

yj) (16.1.15)

=
∑
j

yj(
∑
i:j∈Si

x̂i) (16.1.16)

≤
∑
j

yjd ·
1

d
= Dual Cost (16.1.17)
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Finally, let us consider the rate of change of xi − x̂i.

∂

∂yj
(xi − x̂i) =

1

ci

1

d
e
(
∑
j:j3Si

yj
ci

)−1
=
xi
ci

(16.1.18)

From this we have that the total rate of increase in the primal cost is given by

(xi − x̂i) =
∑
i:Si3j

ci
xi
ci
≤ 1 (16.1.19)

This implies a 2(log(d) + 1)−approximation

16.1.2 Online Rounding

We now consider implementing online rounding to provide integral solutions for xi. We will first
consider ri = min of log(n) draws uniform on [0, 1]. We will then include Si in the solution as soon
as xi ≥ ri. Then at step t if an element j arrives and is uncovered we will pick the cheapest i
containing j. The expected cost of such a solution is given by

E[cost of solution] ≤ 2log(n) · LP + n · 1

n2
·Opt (16.1.20)

This implies an O(log(n)log(d)) approximation. If we consider the probability that an element j is
uncovered we have pr[j uncovered] =

∏
i:Si3j(1− xi)

log(n) ≤ e−log(n) = 1
n

16.2 Online Routing

Let us consider the following graph G = (V,E) with edge capacities ce and source sink pairs (si, ti).
Our goal is then to find a path Pi from si to ti. We define the load on an edge e as |{i : Pi 3 e}|.
We then want to minimize the maximum congestion maxe(

le
ce

). One such idea we can propose is
to greedily choose each route in order to minimize the congestion in the current graph. This idea,
however, has an unbounded competitive ratio. For example consider a circular graph oriented with
nodes 1, 2, · · ·n around the circle. Consider at each iteration we observe two nodes i, i + 1 with
load two. In this case we will place a load on every edge in the graph. But after we have observed
every choice of edge between i and i+ 1, we will have a load of n on each edge instead of 2. Hence,
we have that the greedy solution has an unbounded competitive ratio.
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