
CS880: Approximation and Online Algorithms Scribe: Xiating Ouyang

Lecture 21: Metric Task System Date: 11/11/2019

In this lecture, we show that no algorithm can obtain a competitive ratio of less than 2N − 1 for
the MetricTaskSystem problem. We then present the work function algorithm, which achieves
a competitive ratio of 2N − 1 for the problem. In the end we introduce the Experts problem.

21.1 Metric Task System

The MetricTaskSystem problem (MTS) is defined as follows: Given a metric space over N
points and a request sequence σ = (c1, c2, . . . , cT) of cost vectors ct ∈ RN , determine a sequence of
locations (i1, i2, . . . , iT) with it ∈ [N] to minimize∑

t∈[T]

d(it−1, it) + ctit .

Let wti be the minimum cost of serving the tasks up until step t and finishes at location i. Then
we have

wti = min
i∈[N]

min
(i1,i2,...,it)∈[T]

{
∑
t′≤t

(d(it′−1, it′) + ct
′
it′

) + d(it, i)},

and that
OPT = min

i∈[N]
wTi .

Consider the work function algorithm: At each step t, move to

it = arg min
i∈[N]

wti + d(it−1, i).

In the following sections we first show that MTC does not admit an algorithm achieving a competi-
tive ratio less than 2N − 1, and then show that the work function algorithm achieves a competitive
ratio of 2N − 1.

21.1.1 Hardness

We show the following theorem.

Theorem 21.1.1 No algorithm can achieve a competitive ratio of less than 2N − 1 for MTC on
any metric space of size N .

To show , we first argue that it suffices to consider cost vectors only assigning ε to one component
and 0 elsewhere.

Lemma 21.1.2 It suffices to assume that every cost vector to the MTC problem is of the form
(0, 0, . . . , ε, 0, . . . , 0), where cti = ε for just one i = i∗t .

1

Proof: This is a proof sketch. We may pick an appropriate ε, and then for any i and t, we
decompose each cost vector cti into

cti =
ct1
ε

(ε, 0, . . . , 0) +
ct2
ε

(0, ε, 0, . . . , 0) +

Then the offline optimal algorithm achieves no worse than before, since the original solution still
works; the online algorithm however loses information than before, and thus performs no better.
Therefore, the competitive ratio under this special class of cost vectors is no worse than the original
competitive ratio the algorithm would obtain.

We now present the proof of Theorem 21.1.1.

Proof of Theorem 21.1.1: Consider the cruel adversary that sets cti =

{
ε if i = it−1

0 if i 6= it−1.
We

assume without loss of generality that the metric space satisfies that d(i, j) ∈ [1, D] for i 6= j.

We now place 2N − 1 servers in the metric space, and for any step t, we keep only one server at it
and two servers at each of the other N − 1 locations—with a total of 2N − 1 servers. Let k be the
number of step t with it 6= tt+1.

Thus the cost of the online algorithm is

ALG =
∑
t

d(it+1, it) + (T − k)ε.

The total cost of the 2N − 1 servers is

SUM =
∑
t

d(it+1, it) + Tε ≤ ALG+ kε ≤ ALG+ALGε,

where the first inequality holds by construction, and the second inequality holds since at each step,
the algorithm incurs at least a cost of 1 from the metric space, and thus the cost of the algorithm
is at least k. Therefore there exists a server (among the 2N − 1 servers) that has a cost less than

1 + ε

2N − 1
ALG,

and taking ε→ 0 would complete the proof.

21.1.2 Work function algorithm: 2N − 1 is tight

The following properties hold for work function wti by construction:

1. wti is nondecreasing;

2. wti = mini′{wt−1i′ + cti′ + d(i′, i)}, which implies that wti ≤ wti′ + d(i′, i) for all i 6= i′; and

3. wti = mini(w
t
i′ + d(i′, i)).

2

We analyze the performance of the work function algorithm by a potential function Φt = wtit +
2
∑

i 6=it w
t
i .

Claim 21.1.3 The cost of the algorithm at step t is at most Φt − Φt−1.

Claim 21.1.4 ΦT ≤ (2N − 1)(OPT +D).

Combining Claim 21.1.3 and 21.1.4, it thus follows that

ALG ≤
∑
t

(Φt − Φt−1) ≤ ΦT ≤ (2N − 1)(OPT +D),

implying that that the work function algorithm achieves a competitive ratio of 2N − 1 (ignoring
the additive constant D term).

It hence suffices to prove Claim 21.1.3 and 21.1.4.

Proof of Claim 21.1.4: By construction, ΦT = wTiT + 2
∑

i 6=iT w
T
i , and by property 2 we have

wTi ≤ wTi∗T + d(i∗T , i) ≤ OPT +D for the optimal ending location i∗T . Hence

ΦT ≤ (2N − 1)(OPT +D).

Proof of Claim 21.1.3: Consider the algorithm is at step t − 1 and the adversary places the
cost vector ct with ε at it−1 and 0 elsewhere. There are two cases:

Case 1 : Suppose that it−1 = it, that is, the algorithm does not move its location and thus incurs a
cost of ε. We thus have that

wtit = min
i′
{wt−1i′ + cti′ + d(it−1, i

′)}

= min{wt−1it
,min
j 6=it
{wtj + d(it−1, j)}}.

Since it−1 = it, we have that wt−1it
≤ minj 6=it{wtj + d(it−1, j)}, or else the algorithm would

have moved to some j with j 6= it−1, a contradiction. Thus wtit = wt−1it
+ ε, that is

Φt − Φt−1 ≥ ε = ALG.

Case 2 : Suppose that the algorithm moves to some location it = j with it−1 6= it. In this case, the
cost of algorithm incurred is d(it−1, j). Thus in this case, we have that

Φt − Φt−1 ≥ wtj + 2wtit−1
− 2wt−1j − wt−1it−1

≥ wtit−1
− wt−1j

≥ wtj + d(it−1, j)− wt−1j

≥ d(it−1, j) = ALG,

where the first inequality holds by expanding the definition of Φ; the second inequality holds
since wtj ≥ wt−1j and wtit−1

≥ wt−1it−1
; the third inequality holds since j 6= it−1 and thus

wtit−1
≥ wtj + d(it−1, j); and the forth inequality holds since wtj ≥ w

t−1
j .

3

Hence the cost of the algorithm at each step t is at most Φt − Φt−1.

It is worth mentioning that the work function algorithm can also be applied to the K-server
problem, and yield a competitive ratio of 2k− 1. In the K-server, the cost vector contains either
0 or ∞ for each component.

21.2 Expert Problem

The expert problem is defined as follows: GivenN experts and a sequence of cost vectors (c1, c2, . . . , cT)
with cT ∈ [0, 1]N . At every step, online algorithm chooses it ∈ [N] before observing ct, and the
total cost of the algorithm is defined as

ALG =
∑
t

ctit .

The cost of the optimal expert is

OPT = min
i

∑
t

cti,

and the regret of the algorithm is

ALG−OPT =
∑
t

ctit −
∑
t

cti∗ ,

where i∗ = arg min
∑

t c
t
i. The objective is to minimize the regret.

We consider exponential weighted update algorithm: At each step t, we assign a probability pti to
each expert i as the probability of picking expert i at step t. We update the probability using
pt+1
i = ptie

−ηcti for some learning rate η and then normalize each pt+1
i to obtain the distribution of

p̃t+1
i at each step. The cost of the algorithm is thus revised as

E[ALG] =
∑
t,i

p̃tic
t
it .

4

