CS880: Approximation and Online Algorithms Scribe: Donggiangzi Ye

Lecture 3: Poly Time Approximation Schemes: Knapsack; Euclidean TSP~ Date: 09/09/2019

3.1 Polynomial Time Approximation Scheme (PTAS)

Definition 3.1.1 PTAS: An algorithm that for any given constant ¢ > 0, produce a (1 + €) ap-
proximation with running time polynomial in size of the instant.

Definition 3.1.2 Fully PTAS (FPTAS): An algorithm that for any constant € > 0, returns a
(1+ €) approzimation with running time polynomial in both the instance size n and %

3.2 Knapsack

Definition 3.2.1 Knapsack: Given n items with size s; and value v;, and a knapsack of size B,

find subset S C [n] with Y s; < B that mazimizes) vj.
€S i€S

Assumption V = maxwv;. All v;’s are integers in {1,...,V}

Claim 3.2.2 There is a DP that solves knapsack exactly in pseudo polynomial time O(n*V)

Algorithm 1 DP for Knapsack
A(L) — {(0,0), (51, wn)}
for j =2..ndo
A(j) — A(j 1)
for each (t,w) € A(j — 1) do
if t +s; < B then
Add (t + s;,w + vj) to A(j))
end if
end for
Remove dominated pairs from A(j)
end for

return max)eA(n) W

Claim 3.2.3 We can design a FPTAS that solves Knapsack in time O("—:)

Algorithm 2 Discretization DP method for Knapsack
Define V = maxv;, R=(1+1)n
Round value down to integers in {1,..., R}, v; = L%’%J

Run Algorithm 1 to solve instance exactly over v;
return Solution

Running Time = O(n?R) = O(”?S) — FPTAS

Proof: At first, we define some notations:

OPT = optimal value over v;’s
OPT' = optimal value over v;’s

ALG = algorithm’s value over v;’s

Then we want to define R such that:

R 1 R
—OPT — —OPT > 2.1
T TrcyofTzn (3:2.1)
e R
—OPT >
1+6VO ="
1+e Vn
>
L= e OPT

Since one possible solution is to put the most valuable item in a knapsack by itself, OPT > V.

Then we can pick:

R = (1 + %)n (3.2.2)

By (3.2.1) and (3.2.2), we can infer this statements:

orPT > Y
1€OPT

> 3)
> Y (-1

1€cOPT
R

B821) 1 R
> ———OPT
- 1+6VO

Since we round down values to get the OPT' and the algorithm’s solution is the same subset which

is still feasible, we have:

ALG > OPT'%

V 1 R
> — —OPT 2.
*Rl—i—eVO (3.2.3)

_ OPT
14«
Based on (3.2.2) and (3.2.3), this algorithm is FPTAS.]

3.3 2D Euclidean TSP

Definition 3.3.1 Traveling Salesman Problem (TSP): Given n nodes and for each pair {i,j} of
distinct nodes, a distance d; j, we desire a closed path that visits each node exactly once (i.e., is a
salesman tour) and incurs the least cost, which is the sum of the distances along the path.

Definition 3.3.2 2D TSP: the nodes lie in R? (or more generally, in R? for some d) and distance
is defined using the lo norm. i.e. figure 3.53.1, given n points on a plane, find a tour of the shortest
FEuclidean length.

Figure 3.3.1: 2D Euclidean TSP

Definition 3.3.3 Dissection: We will take a square of side length L around the points of the
instance and divide it into four equally-sized square, then recursively divide each of these squares
four equally-sized squares, and so on. e.g. Figure 3.3.2 left.

Definition 3.3.4 Portal: Tours that enter and exit the squares of the dissection happen at one of
a small set of prespecified equidistant points (portals).

L ™ "
- L = -
L . : 2
2 []
L
- 2
)

(2) (b)

Figure 3.3.2: Left: The dissection. Right: The corresponding quadtree.

Assumption 1: Points lie on an integer grid. Points € [n?]?.
Claim 3.3.5 Discretization cost us at most O(1 + %) factor in the approzimation radio.

Proof: There are points on the boundary, so the lengh of the tour is at least n?.
OPT > n?

On the other hand, the cost of all detours < v/n2 +n2 = v/2n [
Assumption 2: Tour must enter/exit a square at a portal.
Assumption 3: Optimal tour does not cross itself.

We create limits of enter/exist by assumption 3 without any loss of approximation factor. As we
can see from Figure 3.3.3, if the tour cross itself, we can connect pl-p2 and p3-p4 to remove the
crossing.

P1 P2

P3 P4

Figure 3.3.3: Tlustration of Assumption 3

Assumption 4: Number of entries/exits at each portal is at most 1 each.

As we can see from Figure 3.3.4, if the tour cross three or more times at a portal, it can be shortcut
to cross at most twice.

Figure 3.3.4: Hlustration of Assumption 4

Algorithm 3 High Level Algorithm
Divide n? x n? grid into four sub grids.
Divide the boundary of square into m equidistant portals on each side.
Within each subgrid recursively solve for collection of segments that capture all points.

Subproblem - box; for each portal number of entries and number of exits; matching of entries and
exits.

For each portal number of entries and number of exits, we have 0/1 enter and 0/1 exit, so it’s
O(44m).

Matching of entries and exits is O(2O<m)).

Number of different boxes in quadtree (Figure 3.3.2 right) is dominated by: O(n?).
Number of subproblems: O(n*44m20(m)) = O(n*20(M)

So we can find the optimal solution satisfying assumptions 1-4 in time poly(n)2o(m).

References

[1] David P. Williamson, David B. Shmoys. The Design of Approximation Algorithms. 2010.

[2] Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and other Geometric Problems. 1998.

