Lecture 3: Poly Time Approximation Schemes: Knapsack; Euclidean TSP Date: 09/09/2019

3.1 Polynomial Time Approximation Scheme (PTAS)

Definition 3.1.1 *PTAS:* An algorithm that for any given constant $\epsilon > 0$, produce a $(1 + \epsilon)$ approximation with running time polynomial in size of the instant.

Definition 3.1.2 Fully PTAS (FPTAS): An algorithm that for any constant $\epsilon > 0$, returns a $(1 + \epsilon)$ approximation with running time polynomial in both the instance size n and $\frac{1}{\epsilon}$.

3.2 Knapsack

Definition 3.2.1 Knapsack: Given n items with size s_i and value v_i , and a knapsack of size B, find subset $S \subseteq [n]$ with $\sum_{i \in S} s_i \leq B$ that maximizes $\sum_{i \in S} v_i$.

Assumption $V = \max v_i$. All v_i 's are integers in $\{1, ..., V\}$

Claim 3.2.2 There is a DP that solves knapsack exactly in pseudo polynomial time $O(n^2V)$

Algorithm 1 DP for Knapsack

```
A(1) \longleftarrow \{(0,0), (s_1, w_1)\}
for j = 2..n do
A(j) \longleftarrow A(j-1)
for each (t, w) \in A(j-1) do
if t + s_j \leq B then
Add (t + s_j, w + v_j) to A(j))
end if
end for
Remove dominated pairs from A(j)
end for
return \max_{(t,w)\in A(n)} w
```

Claim 3.2.3 We can design a FPTAS that solves Knapsack in time $O(\frac{n^3}{\epsilon})$.

Algorithm 2 Discretization DP method for Knapsack Define $V = \max v_i$, $R = (1 + \frac{1}{\epsilon})n$ Round value down to integers in $\{1, ..., R\}$, $v'_i = \lfloor v_i \frac{R}{V} \rfloor$ Run Algorithm 1 to solve instance exactly over v'_i return Solution

Running Time = $O(n^2 R) = O(\frac{n^3}{\epsilon}) \longrightarrow \text{FPTAS}$

Proof: At first, we define some notations:

$$OPT = \text{optimal value over } v_i$$
's
 $OPT' = \text{optimal value over } v'_i$'s
 $ALG = \text{algorithm's value over } v_i$'s

Then we want to define R such that:

$$\frac{R}{V}OPT - \frac{1}{1+\epsilon}\frac{R}{V}OPT \ge n$$

$$\frac{\epsilon}{1+\epsilon}\frac{R}{V}OPT \ge n$$

$$R \ge \frac{1+\epsilon}{\epsilon}\frac{Vn}{OPT}$$
(3.2.1)

Since one possible solution is to put the most valuable item in a knapsack by itself, $OPT \ge V$. Then we can pick:

$$R = (1 + \frac{1}{\epsilon})n \tag{3.2.2}$$

By (3.2.1) and (3.2.2), we can infer this statements:

$$OPT' \ge \sum_{i \in OPT} v'_i$$
$$\ge \sum_{i \in OPT} \lfloor v_i \frac{R}{V} \rfloor$$
$$\ge \sum_{i \in OPT} (v_i \frac{R}{V} - 1)$$
$$= \frac{R}{V} OPT - n$$
$$\stackrel{(3.2.1)}{\ge} \frac{1}{1 + \epsilon} \frac{R}{V} OPT$$

Since we round down values to get the OPT' and the algorithm's solution is the same subset which is still feasible, we have:

$$ALG \ge OPT' \frac{V}{R}$$

$$\ge \frac{V}{R} \frac{1}{1+\epsilon} \frac{R}{V} OPT$$

$$= \frac{OPT}{1+\epsilon}$$

(3.2.3)

Based on (3.2.2) and (3.2.3), this algorithm is FPTAS.

3.3 2D Euclidean TSP

Definition 3.3.1 Traveling Salesman Problem (TSP): Given n nodes and for each pair $\{i, j\}$ of distinct nodes, a distance $d_{i,j}$, we desire a closed path that visits each node exactly once (i.e., is a salesman tour) and incurs the least cost, which is the sum of the distances along the path.

Definition 3.3.2 2D TSP: the nodes lie in \mathbb{R}^2 (or more generally, in \mathbb{R}^d for some d) and distance is defined using the ℓ_2 norm. i.e. figure 3.3.1, given n points on a plane, find a tour of the shortest Euclidean length.

Figure 3.3.1: 2D Euclidean TSP

Definition 3.3.3 Dissection: We will take a square of side length L around the points of the instance and divide it into four equally-sized square, then recursively divide each of these squares four equally-sized squares, and so on. e.g. Figure 3.3.2 left.

Definition 3.3.4 *Portal: Tours that enter and exit the squares of the dissection happen at one of a small set of prespecified equidistant points (portals).*

Figure 3.3.2: Left: The dissection. Right: The corresponding quadtree.

Assumption 1: Points lie on an integer grid. Points $\in [n^2]^2$.

Claim 3.3.5 Discretization cost us at most $O(1 + \frac{1}{n})$ factor in the approximation radio.

Proof: There are points on the boundary, so the lengh of the tour is at least n^2 .

$$OPT \ge n^2$$

On the other hand, the cost of all detours $\leq \sqrt{n^2 + n^2} = \sqrt{2}n$

Assumption 2: Tour must enter/exit a square at a portal.

Assumption 3: Optimal tour does not cross itself.

We create limits of enter/exist by assumption 3 without any loss of approximation factor. As we can see from Figure 3.3.3, if the tour cross itself, we can connect p1-p2 and p3-p4 to remove the crossing.

Figure 3.3.3: Illustration of Assumption 3

Assumption 4: Number of entries/exits at each portal is at most 1 each.

As we can see from Figure 3.3.4, if the tour cross three or more times at a portal, it can be shortcut to cross at most twice.

Figure 3.3.4: Illustration of Assumption 4

Algorithm 3 High Level Algorithm

Divide $n^2 \times n^2$ grid into four sub grids.

Divide the boundary of square into m equidistant portals on each side.

Within each subgrid recursively solve for collection of segments that capture all points.

Subproblem - box; for each portal number of entries and number of exits; matching of entries and exits.

For each portal number of entries and number of exits, we have 0/1 enter and 0/1 exit, so it's $O(4^{4m})$.

Matching of entries and exits is $O(2^{O^{(m)}})$.

Number of different boxes in quadtree (Figure 3.3.2 right) is dominated by: $O(n^4)$.

Number of subproblems: $O(n^4 4^{4m} 2^{O(m)}) = O(n^4 2^{O(m)})$

So we can find the optimal solution satisfying assumptions 1-4 in time $poly(n)2^{O(m)}$.

References

- [1] David P. Williamson, David B. Shmoys. The Design of Approximation Algorithms. 2010.
- [2] Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems. 1998.