
CS880: Approximation and Online Algorithms Scribe: Dongqiangzi Ye

Lecture 3: Poly Time Approximation Schemes: Knapsack; Euclidean TSP Date: 09/09/2019

3.1 Polynomial Time Approximation Scheme (PTAS)

Definition 3.1.1 PTAS: An algorithm that for any given constant ε > 0, produce a (1 + ε) ap-
proximation with running time polynomial in size of the instant.

Definition 3.1.2 Fully PTAS (FPTAS): An algorithm that for any constant ε > 0, returns a
(1 + ε) approximation with running time polynomial in both the instance size n and 1

ε .

3.2 Knapsack

Definition 3.2.1 Knapsack: Given n items with size si and value vi, and a knapsack of size B,
find subset S ⊆ [n] with

∑
i∈S

si ≤ B that maximizes
∑
i∈S

vi.

Assumption V = max vi. All vi’s are integers in {1, ..., V }
Claim 3.2.2 There is a DP that solves knapsack exactly in pseudo polynomial time O(n2V )

Algorithm 1 DP for Knapsack

A(1)←− {(0, 0), (s1, w1)}
for j = 2..n do
A(j)←− A(j − 1)
for each (t, w) ∈ A(j − 1) do

if t+ sj ≤ B then
Add (t+ sj , w + vj) to A(j))

end if
end for
Remove dominated pairs from A(j)

end for
return max(t,w)∈A(n)w

Claim 3.2.3 We can design a FPTAS that solves Knapsack in time O(n
3

ε ).

Algorithm 2 Discretization DP method for Knapsack

Define V = max vi, R = (1 + 1
ε )n

Round value down to integers in {1, ..., R}, v′
i = bvi RV c

Run Algorithm 1 to solve instance exactly over v
′
i

return Solution

Running Time = O(n2R) = O(n
3

ε ) −→ FPTAS

1



Proof: At first, we define some notations:

OPT = optimal value over vi’s

OPT
′

= optimal value over v
′
i’s

ALG = algorithm’s value over vi’s

Then we want to define R such that:

R

V
OPT − 1

1 + ε

R

V
OPT ≥ n (3.2.1)

ε

1 + ε

R

V
OPT ≥ n

R ≥ 1 + ε

ε

V n

OPT

Since one possible solution is to put the most valuable item in a knapsack by itself, OPT ≥ V .
Then we can pick:

R = (1 +
1

ε
)n (3.2.2)

By (3.2.1) and (3.2.2), we can infer this statements:

OPT
′ ≥

∑
i∈OPT

v
′
i

≥
∑

i∈OPT
bvi

R

V
c

≥
∑

i∈OPT
(vi

R

V
− 1)

=
R

V
OPT − n

(3.2.1)

≥ 1

1 + ε

R

V
OPT

Since we round down values to get the OPT
′

and the algorithm’s solution is the same subset which
is still feasible, we have:

ALG ≥ OPT ′ V

R

≥ V

R

1

1 + ε

R

V
OPT

=
OPT

1 + ε

(3.2.3)

Based on (3.2.2) and (3.2.3), this algorithm is FPTAS.

2



3.3 2D Euclidean TSP

Definition 3.3.1 Traveling Salesman Problem (TSP): Given n nodes and for each pair {i, j} of
distinct nodes, a distance di,j, we desire a closed path that visits each node exactly once (i.e., is a
salesman tour) and incurs the least cost, which is the sum of the distances along the path.

Definition 3.3.2 2D TSP: the nodes lie in R2 (or more generally, in Rd for some d) and distance
is defined using the `2 norm. i.e. figure 3.3.1, given n points on a plane, find a tour of the shortest
Euclidean length.

Figure 3.3.1: 2D Euclidean TSP

Definition 3.3.3 Dissection: We will take a square of side length L around the points of the
instance and divide it into four equally-sized square, then recursively divide each of these squares
four equally-sized squares, and so on. e.g. Figure 3.3.2 left.

Definition 3.3.4 Portal: Tours that enter and exit the squares of the dissection happen at one of
a small set of prespecified equidistant points (portals).

Figure 3.3.2: Left: The dissection. Right: The corresponding quadtree.

3



Assumption 1: Points lie on an integer grid. Points ∈ [n2]2.

Claim 3.3.5 Discretization cost us at most O(1 + 1
n) factor in the approximation radio.

Proof: There are points on the boundary, so the lengh of the tour is at least n2.

OPT ≥ n2

On the other hand, the cost of all detours ≤
√
n2 + n2 =

√
2n

Assumption 2: Tour must enter/exit a square at a portal.

Assumption 3: Optimal tour does not cross itself.

We create limits of enter/exist by assumption 3 without any loss of approximation factor. As we
can see from Figure 3.3.3, if the tour cross itself, we can connect p1-p2 and p3-p4 to remove the
crossing.

Figure 3.3.3: Illustration of Assumption 3

Assumption 4: Number of entries/exits at each portal is at most 1 each.

As we can see from Figure 3.3.4, if the tour cross three or more times at a portal, it can be shortcut
to cross at most twice.

Figure 3.3.4: Illustration of Assumption 4

4



Algorithm 3 High Level Algorithm

Divide n2 × n2 grid into four sub grids.
Divide the boundary of square into m equidistant portals on each side.
Within each subgrid recursively solve for collection of segments that capture all points.

Subproblem - box; for each portal number of entries and number of exits; matching of entries and
exits.

For each portal number of entries and number of exits, we have 0/1 enter and 0/1 exit, so it’s
O(44m).

Matching of entries and exits is O(2O
(m)

).

Number of different boxes in quadtree (Figure 3.3.2 right) is dominated by: O(n4).

Number of subproblems: O(n444m2O(m)) = O(n42O(m))

So we can find the optimal solution satisfying assumptions 1-4 in time poly(n)2O(m).

References

[1] David P. Williamson, David B. Shmoys. The Design of Approximation Algorithms. 2010.

[2] Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and other Geometric Problems. 1998.

5


