
CS880: Approximation and Online Algorithms Scribe: Mikhail Nedbai

Lecture 4: Local Search Date: 09.11.2019

4.1 Introduction

Local search algorithms belong to a class of algorithms, which employ heuristc techniques in ap-
proximately solving optimization problems. In general, a local search algorithm starts from an
arbitrary feasible solution to the problem, and makes incremental progress in modifying the solu-
tion, while maintaining feasibility, until no modification to the current solution can imporve the
cost. While this techniqe is widely used in practice, it suffers from several drawbacks :

• A local search algorithm that terminates only returns a localy optimal solution, which could
vary in cost drastically compared to the global optimum.

• In many cases finding even a local optimum within a constrained number of iterations can be
challenging.

• Since most local search algorithms are heuristic, they tend to give minial theoretical guatan-
tees.

There are of course ways to deal with the above mentioned issues. As we will see below, utilizing
appropriate local structure will allow us to provide guarantees on both quality of locally optimal
solutions in respect to the global optimum, as well as the time complexity of the algorithm’s
convergence.

4.2 Max Cut Local Search Algorithm

4.2.1 Problem statement

We now present a local search algorithm for the Max Cut problem. We first define a cut in a graph

Definition 4.2.1 (Cut of a graph) Let G = (V,E) be a graph and let wi,j , (i, j) ∈ E be the weight
of each edge in the graph. Then a partition of the vertex set (S, V \ S) is a cut in the graph. Cost
of the cut C is defined as C(S) =

∑
(i,j)∈E∩S×(V \S)wi,j , ∀S ⊆ V

The Max cut problem is defined as follows :

Definition 4.2.2 (Max Cut) Let G = (V,E) be a graph with positive edge weights wi,j, then the
Max cut of a graph is S∗ = maxS⊆V C(S).

Max cut problem is NP hard, and further more is APX-Hard for any approximation factor better
than 17

16 . An algorithm that utilizes semidefinite programming is shown to achieve approximation
ratio very close to this value. Here we describe a simple 2 approximation local search algorithm
for max cut. For this version of the algorithm, we will allow two modifications to be made on each

1

iteration, S ∩ {v} and S \ {v}, since a feasible solution to Max Cut is any S ⊆ V . Other local
search algorithms could incorporate different modifications, such as exchanging verticies between
the two sides of the cut.

4.2.2 Algorithm

With that, the algorithm is defined as follows :

• Start S ← ∅

• while ∃v : C(S ∪ {v}) > C(S) ∨ C(S \ {v}) > C(S)

– perform either S ← S ∪ {v} or S ← S \ {v} to increase the cost of the cut.

4.2.3 Analysis

Claim 4.2.3 The algorithm above achieves a 2 approximation for Max Cut

Proof: Suppose a local optimum S is reached. Then consider any i ∈ S. Local optimality of S
implies that ∑

j∈V \S

wi,j ≥
∑
j∈S

wi,j (4.2.1)

2
∑
j∈V \S

wi,j ≥
∑
j∈V

wi,j (4.2.2)

Similarly consider any i ∈ V \ S. Local optimality of S entails∑
j∈S

wi,j ≥
∑
j∈V \S

wi,j (4.2.3)

2
∑
j∈S

wi,j ≥
∑
j∈V

wi,j (4.2.4)

Then summing up over all i ∈ V

2C(S) =
∑
i∈S

∑
j∈V \S

wi,j +
∑
i∈V \S

∑
j∈S

wi,j (4.2.5)

≥
∑
i∈S

1

2

∑
j∈V

wi,j +
∑
i∈V \S

1

2

∑
j∈V

wi,j (4.2.6)

=
∑
e∈E

we (4.2.7)

It is trivial to observe that OPT cannot be larger that the total weight of all edges in the graph,
and thus 2C(S) ≥ OPT , and the claim is proven.

Now that we have prooved that this is a 2 - approximation algorithm, we exmaine it’s runtime. At
each step the algorithm considers 2 actions for every vertex, addition or removal, both of which take

2

time O(|V |), and thus performs O(|V |2) operations on each iteration. If the weights are assumed
to be integral, then the maximum number of iterations the algorithm makes is

∑
e∈E we, since the

cost at each iteration increases by at least 1, and the maximum cost that can be achieved is the sum
of weights of all edges. The total number of iterations is thus O(|V |2

∑
e∈E we). If the edge weights

are unbounded, running time of this algorithm thus becomes non - polynomial, however this can
be mititgated by requiring that sufficient progress is made on each iteration. If we mandate that
the cost of the cut increases by (1 + ε), ε > 0 on each iteration, we obtain an algorithm with an
approximation ratio of 2 + ε.

4.3 Facility location problem

4.3.1 Problem statement

The Facility Location problem concerns building a set of facilities that would serve a set of cus-
tomers. Opening each facility incurrs a cost, and additionally each client incurrs a cost of traveling
to their nearest facility. In the version of the problem that we will concider, the Metric Uncapac-
itated Facility Location problem, any number of facilities can be open, and the costs incurred by
clients are proportional to a distance metric. More formally :

Definition 4.3.1 (Metric)
A metric on set M is a function d : M ×M such that

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)

• d(x, x) = 0

One way to think about the facility location problem is to define it on a a graph. Then formally :

Definition 4.3.2 (Facility Location)
Let X,Y ⊆ V denote the set of facilities and the set of customers respectively. Let fi denote the
cost of opening location i, and let ci,j denote the cost of connecting client j to facility i. Then the
objective is

min
S⊆X,S 6=∅

∑
i∈S

fi +
∑
j∈Y

min
i∈S

ci,j

Here we will show a constant factor approximation algorithm for this problem. The assumption of
a distance metric on the costs of connecting clients to facilities will allow us to do so, since a more
general version of this problem without this assumption only allows for a O(log(n)) approximation
factor for the problem. More specifically, we will present an algorithm that achieves a 3 approxi-
mation to this problem, although the analysis we provide further on will show a 5 approximation
factor. More generally the best algorithm for this problem to date achieves an approximation ratio
of roughly 1.52 which is very close to the theoretical lower bound of 1.46, approximating beyound
which is NP-Hard.

3

4.3.2 Algorithm

• Start with arbitrary S ⊆ X,S 6= ∅

• Carry out deletions, insertions and swaps of facilities in X, as long as C(S) lowers.

• retunr the localy optinal S.

4.3.3 Analysis

Theorem 4.3.3 The above algorithm approximates Facility Location problem with a factor of 5,
given that a localy optimal solution is returned. Formally C(S) ≤ 5C(S∗), where S∗ is the optimal
solution to the problem.

In order to prove the above claim, we first prove several lemmas. We introduce several shorthands
for notation :

• rSj = mini∈S ci,j

• Cr(S) =
∑

j∈Y r
S
j

• Cf (j) =
∑

i∈S fi

• C(S) = Cf (S) + Cr(S)

• σ(j) is the facility to which j is assinged in solution S

• σ∗(j) is the facility to which j is assinged in solution S*

• Ri =
∑

j:σ(j)=i rj

• R∗i =
∑

j:σ(j)=i r
∗
j

The first lemma will help us bound Cr(S)

Lemma 4.3.4 Cr(S) ≤ C(S∗)

Proof: Let i∗ be some facility opened by S∗. Then consider adding i∗ to S, and connecting all
clients of i∗ in S∗ to i∗. Since S is a local optimum, the addition of i∗ cannot imporve the cost,
therefore

fi∗ −
∑

j:σ∗(j)=i∗

(r∗(j)− r(j)) > 0

∑
i∗∈S∗

[
fi∗ −

∑
j:σ∗(j)=i∗

(r∗(j)− r(j))
]
> 0

Cf (S∗) + Cr(S
∗)− Cr(S) > 0

C(S∗)− Cr(S) > 0

Now that a bound on Cr(S) is established all thats left is to bound Cf (S)

4

Figure 4.3.1: Assingment of vetices for lemma 4.3.5, red nodes are prinary, blue are secondary

Lemma 4.3.5 Cf (S) ≤ 2C(S∗) + 2Cr(S
∗) ≤ 4C(S∗)

Proof: We begin by assining each vertex i ∈ S to a vertex i∗ ∈ S∗, where each i maps to the
closest i∗ as defined by ci,i∗. From here we consider two possible cases. Potentially, multiple vertices
i in S can be assinged to a single i∗. We say that if some i is assinged to i∗ and closest to i∗ among
all other facilities assinged to i∗ it is primary, otherwise we call it secondary. We will provide
separate arguments for the cost of connecting clients to particular i.

Claim 4.3.6 If i ∈ S is primary, then fi ≤ Ri +R∗i + fi∗

Proof: We will proceed by swapping some facility i in S with i∗, the facility closest to i in S∗.
Then, since S is a local optima, the swap should increase the cost of the solution. Since S is locally
optimal, we compute the cost of swapping i and i∗

f∗i − fi +
∑

j:σ(j)=i

ci∗,j − ci,j ≥ 0

We not attempt to bound ci∗,j − ci,j By the triangle inequality we obtain

ci∗, j − ci,j ≤ ci,i∗

Considering that i∗ is the closest facility to i in S∗

ci,i∗ ≤ ci,σ∗(j)
≤ cj,σ∗(j) + cj, i by triangle inequality

= ri + r∗i by definition

Having obtained the upper bound we return to the original equasion

5

Figure 4.3.2: Supporting diagram for claim 4.3.6

f∗i − fi +
∑

j:σ(j)=i

ci∗,j − ci,j ≥ 0

f∗i − fi +
∑

j:σ(j)=i

ri + r∗i ≥ 0

f∗i − fi +Ri +R∗i ≥ 0

fi ≤ Ri +R∗i + fi∗

This completes our proof of the claim.
We now consider the case of i as a secondary vertex.

Claim 4.3.7 If i is secondary, then fi ≤ 2(Ri +R∗i).

Proof: Let i′ denote the primary facility. In this case, consider removing i from S, and assinging
customers of i to i′. In this case the local optimality of S still implies that the cost would not
decrease, thus we calculate the cost of this change.

−fi +
∑

j:σ(j)=i

ci∗,j − ci,j

Similarly we attempt to upper bound ci∗,j − ci,j .

ci′,j − ci,j ≤ ci,i∗ + ci∗,i′ by the triangle inequality

≤ 2ci,i∗ since i is secondary

≤ 2ci,σ∗(j) by triangle inequality

= 2(ri + r∗i) by definition

Similarly to the proof above we return to the original claim

6

Figure 4.3.3: Supporting diagram for claim 4.3.7

−fi +
∑

j:σ(j)=i

ci∗,j − ci,j ≥ 0

−fi +
∑

j:σ(j)=i

2(ri + r∗i) ≥ 0

−fi + 2(Ri +R∗i) ≥ 0

fi ≤ 2(Ri +R∗i)

Now finally we put the two results of the two claims above together

Cf (S) ≤ Cf (S∗) +
∑
i∈S

2(Ri +R∗i)

= Cf (S∗) + 2Cr(S) + 2Cr(S
∗)

≤ 2C(S∗) + 2Cr(S)

≤ 4C(S∗) by lemma 4.3.4

Thus the lemma is proven.
Finally we can put all the pieces together and prove theorem 4.3.3

C(S) = Cf (S) + Cr(S) ≤ 4C(S∗) + C(S∗) = 5C(S∗)

7

