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8.1 Degree-bounded Spanning Tree Problem

In this scribe we revisit the Degree-bounded Spanning Tree Problem: Given a graph G = (V,E)
with cost on each edge e being ce, and degree bounds Bv for each v ∈ W , find a minimum cost
spanning tree over G such that degT (v) ≤ Bv for each v ∈W .

We denote δ(v) as the set of edges in G incident to v and E(S) be the set of edges whose both
endpoints are in S. We introduce a linear program modelling this problem: Introduce a variable
xe for each edge e, with xe = 1 denoting xe is chosen in the spanning tree, and xe = 0 otherwise.
Consider the following linear program:

min
∑
e∈E

cexe

subject to
∑

e∈E(S)

x1 ≤ |S| − 1 ∀S ⊂ V, |S| ≥ 2 (1)∑
e∈E

xe = |V | − 1 (2)∑
e∈δ(v)

xe ≤ Bv ∀v ∈W (3)

xe ≥ 0 ∀e ∈ E (4)

Constraint (1) enforces connectivity (each vertex subset does not contain sufficient edges to form a
cycle); (2) enforces that the resulting edges forms a tree; and (3) enforces the degree bound. Note
that though this LP contains exponential number of constraints, it can be solved efficiently using
the ellipsoid method due to Cunningham [1984] and Lau et al. [2011].

Let us consider the polytope P enclosed by the constraints (1)–(4). The following lemma results
in an iterative rounding algorithm for our problem:

Lemma 8.1.1 For any extremal point x of P , exactly one of the following holds:

(i) there exists some edge e with xe = 0;

(ii) there exists some edge e with xe = 1; and

(iii) there exists some vertex v ∈W with degE(v) ≤ 3.

Our algorithm proceeds as follows: Solve the LP and yield an optimal solution x. For each edge e
with xe = 0, remove e from the graph; for each edge e with xe = 1, include it in the solution; and
for each vertex v with devE(v) ≤ 3, we drop v from W , and then resolve the new LP iteratively.
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The algorithm will terminate in at most |E| + |W | steps since in each step we either remove one
variable or one constraint from the LP. Moreover, the algorithm never makes the LP result worse
since our modification to the LP respects the value of each xe in the optimal solution. Since we
remove the vertex v with v ∈ W with degE(v) ≤ 3 and in the worst case, Bv = 1, the spanning
tree returned by the algorithm violates the degree bound by at most 2.

Now it remains to show Lemma 8.1.1 is true, for which we need the following lemma.

Lemma 8.1.2 For any extremal point x ∈ P , there exists a family of sets L ∈ 2V and a subset of
vertices Z ∈W such that

(i) the constraints corresponding to S ∈ L and vertices v ∈ Z are tight;

(ii) the constraints corresponding to L and Z are linearly independent;

(iii) |L|+ |Z| = |E|; and

(iv) L is a laminar family.

Let L be a family of sets of 2V . The family L is a laminar family if for any distinct A,B ∈ L,
either A ∩ B = ∅, or A ⊆ B or B ⊆ A. If each set in L contains at least 2 elements (due to (1)
restricting |S| ≥ 2), we have that |L| ≤ |V | − 1.

In what follows we show the proof of Lemma 8.1.1 and Lemma 8.1.2.

Proof of Lemma 8.1.1

First, if there exists some vertex v such that degE(v) = 1, let the edge incident to v be e, and we
must have xe = 1, and thus (ii) holds. We thus consider the case where degE(v) ≥ 2 for each v ∈ V .

Suppose that (i) and (ii) do not hold in Lemma 8.1.1, and for contradiction that (iii) does not hold.
In this case, we have xe > 0 for each edge e, and that for each v ∈W , degE(v) ≥ 4. Hence we have

|E| = 1

2

∑
v∈V

degE(v) =
1

2
(
∑
v∈W

degE(v) +
∑
v/∈W

degE(v))

≥ 1

2
(
∑
v∈W

4 +
∑
v/∈W

2)

=
1

2
(4|W |+ 2(|V | − |W |))

= |V |+ |W |.

However by Lemma 8.1.2, we have that

|E| = |L|+ |Z| ≤ |V | − 1 + |W |,

a contradiction. Thus (iii) holds.
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Proof of Lemma 8.1.2

Since the constraints of the LP are linear and the variable x is in an |E| dimensional space, any
extremal point is the intersection of precisely |E| linearly independent tight constraints. In our
setting, there are |L| constraints in constraints (1) and (2) and |Z| constraints in constraints (3),
and thus (i), (ii) and (iii) follow.

To show (iv), it suffices to show the following lemma.

Lemma 8.1.3 Given any family F ⊆ 2V of the tight sets in the LP, there exists a laminar family
L ⊆ 2V of linearly independent tight sets such that span(F) ⊆ span(L).

Proof: Let L be a maximal laminar family of linearly independent tight sets of F . Here L is
maximal if the family L ∪ {S} is not a laminar family, though S is tight and L ∪ {S} are linearly
independent.

Suppose for contradiction that there exists some tight set in span(F) that is not in L, and let S
be the one set that intersects as few sets in L as possible. Consider any set T ∈ L. We denote
x(S) :=

∑
e∈E(S) xe and show the following three claims.

Claim 8.1.4 Sets S ∩ T and S ∪ T are tight.

Since S and T are tight, we have

x(S) = |S| − 1 and x(T ) = |T | − 1.

We also have
x(S ∪ T ) ≤ |S ∪ T | − 1 and x(S ∩ T ) ≤ |S ∩ T | − 1.

It then follows that

x(S ∩ T ) + x(S ∪ T ) ≤ |S ∩ T |+ |S ∪ T | − 2 = |S|+ |T | − 2 = x(S) + x(T ).

On the other hand, any edge appearing in S or T must appear in S ∪ T or S ∩ T , and S ∪ T may
contain edges whose endpoints are in S \ T and T \ S respectively. This yields

x(S ∩ T ) + x(S ∪ T ) ≥ x(S) + x(T ),

which implies that both S ∩ T and S ∪ T are tight.

Claim 8.1.5 Let χ(F ) be the membership vector of each edge e ∈ F . Then χ(S ∩ T ) +χ(S ∪ T ) =
χ(S) + χ(T ).

Claim 8.1.4 shows that there exists no edge whose endpoints are in S \ T and T \ S respectively,
and thus each edge is counted in S or T on the right hand side is counted in the left hand side and
vice versa.

Claim 8.1.6 The sets S ∪ T and S ∩ T intersect with fewer sets in L than S.

This follows since any set intersecting S ∩T is intersecting S, and S ∩T does not intersect with T ,
and S does otherwise.

Since S /∈ span(L), by Claim 8.1.5 we have either S ∪ T /∈ span(L) or S ∩ T /∈ span(L). By Claim
8.1.4 and 8.1.6, both S ∩ T and S ∪ T are tight and intersects with fewer sets in L, contradicting
that S is the set intersecting with the fewest sets in L. Thus span(F) ⊆ span(L).
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8.2 Introduction to LP Duality

Consider the following linear program P1:

min 5x+ 3y
subject to x+ y ≥ 10

x+ 2y ≥ 15
x ≥ 0
y ≥ 0.

If we sum up the first two constraints, we would yield (x+ y) + (x+ 2y) = 2x+ 3y ≥ 10 + 15 = 25.
Since 5x + 3y ≥ 2x + 3y, we have obtained 25 as a lower bound of 5x + 3y. More generally, if we
multiply the first and second constraint by nonnegative multipliers α1 and α2 and sum them up,
we would have

α1(x+ y) + α2(x+ 2y) ≥ 10α1 + 15α2,

that is
(α1 + α2)x+ (α1 + 2α2)y ≥ 10α1 + 15α2.

Then for any nonnegative α1 and α2 satisfying

α1 + α2 ≤ 5 and α1 + 2α2 ≤ 3,

the value 10α1 + 15α2 is a lower bound of 5x + 3y, and thus is the largest that 10α1 + 15α2 can
achieve. That is, if we consider the program P2:

max 10α1 + 15α2

subject to α1 + α2 ≤ 5
α1 + 2α2 ≤ 3
α1 ≥ 0
α2 ≥ 0,

any feasible solution of P2 is a lower bound on the optimal solution of P1, called the weak duality
theorem. The LP P2 is called the dual of P1.

In general, consider the linear program P , then the linear program D is the dual of P .

(P )
min cTx
subject to Ax ≥ b

x ≥ 0.

(D)
min bTy
subject to ATy ≤ c

y ≥ 0.

Theorem 8.2.1 (Weak Duality Theorem) Let x and y be feasible solutions of P and D respec-
tively. Then cTx ≥ bTy.
Proof: By feasibility of x and y, it follows that

cTx ≥ (ATy)Tx = yTAx = yT(Ax) ≥ yTb = bTy.
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The strong duality theorem states that if x∗ and y∗ are the optimal solutions of P andD respectively,
then we have cTx∗ = bTy∗. Moreover, the following conditions hold for x∗ and y∗, called the
complementary slackness:

• For each i, we have either x∗i = 0 or (ATy∗)i = 0; and

• For each j, we have either y∗j = 0 or (Ax∗)j = 0.
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