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9.1 Properties of Primal-Dual Linear Programming
Primal Dual

min cTx s.t. max bT y s.t.
Ax ≥ b ⇐⇒ y ≥ 0 m constraints
x ≥ 0 ⇐⇒ AT y ≥ 0 n constraints

Figure 9.1.1: Primal-Dual Relationship

Theorem 9.1.1 Weak Duality
For every feasible x and y:

cTx ≥ (AT y)Tx = xTAT y = (Ax)T y ≥ bT y

Theorem 9.1.2 Strong Duality
For optimal solutions x∗ and y∗:

x∗T c = bT y∗

Theorem 9.1.3 Complementary Slackness
x and y are optimal iff:
(a) ∀i, either xi = 0 or (AT y)i = ci.
(b) ∀j, either yj = 0 or (Ax)j = bj.
Theorem 9.1.4 Approximate version of complementary slackness
Given α, β > 1:
(a) ∀i,, either xi = 0 or (AT y)i ≥ 1

β ci.
(b) ∀j, either yj = 0 or (Ax)j ≤ αbj
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Theorem 9.1.5 For all feasible x and y which satisfy conditions of α−β complementary slackness,
x and y are (αβ)−approximately optimal.
Proof:

cTx ≤ β(AT y)Tx = β(Ax)T y ≤ (βα)bT y

9.2 Set Cover

We write a primal-dual program for set cover problem: Consider i as indexes of sets and e as index
of elements. Then we have:

Primal Dual
min Σicixi s.t. max Σeye s.t.
∀eΣSi3exi ≥ 1 ∀eye ≥ 0
∀ixi ≥ 0 ∀iΣe∈Siye ≤ ci

covering constraints packing constraints

Fact 9.2.1 The dual presents variables which their values represent how much should be paid for
each edge to be covered.
Consider the greedy algorithm below to solve set cover problem.[1]

Algorithm 1 Greedy Algorithm
1: Initialize C ← ∅
2: while C 6= all elements do
3: Let i = arg min ci

|Si\C|
4: Include Si in solution
5: For all e ∈ Si\C set ye =

ci
|Si\C|

6: C ← C ∪ Si [i.e. set xi = 1]
7: end while

Claim 9.2.2 x is feasible.
Proof: The algorithm works until all elements are covered and sets 1 for the corresponding vari-
ables. So the condition in primal linear program will hold in the end.

Claim 9.2.3 Σi∈solution ci = Σicixi = Σeye.
Proof: We only set x variables 1 which were included in the solution. This concludes the first
equality.
Moreover, at each iteration which we found a new set to include in the solution, we set exactly
|Si\C| y variables as ci

|Si\C| . This concludes the second equality.
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Claim 9.2.4 If n is the number of elements, ∀i : Σe∈Siye ≤ Hnci.
Proof: Order elements in Si in order of coverage. Consider jth element.

For each element, cost of Si when j was covered is less than or equal to ci
|Si| − j + 1

. Therefore

yi ≤
ci

|Si| − j + 1
.

Σe∈Siye = Σj
ci

|Si| − j + 1
= ci

[
1

|Si|
+

1

|Si| − 1
+ . . .+ 1

]
≤ ciHn

Implication 9.2.5 ŷ =
y

Hn
is a feasible dual solution and Σeŷe ≥

1

Hn
Σicixi. This means we have

a Hn approximation factor in which Hn = Σn
i=1

1

i
= θ(log n).

9.3 Primal Dual Algorithms

Basic Steps in a Primal-Dual Algorithm (in a minimization problem) is as follows:

Algorithm 2 Primal Dual Algorithm
1: Initialize Start with x = 0, y = 0. Always maintain dual feasibility.
2: while Primal is not feasible do
3: Raise some y’s until some dual constraint goes tight.
4: Raise corresponding primal variables; freeze dual variables in the tight constraint. (Raise it

enough to satisfy all constraints it is in.)
5: end while

Primal-Dual for set cover is as follows:

Algorithm 3 Primal Dual Algorithm for Set Cover Problem
1: Initialize Start with x = 0, y = 0.
2: Pick some uncovered e. Raise ye until for some i, Σe∈Siye = ci.
3: Set xi = 1. For all e ∈ Si, freeze ye.
4: If there exists any uncovered e, go to Step 2.

Claim 9.3.1 x and y are feasible.
Claim 9.3.2 If xi > 0 then Σe∈Siye = ci.
Claim 9.3.3 Σi:S3exi ≤ F where F is the maximum frequency. (i.e. F = maxe |{i ∈ Si 3 e}|)
This concludes a F -approximation factor for the problem.

9.4 Feedback Vertex Set

Assume G = (V,E) is a graph with costs cv on vertices.
Goal: Remove the min cost set of vertices to make the graph acyclic.
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This problem is NP -hard due to Karp. [2]

Primal Dual
min Σvcvxv s.t. max ΣCyC s.t.
∀C Σv∈Cxv ≥ 1 ∀C yC ≥ 0
∀v xv ≥ 0 ∀v ΣC:v∈CyC ≤ cost(C)

Here by C we mean any cycle in the graph. Primal-Dual algorithm for FVS is as follows:[3]

Algorithm 4 Primal Dual Algorithm for Set Cover Problem
1: Initialize Start with x = 0, y = 0.
2: Pick some uncovered cycle C with fewest vertices of degree greater than or equal to 3. Raise

yC until for some v, ΣC3vyC = cv.
3: Set xv = 1. For all C 3 v, freeze yC .
4: If there exists any uncovered C, go to Step 2.

Claim 9.4.1 x and y are feasible.
Claim 9.4.2 If for some v, xv > 0, then ΣC3v yC = cx.
Claim 9.4.3 In each iteration, we can find an uncovered edge with less than or equal to 2 log n
vertices of degree greater than or equal to 3.
Claim 9.4.4 For all cycles C in which yC > 0,

Σv∈Cxv ≤ 4 log n

Proof: Before C is covered, Σv∈Cxv = 0.
C contains less than or equal to 2 log n vertices of degree greater than or equal to 3 and between
them there at less than or equal to 2 log n segments that are paths over degree 2 vertices. (one per
segment)
Therefore, we pick at most 2 log n+ 2 log n = 4 log n vertices during this algorithm.
Corollary 9.4.5 The above claim concludes a 4 log n-approximation factor for FVS.
Fact 9.4.6 We would not get a bounded result if we had chosen cycles arbitrarily during step 2 of
primal-dual algorithm.
Remark 9.4.7 This analysis is nearly tight. The best approximation ratio for this problem is 2.
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