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1.1 Preliminaries

We begin these notes by briefly reviewing a few definitions which will be used extensively in our
discussion of convex programming hierarchies for integer programs.

The integer linear programming (ILP) which is NP-hard to solve is:

maximize w’
subject to Az <b (1.1.1)
z €{0,1}"
Linear Program Relaxation is over the region
P :={z e R"|Az < b} (1.1.2)

Integral polytope we really want to find is relaxed convex hull of integral solution

Pr = conv(PN{0,1}") (1.1.3)

Hierarchies are systematic ways of constructing tighter and tighter relaxtion between P and Py
POP’D...DP'D...D P (1.1.4)

Goal: hopefully it will converge in finite number of steps and also easy to optimize over P?
Why are we interested in hierarchies?

1. Polyhedral Combinatorics How many rounds are required to reduce the feasible set to
P;? Which constraints are satisfied?

2. Proof Systems Complexity and lower bound

3. Approximation Algorithm Integrality gap after t rounds/levels, better approximation,
conjecture on the hardness of the question

We will introduce three hierarchies for LP and SDP, give examples and compare them for tightness.

1. Lovasz-Schrijver hierarchy (LP/SDP) [1991]

2. Sherali-Adams hierarchy (LP) [1990]



3. Lasserre hierarchy (SDP) [2001]

p=p'op*>...0P'D...2P"=P; (1.1.5)

They are all specific type of lift and project method. And they can all optimize over P! in polynomial
time for fixed ¢.

1.2 Lift and Project Method

Let’s start with notation.
P:={z eR" Az <)}

We homogenize P to the cone in n 4+ 1 dimension

C(P) :={(\A\z1,..., \z,) e R"HA > 0,2 € P}
= {(zp, 2, ..., 2)) € R" M ba) — Az’ > 0}
={yeR"gly>0,l=1,...,m}

by

—an
Where Ax < b as alTx <b;and g; =

—Qin
This type of optimization is often called Conic Optimization: minimizing a convex function over
the intersection of an affine subspace and a convex cone. The class of conic optimization problems
includes some of the most well known classes of convex optimization problems, namely linear and
semidefinite programming.

1.2.1 Framework

The lift and project method are carried out with 3 steps:

1. Generate New Variables
Multiple the system Ax < b by the product of constrains z; > 0 and 1 —x; >0
— Polynomial system in x

2. Linearize and lift
Introduce new variables y; for the products [[,.; z; and setting {L‘ZQ =x;
— Linear system in (x,y) denoted M
Lift — higher dimension space (x,y)

3. Project
Reduce it back on the x-variables space



— LP relaxation P’ = {z|Jys.t.(z,y) € M} satistying
PrcP cCcP

Intuitively, we cut P by some planes Y7

The linear programming relaxation of an integer program is strengthened by lifting the problem into
a higher dimensional space, where a more convenient formulation may give a tighter relaxation. One
then has a choice between working with this tighter relaxation in the higher dimensional space,or
projecting it back onto the original space. In this latter case,the whole procedure can be viewed as
a method for generating cutting planes in the original space. The different hierarchy has different
multiplier and linearization.

1.3 The Balas-Ceria-Cornuejols construction[1993]

Let’s talk a look at a very simple example with Lift and Project method where we fix one variable
to be integral value as a time.

1. Multiple the system Az < b by x1 and 1 — 1
z1(b—Ax) >0,(1 —z1)(b— Az) >0

2. Linearize and lift
Introduce new variables y; for the products ziz; and set y; = 1
— Linear system in (x,y)

My ={(z,y) :y1 = x1,bz1 — Ay > 0,b(1 —21) — A(x —y) > 0}

3. Project
Reduce M; back on the x subspace and get P!
— LP relaxation P’ satisfying
PrcPlcp

4. Iterate: use variables x5 starting from P! and get P'?

Lemma 1.3.1 P! = conv(PN{z: 21 =0,1})

Proof: The forward direction: Let 2 € P! and x can be written as x = 3311% + (1 —21) 2

iy
Conversely, let z € (PN {z: 21 = 0,1}), then (z,z17) € M. Therefore z € P!
If B is convex and A C B, then conv(A) C B |

Corollary 1.3.2 P; = P2+ qfter n iterations



1.4 The Lovasz-Schrijver construction[1991]

The original construction of Lovasz-Schrijver (LS) starts with defination of N/N, operator.

Definition 1.4.1 Let cone K = C(P) = (y € R") and N(P) be the cone in R defined by
Y= (Y0, Y1, ---,yn) € N(K) iff there exists a matriz Y € RUFDX0H) gych that

1. Y is symmetric
2. Y, = Yi fOT’i S [n]
3. Yo =y; forie [n]

4. Y, € K and Yy —Y; € K fori € [n] whereY; is the i-th row of Y

In such case, Y is called protection matrix of y. In addition, if Y is positive semidefinite, then
y € N4 (K). We define N°(K) and N9(K) as K and N'(K) = N(N'"!(K)) (respectively N’ (K) =
N4 (N{TH(K))).

Let’s think of it in the Lift and Project framework first with LP where it introduces all the products
of two variables at each level.

1. Multiple the system Az < b by z; and 1 — x; for i € [n]
(bla'f:c)xi:ng< > ( ) e; > 0 for all [
(bl—al x)(1 — ;) —gl ( ) ( ) (eg —e;) >0 for all [
2. Linearize and lift

T
Introduce new matrix variables Y = <:):E> <1>

— Linear system in (x,y)

M(P) ={Y € Spy1: Yoi = i, Ye,, Y (eo — €;) € Prvi € [n]}

3. Project
Reduce M (P) back on the x subspace

N(P) = {z € R"]3Y € M(P)s.t. G;) =Y.}
4. Tterate starting from N(P) and get N?(P)

Similarly, we can construct it for SDP with

My (P)={Y eS|, = Yii, Ye;, Y (eo — €;) € PiVi € [n]}



and
N (P)={z e R"|FY € M, (P)s.t. <313> =Y}

As we can see, the higher dimensional space they use is obtained by multiplying every inequality
by every 0-1 variable and its complement in turn, then linearizing the resulting system of quadratic
inequalities and finally projecting back the system onto the original space.The lifting phase of this
procedure involves a squaring of the number of variables and an even steeper increase in the
number of constraints, but iterating the lifting/projecting step a number of times equal to the
number of original 0-1 variables yields the convex hull of feasible 0-1 points. Comparing this to
BCC construction, it only doubles number of variables.

1.4.1 Properties of LS/LS,

Lemma 1.4.2 1. Iterate N'(P) = N(N'"}(P)), NL(P) = Ny (N H(P))
PrCc Ny(P)CN(P)CP

N(P) C Niepconv(P N {z|z; = 0,1})

N™(P) = P;

A S

if one can optimize in polynomial time over C(P), then the same holds for N'(P) and for
NL(P) for any fized t

Example: Consider a [y ball centered at e/2

P={z eRY| ¥ c;mi+ e (1 —2) > 1/2¥I CV}

Pr=0but £ € NV 1(P)

Hence, n iterations of N are need to find Py [

1.4.2 Distribution point of view

Alternatively, we can think of Y;; as E[y;y;] = Prob(y;&y;). And at each level of the hierarchy, we
inquire on the the value of a vertex.

1.4.3 Application of LS
P=FR(G) ={z e RY|z; +z; <1,(4,5) € B}
P; = STAB(G): stable set polytope of G
1. Y € M(FR(G)) — yi; = 0 for all edges (i,j) € £

2. The clique inequality: >, o 2; <1 is valid for Ny (FR(G)

3. The odd cycle inequalities: } .y /() % < |C|Tl are valid for N(F R(G)) and they determine
it exactly



1.5 Sherali-Adams Hierarchy

We will motivate the Sherali-Adams (SA) relaxation by looking into Lovasz-Schrijver. Given a
vector ¥ = (Yo,Y1,---,%n) € N?(K) and let Y be y’s protection matrix. Let’s consider Y; =
(YiY0, YiY1, - - -, Yiyn) - ith row of Y. Y; € N(K) must has a protection matrix Y’. The (jk) entry
inY’ - Y] = YiViYiyr = YiY;yk if y is integral solution. This triple depends on the choice of ¢. If
we pick j-th row in Y and ik-th entry in its protection matrix Y, then Y} = y;y;yx. There is no
guarantee that Y}, = Y.

Sherali Adams relaxation addresses this by adding constrains to enforce that all products evaluate
to the same quantity. The main idea of Sherali-Adams is to introduce variables Yg = [],.q¥: for
each S C [n] of t+1. One may use these variables to define locally consistent family of distributions.
Let a”y < b be one of the constrains define the convex polytope P. Sherali-Adams adds constrains
that would be equivalent to the following in the case of boolean vector y, VS, Y C [n] such that

IS|+ T <t
@y—=0)[w [J(—w) <0 (1.5.6)
€S jeT

Carrying out the multiplication, we can express these constrains using our variables {Ys}|s|<¢+1

Z (- ZaiYSUT’U{i} —bYsur <0 (1.5.7)
T'CT =1

The number of new variables and constraints added are O(n®®) and resulting LP can be solved in
O(n°®) time. Some works has been devoted to show one ca noptimize over t-th level of SA using
only weak separation oracle and in certain case can solve such problems in n29®)

1.5.1 Example of Max Independent Set
The ¢-th level of SA relaxation for MIS is:

n
maximize E Yy
i=1

subject to

> (DT Vsurogy + Ysurogy — Ysur) < 0,IS|+ T <t 5) € E - (1.5.8)

TCT

0< > (D" Wsurugy < Y (=DM your
T T'CT

Yy =1

Let’s think of it in the Lift and Project framework.



1. New polynomial constraints
(1 —2)"N(b— Az) >0 for I C W with |W| =1 (1.5.9)
2'(1—2)"M >0 for I C U with |U| =t +1 (1.5.10)
2. Linearize & lift Introduce new variables yy; for all U € Py (V), setting y; = x;
3. Project back on x-variable space and get SA'(P)
Lemma 1.5.1 1. SAY(P) = N(P)
2. SAY(P) C NY(P)
Let’s consider the last step of SA at full lifting.

z € {0,1}" - y* = Hajz € {0,1}7MV)
el

= (1, 21,22, ..., Tp, T1T2, . .o, Tp—1Tpy -« -, Hmz)
eV

=Y =y (") = ([ [[2i)rscv

el jeJ
If v € PN{0,1}", then Y = (y*)(y®)T satisfies:
1. Y(0,0)=1
2. Y(I,J) depends only on I N J moment matrix
3.Y =0

4. gi(z)Y = 0 localizing moment matrix
These conditions characterize conv(y® : x € PN {0,1}"), thus P;

1.5.2 Moment matrix and localizing moment matrices

We can define these Y (I, J) as moment matrix.

Definition 1.5.2 Given y € RPY) define:
1. The moment matriz My (y) = (Y1us)1,5eP(v)

2. The shift vector gxy = ( Y. giy1u)iepv) [linearize g(x)y* = (g(x)x!)]
JEP(V)

3. The localizing moment matriz: My (g*y)

Theorem 1.5.3 1. conv(y®(y*)T : € PN{0,1}) is equal to Ap = {y € RPV)|yy = 1, My (y) >
0, My (g *y) = 0}



2. Pr is the projection of Ap

3. Ap is a polytope
Since SA! is a convex relaxation, then any convex combination of 0/1 solution is a feasible for SA.
The converse is only true locally. Any feasible solution to t-th level Sherali-Adams relaxation is

equivalent to a family of distribution {D(S)}s|<¢4+1 such that they are locally consistent.
Specifically, we have the following lemma:

Lemma 1.5.4 Consider a family of distribution {D(S)}|s|<t+2,5c[n where D(S) is defined over
0,15. If the distribution satisfies:

1. For all (i,j) € £ and S 2 {i,j}, Pps)l(yi =1) A (y; =1)] =0
2. For all " C S C [n] with |S| < t+ 1, the distribution D(S) and D(S’) agrees on S’

Then Ys = Pps)[Nies(yi = 1)] is a feasible solution for the above level-t SA relazation. Conversely,
for any feasible solution {Y§} for the level t 41, there exists a family of distributions satisfying the
above properties as well as Pp(s) = Nies'(yi = 1) = Y for all 8" C S C [n] s.t. |S] <t +1

Extending further the intuition of the variables Yg as probabilities, we can also define variables
for arbitrary events over a set S of size at most ¢. A basic event is given by a partial assignment
o € {0,1}° which assigns value 0 to some variables in S which we denote by a~1(0) and 1 to the
others denoted by a~1(1). We can define variables Xg, when S <t and « € {0,1}* as

Xsa =Y (1.5.11)

TC

Now, let’s motivate the idea of Lasserre construction by comparing the moment matrices.
First, we consider moment matrices in greater detail, so we can use them to show the relation
between Sherali-Adams and Lasserre hierarchies.

1.5.3 Moment Matrices

The underlying idea in our use of moment matrices is to index each matrix by subsets of some
other set. In general, if V' is some set of variables, and I, J C V| we can form a moment matrix
as My (y)rg = f(I,J). In particular, we use f(/,J) = yrus for moment matrices, and f(I,J) =

Z Ayrogugiy — biyrug for localizing moment matrices corresponding to constraint .
We can obtain this equation for a localizing moment matrix by defining a shift operator on vectors
x,y as follows:

x *y is a vector indexed by I C V such that (zxy); = Z TIYrug (1.5.12)

JCV

If a; is the vector of coefficients for constraint [, then the localizing moment matrix for constraint
lis M (ax*vy).



A slight variation on these definitions is to take set V, and choose some constant ¢ < [V|. Then
M, (y) only takes the entries of My (y) where the corresponding I, J have sizes each at most ¢.
This leads us to the following definitions of hierarchies in terms of moment matrices:

Sherali Adams relaxation(Local) SA!(P)

Consider My (y) = (y1us)1,Jcv, indexed by P(U) for U C V

MU(y) > O,Mw(gl * y) = 0,VU e PtJrl(V),W S Pt(V)

LP with variables y; for all I € Pryq(V)

Lasserre relaxation(Global) Las!(P)

Consider My(y) = (y1u.)1),.7<¢> indexed by Py(V) for some t < n

Mi(y) = 0, Mi—1 (g1 *y) = 0

SDP with variables y; for all T € Py (V)

From the moment matrices, we can see L'(P) C SA;_1(P)

1.6 Lasserre Construction [2001]

Suppose, as in previous hierarchies, that we wish to solve some integer linear program with con-
straints Ax < b and x € 0,1". We relax this to a general linear program with x € R, and wish to
introduce new constraints to tighten the relaxation. Previously, we saw the Lovasz-Schrijver and
Sherali-Adams hierarchies, which applied new constraints for up to n rounds, at which point we
were left with P = conv(K N0,1"), where K was the set of feasible solutions to the linear program
with € [0,1]". Now, the elements of P are clearly either themselves solutions to the integer
program, or a convex combination of integer program solutions. We can interpret the fractional
solutions as probabilities for a value of ‘1’ in an integer solution, or the probability a variable is
“included” in a set, as in the case of Max Independent Set. In the Lasserre hierarchy, as in the
Sherali-Adams hierarchy, we attempt to tighten the solution set more quickly by introducing con-
straints on joint events, relative to the Lovasz-Schrijver hierarchy that only constrains individual
events. We then define the Lasserre hierarchy as in the notes by Rothvo8 [1]:

Assume K = {z € R"|Az > b}, and y € R2" . Let LA;(K) denote the t*" level of the Lasserre
hierarchy, I,J C [n] with |I|,|J| < ¢, and let m be the number of constraints in the prob-
lem. Further, for a vector y, define M;(y) = (yrus)1.s the moment matriz of y, and M}(y) =

(Z Auyrogugy — blyIUJ> Vil € [m] the moment matriz of slacks.
i=1 I,J
Then y € LA,(K) if My(y) = 0 and M}(y) = 0. Returning to the idea of probabilities of joint

events, we then interpret yg as the probability that all i € S C [n] are included in the solution.
1.6.1 Example of Max Independent Set

The Lasserre hierarchy produces semidefinite programs. Adopting the SDP notation used by
Chlamtac and Tulsiani [2], the Maximum Independent Set SDP produced by the ™ level of the
Lasserre hierarchy is:



maximize Z HU{i}H2

eV

subject to (Ugy, Ugjy) =0 (1.6.13)
<U51, U52> = <US3, US4> VS1 USy = 53U 8,
10yl =1

1.7 Comparison on 3 hierarchies

It can be shown that the t'! Lasserre hierarchy level is a subset of the same hierarchy levels for
Sherali-Adams and Lovasj-Schrijver hierarchies. First, it is clear that LS} C LS*, since LSy
imposes an additional constraint on LS. Now, because Lasserre constrains not only products of
pairs of variables, but products of triples, quadruples, quintuples, etc. we have L! C LSi. Finally,
as we saw in the discussion of moment matrices, the Lasserre hierarchy uses moment matrices based
on all subsets up to a given size, while Sherali-Adams has moment matrices based on subsets of a
specific subset, and its subsets. Thus, at the same hierarchy level, Lasserre has more constraints,
and Lt C SAL

However, it is important to note that while the Lasserre hierarchy has the best performance in
terms of quickly reducing the size of the polytope, it introduces many new variables. Thus, there
may be cases where another hierarchy is preferable to Lasserre.

1.8 Dual Approach of SDP

First let’s review SDP and its dual: The standard form of SDP is analogous to the standard form
of LP.

For C, X, A; be n x n matrices for i € [m] in the primal (P), and for y is n x 1 vector and S is n x n
matrix in the dual (D)

min (C, X) max by
X Y
s.t. <A1,X> =b;, 1€ [m] s.t. ZylAl +5=C
i=1
X =0, S=0

where the Frobenius product (C, X) =}, ; ¢; jzi;

Dual Approach of SDP Recall the definition of positive semdefinte matrices: let X € R™*"™ be
symmetric, we say X is positive semidefinite (PSD or X > 0) if one of the following condition is
met:

1. Ya e R",aTXa >0

2. X = BBT for some B

10



3. all of X'’s eigenvalues are non-negative
Facts from linear algebra

1. (A, B) = Tr(AT B) by the definition of matrix multiplication
2. Tr(AB) = Tr(BA). This implies any cyclic permutation of matrices has the same trace.

Lemma 1.8.1 Let X be symmetric, then X = 0 <— (A, X),VA =0

This is LP if all the matrices are diagonal. The feasible region is { X |{ A;, X) = b,Vi,a” Xa > 0,Va}.
The positive semidefinite constrains efficiently creates infinite number of linear constrains on X
Proof:

1. Backward direction: Suppose X % 0, then 3 vector a such that a!Xa < 0. Let A = aa”,
then A = 0. Therefore { A, X) = Tr(ATX) = Tr((aa?)T X) = Tr(aa’ X) = Tr(a¥ Xa) < 0

2. Forward direction: Suppose X > 0, Let A > 0. Then A = BBT = > bib;fp for some matrix
B with columns by, by, ..., b,. Then (A, X) = Tr(A, X) =, bl Xb; > 0 by similiar proof of
first part.

Lemma 1.8.2 If z/y are feasible for (P)/(D), then b'y < (C, X)

Proof: By the feasibility of y, (C, X) = (>, y;4:;, X) + (5, X)

By the feasibility of z, (>, y;A;, X) = by

By lemma (previous page), (S, X) >0

Thus bTy = (C,X) — (S, X) < (C,X) Therefore any solution for the dual lower bounds the
minimum of the primal. [ |

Strong duality for SDP only holds under Slater’s condition.
Definition 1.8.3 Slater’s Condition Feasible region has an interior point.

Primal (moment)

machiyi st yp =1, My(y) = 0, My—1 (gexy) = 0(€ € [m])
i=1

Dual (sums of squares)

n m
min A s.t. A — Z T € Yop + ZggEgt_g mod <a;? —x;:1 € [n]>
i=1 =1

Example of Stable Set (Independent Set) Primal max ;i vi s.t. yg = 1, My(y) = 0,y;; = 0(ij €
B)

Dual

min A s.t. A=) 2 € Mgy + 1

Ideal I = (22 — z;(i € V), w;x;(ij € E))

11



1.8.1 Application to MAX CUT

Let’s revisit the famous Goemans-Williamson SDP relaxation in 1995. Lasserre relaxation of order
1 and ovasz-Schrijver of order 1 can both capture the product of two variables. Therefore it can
achieve the same approximation factor as 0.878. Max Cut max ;. p wi;(1 —2,z;)/2s.t.x € {£1}"
Cut polytope: CUT,, = conv(zz!|x € {£1}")

Lasserre relaxation of order 1:

le{XESnXEO,Xuzl(’LEV)}

1.9 Literature summary on some positive and negative results

Below are a list of literatures in which the authors explores on the bound of hierarchies. There
are some promising results in MAX CUT case because one round of SDP Hierarchy can achieve
a non-trivial approximation. However we cannot approaching the optimum arbitrarily with small
number of rounding. Some people studies the hirarchy in some specific graph such as dense graph.
Also other problems such as vertex cover, set cover, 3-SAT has been looked at using this technique.

1. MAX CUT problem: The integral gap for trivial relaxation is 1/2
2. MAX CUT problem: The integral gap for metric relaxation is also 1/2 [Poljak-Tuza 1994]
3. MAX CUT problem: Lovasz-Schrijver Hierarchies: [Schoenebeck-Trevisan-Tulsiani 2006]

(a) The integrality gap remains 1/2 + € after c¢.n rounds of the N operator
(b) 0.878 after one round of the N operator

4. MAX CUT problem: Sherali Adams Hierarchies:

(a) The integrality gap remains 1/2+-¢ after n’< iterations[Charikar-Makarychev-Makarychev
2009

(b) PTAS for Max cut in dense graph [De la Vega and Kenyon-Mathieu 2007]

5. O(logn) rounds of LS, gives tight relaxation for MIS (Quasi-poly time improvement) [Feige
Hrauthgamer 2003]

6. Approximation guarantee improves with higher order relaxation for MIS in 3-uniform hyper-
graph [Chlamtac Singh 2008]

14e€

(I nT [Guruswami Sinp 2011]

7. Lasserre relaxation of order O(r/e?) to get

8. Strong nonapproximability results in the LS hierarchy for max-3sat, hypergraph vertex cover

and set cover. w(n) rounds of the LS+ procedure do not allow nontrivial approximation[Alekhnovich,

Arora, Tourlakis 2005]

9. 2 — o(1) integrality gap after Q( bg)f"; gn)[Georgiou, Magen, Pitassi, Tourlakis 2010]
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10. n% round of SA doesn’t yield a better than 2 — e approximation for MC and VC (Unique game
hardness)[Charikar, Makarychev, Makarychev |
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