
COUNTING BASIS OF MATROIDS VIA ENTROPY MAXIMIZATION

ASHWIN MARAN AND LORENZO NAJT

1. Introduction. In this report for CS880 we study [3], which provides a deterministic approximation
algorithm for counting the number of basis of a matroid given by a spanning oracle. To aid students of [3],
we provide background on several key lemmas that are not fully explained in their article. In particular, we
explain a key lemma (subsection 2.3) on the existence of certain probability distributions. In addition, we
provide an implementation (Subsection 5.3) based on the Frank-Wolfe algorithm [4], which we use to inves-
tigate some conjectures stated in [3]. Playing with the implementation leads to several simple observations
about the behavior of this algorithm.

All mistakes are due to the authors.

2. Definitions of Matroids and Log Concavity. In this section we present some background on the
tools used in [3]. Some of these are well-known, such as Cauchy interlacing. For others, such as subsection 2.3,
we hope that our exposition will tie together some threads that newcomers to this topic may have difficulty
locating.

2.1. Matroids.

Definition 2.1. A matroid M is a pair (E, I), where E is a finite set and I ⊂ 2E with the following
properties:
1. ∅ ∈ I
2. If S ∈ I, then T ∈ I for all T ⊂ S
3. If S, T ∈ I such that |S| > |T |, then ∃ e ∈ S\T , such that T ∪ {e} ∈ I.

Any subset of E in I is called an independent set, and any subset of E that is not in I is called a
dependent set.

Definition 2.2. A basis of a matroid M is a maximal independent set S ∈ I such that S ∪ {e} /∈ I for
all e ∈ E\S. The set of all maximal independent sets in a matroid is called the bases of the matroid and is
denoted by BM .

An example of a matroid is the graphic matroid. Here, E is the set of edges on a graph G and I is the
family of sets of all edges that form a forest in G. This (E, I) trivially satisfies the first two properties. To
prove that the third property also holds true, note that for any S ∈ I of size k, the number of connected
components in GS is exactly n− k. So, if S, T ∈ I such that |S| > |T |, then there exists at least one extra
connected component in GT , which means an edge from S can be added to T while keeping it a forest.
In the case of the graphic matroid, the bases is the set of all spanning trees on G.

2.2. Basis Generating Polynomial.

Definition 2.3. Given a matroid M , following basis generating polynomial is :

gM (z1, ..., zn) =
∑
B∈BM

∏
i∈B

zi

This polynomial encodes a lot of information about the matroid and is a natural object to study. For
instance,

gM (1, · · · , 1) = |BM | and
∂gM
∂zi

(1, · · · , 1) = # Bases containing i

In particular, we will be able to study the combinatorics of BM by examining analytical properties of
gM as a function.

2.3. External Fields. In this section we explain the proof of Lemma 2.1. The proof we explain is
based on [5], although we are responsible for the errors introduced when filling in the missing details.

Definition 2.4 (External Fields). Let λ = (λ1, . . . , λn) be a sequence of positive numbers. Let µ be a
probability distribution on 2[n]. The λ-external field applied to µ is a probability distribution λ ? µ on 2[n]

where every S ⊆ [n] has mass proportional to µ(S)
∏
i∈S λi = µ(S)λS.

1

Recall that if µ is a probability distribution on 2[n] then Pµ is the convex hull of the indicator vectors of
the support of µ: Pµ = ConvexHull(1S : µ(S) > 0).

Lemma 2.1 (Theorem 2.10 of [3]). Let µ : 2[n] → R≥0 be a function. For any point p in the interior
of Pµ, there are weights λ ∈ (R>0)n such that the marginal probabilities of λ ? µ are p. That is, PS∼λ?µ[i ∈
S] = pi.

Proof. Consider the function f(λ1, . . . , λn) = log
gµ(λ1,...,λn)∏

λ
pi
i

We will minimize f subject to λ > 0. We

can make the substitution λi = eyi , where our domain is now yi ∈ R. After doing so, the objective function
becomes log(

∑
m e

y·m+log(µ(m))−
∑
piyi, where m runs over the indicator vectors all the subsets in supp(µ).

The log(
∑
m e

y·m+log(µ(m)) term is convex by Lemma 2.2. Since the remaining terms are linear, the objective
function f is convex.

We will now show that the minimum value is attained, so that we can learn about the optimal value by
the vanishing of the gradient. To prove this, we will calculate the limit in any particular direction.

Without loss, we can assume that the 1 > pi > 0, since if pi = 0 in the interior of Pµ, then i 6∈ S for
all S ∈ supp(µ) and if pi = 1 then i ∈ S for all S ∈ supp(µ), and in either case we could remove i from S.
Suppose that yi(t) = tỹi, with ỹ · p > 0. Let m̃ = argmaxm∈supp(µ)m · ỹ, we have that m̃ · ỹ ≥ p · ỹ > 0, since

p is in the relative interior of the convex hull of supp(µ). We define q(t) = log(
∑
etỹ·m+log(µ(m)))− tỹ ·p, and

aim to show that the limits as t→∞ and t→ −∞ are both ∞. We use the following well known inequality
(Lemma 2.3):

max(x1, . . . , xn) ≤ log(
∑
i

exp(xi)) ≤ max(x1, . . . , xn) + log(n)

Thus, we have

t(ỹ · m̃) + log(µ(m̃))− tỹ · p ≤ q(t) ≤ log(|supp(µ)|) + t(ỹ · m̃)− tỹ · p

In fact, we have that ỹ ·m̃ > ỹ ·p, since otherwise q(t) is bounded by log(supp(µ)|), and a bounded convex
function on a line is constant, which contradicts the strict convexity of f(y). The claim that limt→∞(q(t)) =
∞ follows.

To obtain the other inequality, we observe that there is an m′ with m′ · ỹ ≤ ỹ · p. Then we use that
log(

∑
etỹ·m+log(µ(m)))− tỹ ·p ≥ tỹ ·m′− tỹ ·p+log(µ(m′)). Again if m′ · ỹ = ỹ ·p for all m′ with m′ · ỹ ≤ p · ỹ,

then we have m̃ · ỹ = p · ỹ, which gives the same contradiction as above. Thus, we can pick some with
m′ · ỹ < p · ỹ, and so as t→ −∞, q(t)→∞.

Now, we see what we learn from the gradient vanishing optimality condition: 0 = ∂if =
∂igµ
gµ
− pi

λi
That

is, at the optimum λ∗, we have λ∗i
∂igµ
gµ

(λ∗1, . . . , λ
∗
n) = pi. Observing that the left hand term is the same as∑

B:i∈B(λ∗)Bµ(B)∑
B λ
∗Bµ(B)

= Pλ∗?µ(i ∈ B), we conclude the proof.

Remark 2.5. We note that if we can efficiently evaluate gµ, then we can optimize the above program.
This, however, is not necessary in the present context.

Lemma 2.2. Let gi, i = 1, . . . n be convex and twice differentiable functions on a convex domain D. Then
f = log(

∑
i exp(gi)) is convex on D. If gi 6= gj everywhere on D for some i, j, then f is strictly convex.

Proof. It suffices to check the one dimensional case, so convexity in D can be checked on all line segments.
To prove the one dimensional case, we will compute f ′′ > 0.

By calculation, we have f ′ =
∑
i g
′
i exp(gi)∑
i exp(gi)

, and f ′′ =
(
∑
i[g
′′
i exp(gi)+(g′i)

2 exp(gi)])[
∑
i exp(gi)]−[

∑
i g
′
i exp(gi)]

2

(
∑
i exp(gi))

2 ,

2

which , since the denominator is positive, has the same sign as the numerator :

(
∑
i

[g′′i exp(gi) + (g′i)
2 exp(gi)])[

∑
i

exp(gi)]− [
∑
i

g′i exp(gi)]
2(2.1)

=
∑
i,j

exp(gi + gj)[g
′′
i + (g′i)

2 − g′ig′j](2.2)

=
∑
i,j

exp(gi + gj)g
′′
i +

∑
i,j

exp(gi + gj)((g
′
i)

2 − g′ig′j)(2.3)

We have that 0 ≤
∑
i,j exp(gi+gj)g

′′
i by the assumption that the g′′i are convex. Hence, it remains to observe

that: ∑
i,j

exp(gi + gj)((g
′
i)

2 − g′ig′j)

=
∑

{i,j}∈(n2)

exp(gi + gj)[(g
′
i)

2 − 2g′ig
′
j + (g′j)

2]

=
∑

{i,j}∈(n2)

exp(gi + gj)(g
′
i − g′j)2 ≥ 0.

We note that if g′i 6= g′j everywhere, then the last term is > 0.

Lemma 2.3. Let x1, . . . , xn ∈ R. Then

max(x1, . . . , xn) ≤ log(
∑
i

exp(xi)) ≤ max(x1, . . . , xn) + log(n)

Proof. max(x1, . . . , xn) = log(exp(max(x1, . . . , xn))) ≤ log(
∑

exp(xi)) ≤ log(n exp(max(xi))) = log(n)+
max(x1, . . . , xn).

Remark 2.6. This perspective is related to the external field construction: https:// golem.ph.utexas.edu/
category/ 2016/ 06/ how the simplex is a vector sp.html

2.4. Cauchy’s interlacing theorem. An important tool in this work is Cauchy’s interlacing theorem,
a key tool in theoretical computer science. For example, this tool also appeared in the recent resolution of
the sensitivity conjecture [6]. There are several forms of Cauchy’s interlacing theorem, which relate the
spectrum of related matrices by showing that their eigenvalues interlace, in the following sense:

Definition 2.7 (Interlacing). Let β = (β1 ≥ . . . ≥ βn) and α = (α1 ≥ . . . ≥ αn) be two sequences of
real numbers. We say that β interlaces α if α1 ≥ β1 ≥ α2 ≥ . . . ≥ βn−1 ≥ αn ≥ βn.

Theorem 2.4 (Cauchy Interlacing Theorem I). For a symmetric matrix A ∈ Rn×n and a vector v ∈ Rn,
the eigenvalues of A interlace the eigenvalues of A+ vvT .

Proof. 1 For a matrix B, let χ(B)(x) = det(xI − B) denote the characteristic polynomial. Since A is
orthogonally diagonalizable, we let v1, . . . , vn be an orthonormal collection of eigenvectors, with Avi = λvi.
Thus, we have (using rank one update formula Lemma 2.5 on the first line):

det(xI −A− vvT) = det(xI −A)(1 + vT (xI −A)−1v)(2.4)

= χ(A)(x)(1 +

n∑
i=1

〈v, vi〉2

x− λi
)(2.5)

From this, it follows that χ(A+vvT)(x)
χ(A)(x) = 1 +

∑n
i=1

〈v,vi〉2
x−λi = g(x). Observe that the poles of g(x) occur

at the eigenvalues of A. We first consider the case when A has no repeated eigenvalues.

1The proof we present comes from https://windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-polynomials/.

3

https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
https://windowsontheory.org/2014/04/15/restricted-invertiblity-by-interlacing-polynomials/

Around each λi, g(x) behaves like 1
x−λi , so that its limit on the right is −∞ and its limit on the left is

+∞. Moreover, limx→±∞ g(x) = 1. From this description of the limits, it is clear that there is a zero of g(x)
between each of the λi, and also between maxλi and ∞. This gives a total of n roots, so these are exactly
the roots of g(x). This shows that the eigenvalues of A interlace those of A+ vvT , and that the eigenvalues
are distinct from those of A.

To handle the case that A has repeated eigenvalues, we observe that g(x) = 1 +
∑n
i∈K

ci〈v,vi〉2
x−λi , where

ci ∈ N, and K ⊆ [n]. This shows that χ(A+vvT)(x)
χ(A)(x) is a degree |K| rational function whose zeros and poles

interlace as before, and the two characteristic polynomials have the remaining roots in common.

Lemma 2.5 (Rank one update formula). Let A ∈ Rn×n be invertible, and let v ∈ Rn. Then det(A +
uvT) = det(A)(1 + vTA−1u).

Proof. This is the proof we learned from wikipedia. First, it is enough to demonstrate this for A = I,
since det(A + uvT) = det(A(I + A−1(uvT)) = det(A) det(I + (A−1u)vT) = det(A)(1 + vTA−1u). To prove
the theorem for A = I, we have to calculate that det(I + uvT) = (1 + vTu). This in turn follows from
applying multiplicativity of the determinant to: I 0

vT 1

I + uvT u

0 1

 I 0

−vT 1

 =

I u

0 1 + vtu


Since our interest is in controlling the number of positive eigenvalues, the following corollary will be useful
to us:

Corollary 2.8 (Lemma 2.4 in [3]). Let A ∈ Rn×n be a symmetric matrix and let P ∈ Rm×n. If A
has at most one positive eigenvalue, then PAPT has at most one positive eigenvalue.

Proof. Since A is real symmetric it is orthogonally diagonalizable, so we can write A = OTDO, where
D is diagonal and O is orthogonal. Since A has at most one positive eigenvalue, D has at most one positive
entry, which we can assume to be in the (1, 1) slot. We define B = OT (D− e1eT1)O = OTDO−OT e1eT1 O =
OTDO− (OT e1)(OT e1)T , and observe that B is negative semidefinite, and that A = B+vvT , for v = OT e1.

Thus, PAPT = PBPT + PvvTPT . We have that PBPT is negative definite, since xTPBPTx =
(PTx)TB(PTx) ≤ 0. Since PvvTPT = (Pv)(Pv)T , the eigenvalues of PBPT interlace the eigenvalues of
PAPT = PBPT + (Pv)(Pv)T by Theorem 2.4, meaning that PAPT has at most one positive eigenvalue.

We also need the following form of Cauchy’s interlacing theorem:

Theorem 2.9 (Cauchy Interlacing II). Let A ∈ Rn×n be symmetric, and let B be a principal submatrix
of A. Then the eigenvalues of B interlace the eigenvalues of A.

Proof. A simple proof follows from Courant-Fischer: https://www.math.uh.edu/∼bgb/Courses/Math6304/
MatrixTheory-20121011.pdf

Cauchy’s interlacing theorem will be used to relate the Hessian of g to the Hessian of log(g). One of the
tools necessary for this is the following lemma:

Lemma 2.6. Let A ∈ Rn×n be a real symmetric matrix with nonnegative entries and at most one positive
eigenvalue. Then for every v ∈ Rn≥0, the n × n matrix (vTAv)A − t(Av)(Av)T is negative semidefinite for
all t ≥ 1.

Proof. We can assume v ∈ Rn>0, since the set of negative semidifinite matrices is closed and the result
will follow for v ∈ Rn≥0 by taking a sequence vn → v. We can also assume that t = 1, because (Av)(Av)T is

PSD, so subtracting it will preserve negative semidefiniteness (PSD matrices form a cone2). WE have that
vTAv > 0, because of the non-negativity of the entries. Let w ∈ Rn, and consider the 2× n matrix P with

rows vT and wT . Then PAPT =

vTAv vTAw

wTAv wTAw


2If A,B are PSD, then x(A+B)xT = xAxT + xBxT ≥ 0.

4

https://www.math.uh.edu/~bgb/Courses/Math6304/MatrixTheory-20121011.pdf
https://www.math.uh.edu/~bgb/Courses/Math6304/MatrixTheory-20121011.pdf

By Corollary 2.8, PAPT has at most one positive eigenvalue. Since the minor [vTAv] is positive, Theo-
rem 2.9 implies that PAPT has a positive eigenvalue, so it has exactly one. Therefore, its determinant is non-
positive, so we have 0 ≥ det(PAPT) = (vTAv)(wTAw) − (wTAv)(vTAw) = wT ((vTAv)A − (Av)(vTA))w.
Since this held for all w, the result follows.

3. Complete log concavity in the rank 2 case.. In this section, we explain a proof of the complete
log concavity for the rank 2-case sketched by Nima Anari in [2].

Theorem 3.1 (Classification of rank-2 simple matroids). Let M = (V, I) be a simple matroid of rank
2. Let B denote the basis of M , and define a graph by G(M) = (V,M(I)). Then G(M) is a complete
multipartite graph.

Proof. It suffices to show thatGc is a union of cliques, since thenG is multipartite. Consider {a, b}, {b, c} ∈
E(Gc), which are circuits in M . By the circuit axiom, there is a circuit in {a, b} ∪ {b, c} \ b = {a, c}. Since
M is simple, and therefore has no loops, this implies that {a, c} is a circuit.

Conversely, we have:

Theorem 3.2. If G = (V,E) is a complete multipartite graph, then E ∪ V form the independent sets of
a matroid on ground set V .

Proof. We verify the basis exchange axiom.

Theorem 3.3. If M is a simple rank 2 matroid, and A is the adjacency matrix of G(M), then gM =
1
2 (z1, . . . , zn)A(z1, . . . , zn)T . ∇2gM = A, and A at most one positive eigenvalue.

To apply this we need the following

Lemma 3.4 (Euler’s Identity). If g ∈ R[z1, . . . , zn] is homogeneous of degree d, then ∇2g · z = (d− 1)∇g
and zT (∇2g)z = d(d− 1)g

Proof. For a homogeneous function g of degree d, we know that g(tz1, ..., tzn) = tdg(z1, ..., zn). On
taking the derivative with respect to t on both sides,∑

i∈[n]

∂

∂(tzi)
g(tz1, ..., tzn) · zi = dtd−1g(z1, ..., zn)

Since this is true for all t ∈ R, we can substitute t = 1 in the above equation to find that ∇g · z = d · g(z).
Consider the ith entry of the vector ∇2g ·z. (∇2g ·z)i =

∑
j∈[n] zj∂j∂ig(z). Since ∂ig is a (d−1) homogeneous

function,
∑
j∈[n] zj∂j∂ig(z) = (d− 1)∂gi(z). So,

∇2g · z = (d− 1)∇g

Multiplying both sides by zT gives us

zT (∇2g)z = (d− 1)(∇g · z) = (d− 1)(d · g)

Theorem 3.5. If M is a simple matroid of rank 2, then gM (z) is log concave.

Proof. Let M be a simple matroid of rank 2 with the generating polynomial g ∈ R[z1, ..., zn]. Consider

g2 · ∇2 log(g) = [g · ∂i∂jg − ∂ig · ∂jg]1≤i,j≤n

= g · ∇2g − (∇g)(∇g)T

For any arbitrary λ ∈ Rn>0, from Theorem 3.3, we know that ∇2g|z=λ has at most one positive eigenvalue.
Together with Lemma 2.6, this means that the following is negative semi-definite.

(λT (∇2g|z=λ)λ)∇2g|z=λ − t
(
(∇2g|z=λλ)(∇2g|z=λλ)T

)
Using Euler’s identity and the fact that g is homogenous of degree r, we can simplify the above to be

r(r − 1) · g(λ) · ∇2g|z=λ − t(r − 1)2(∇g|z=λ)(∇g|z=λ)T

5

Therefore, the matrix

r(r − 1)

(
g · ∇2g − t · r − 1

r
(∇g)(∇g)T

)∣∣∣∣
z=λ

is negative semi-definite. If we now allow t = r
r−1 , we find that

g(λ)2 · ∇2 log(g)|z=λ

is semi-definite. Since our choice of λ was arbitrary, gM (z) is log concave, and follows from results in Matroid
Hodge theory.

We will now state the following theorem without proof. This proof follows the same outline as above,
but showing that ∇2g has at most one positive eigenvalue for any g is much harder.

Theorem 3.6 (Anari, Oveis-Gharan, Vinzant). If M is a matroid, then gM (z) is log concave.

In fact, matroids exhibit a much stronger property called complete log concavity. We will say that a
polynomial g ∈ R[z1, ..., zn] is completely log concave if for every k ≥ 0 and non-negative matrix V ∈ Rn×k≥0 ,
DV g(z) is non-negative and log concave, where

DV g(z) =

 k∏
j=1

n∑
i=1

Vij∂i

 g(z)

Theorem 3.7 (Anari, Oveis Gharan, Vinzant). If M is a matroid, then gM (z) is completely log concave.

4. Description of algorithm. In this section we explain the entropy maximization algorithm from [3],
and explain the guarantees on its approximation ratio.

4.1. Entropy of Log Concave Distributions. The algorithm relies on several results about marginal
entropies that we develop in this section.

Definition 4.1 (Entropy). The entropy of a distribution µ on {0, 1}n is H(µ) = −
∑
i∈{0,1}n µ(i) log(µ(i)).

If we assume that µ1, ..., µn are the marginal probabilities of µ, then the following holds true:

Lemma 4.2.

H(µ) ≤
n∑
i=1

H(µi), where H(µi) = −µi log(µi)− (1− µi) log(1− µi)

This is true because the product distribution of Ber(µ1), ...,Ber(µn) will have a higher entropy than any
other distribution with the same marginal probabilities.
Just like with matroids, probability distributions on {0, 1}n can be characterized by a generating function.
For a distribution µ on {0, 1}n, the generating function is given as:

gµ(z1, ..., zn) =
∑

S⊂{0,1}n
µ(S)

∏
i∈S

zi

A distribution is called log-concave if the generating polynomial is a log concave function.

Theorem 4.3. For a log concave probability distribution µ on {0, 1}n with marginal probabilities µ1, ..., µn,

H(µ) ≥ −
n∑
i=1

µi log(µi)

Proof. Jensen’s inequality says that when f is concave and X is a (Rn≥0) valued random variable,

f(E[X]) ≥ E[f(X)]

6

Here, we will let f(z1, ..., zn) = log
(
gµ

(
z1
µ1
, ..., znµn

))
and X = 1S where S is chosen randomly according to

the distribution µ.
Then E[X] = (µ1, ..., µn) which implies that f(E[X]) = 0.
On the other hand,

f(X) = log

∑
T⊆S

µ(T)
∏
i∈T

1

µi

 ≥ log

(
µ(S)

∏
i∈S

1

µi

)
= log(µ(S))−

∑
i∈S

log(µi)

∴ E[f(X)] =
∑
S

µ(S) log(µ(S))−
∑
S

µ(S)
∑
i∈S

log(µi)

= −H(µ)−
∑
i∈[n]

log(µi)
∑
S:S3i

µ(S)

= −H(µ)−
∑
i∈[n]

µi log(µi)

Therefore,

0 ≥ −H(µ)−
∑
i∈[n]

µi log(µi) =⇒ H(µ) ≥ −
n∑
i=1

µi log(µi)

Corollary 4.4. If the log concave distribution µ is such that |S| = r ∀ S ∈ supp(µ) (i.e., r-homogeneous),
then

n∑
i=1

H(µi)− r ≤ H(µ) ≤
n∑
i=1

H(µi)

Proof. From Theorem 4.3 and Lemma 4.2,

n∑
i=1

µi log

(
1

µi

)
≤ H(µ) ≤

n∑
i=1

H(µ)

∴
n∑
i=1

H(µi) +

n∑
i=1

(1− µi) log(1− µi) ≤ H(µ) ≤
n∑
i=1

H(µ)

Note that for all p ∈ (0, 1), (1− p) · log
(

1
1−p

)
≤ p. So,

−
n∑
i=1

(1− µi) log(1− µi) ≤
n∑
i=1

µi = E[|S|] = r

∴
n∑
i=1

H(µi)− r ≤ H(µ) ≤
n∑
i=1

H(µi)

Corollary 4.5. If the distribution µ and µ∗ are both log concave, then

1

2

n∑
i=1

H(µi) ≤ H(µ) ≤
n∑
i=1

H(µi)

Proof. From Theorem 4.3,

H(µ) ≥ −
n∑
i=1

µi log(µi) and H(µ∗) ≥ −
n∑
i=1

(1− µi) log(1− µi)

Since H(µ) = H(µ∗), this means that

H(µ) ≥ 1

2

(
−

n∑
i=1

µi log(µi) + (1− µi) log(1− µi)

)
=

1

2

n∑
i=1

H(µi)

7

Now, for any matroid M with bases BM , if we let µ be the uniform distribution on the bases, then by
definition,

H(µ) = log(|BM |)

Moreover,

gµ(z) =
1

|BM |
∑
B∈BM

∏
i∈B

zi =
1

|BM |
gM (z)

Since M is a matroid, Theorem 3.6 implies that gM (z) is log concave. Since gµ(z) = 1
|BM |gM (z), it is also

log-concave. gM (z) is log concave, which implies that µ is a log concave distribution. Since all bases of a
matroid have the same size, µ is r − homogeneous, where r is the rank of the matroid. Additionally, µ∗ is
the uniform distribution on the dual matroid M∗. So, µ∗ is also log concave.
So, from Corollary 4.4 and Corollary 4.5,

max

(
1

2

n∑
i=1

H(µi),

n∑
i=1

H(µi)− r

)
≤ log(|BM |) ≤

n∑
i=1

H(µi)

where µ is the uniform distribution on the bases of the matroid M .

4.2. The Algorithm. Unfortunately, estimating
∑
iH(µi) is not any easier than estimating H(µ).

Instead we will estimate
∑
iH(p∗i), where p∗ = arg maxp∈PM

∑
iH(pi), where PM is the matroid polytope.

Since µ ∈ PM , it follows that: ∑
i∈[n]

H(p∗i) ≥
∑
i∈[n]

H(µ) ≥ log(|BM |)

Now, from Lemma 2.1, we can see that there exists a probability distribution µ̃ = λ ∗µ for some λ such that
µ̃ has the marginal probabilities of p∗. By construction, µ̃ preserves the log concavity of µ. So, once again
applying Corollary 4.4 and Corollary 4.5,

max

1

2

∑
i∈[n]

H(p∗i),
∑
i∈[n]

H(p∗i)− r

 = max

1

2

∑
i∈[n]

H(µ̃i),
∑
i∈[n]

H(µ̃i)− r

 ≤ log(|BM |)

∴ max

(
1

2

n∑
i=1

H(p∗i),

n∑
i=1

H(p∗i)− r

)
≤ log(|BM |) ≤

n∑
i=1

H(p∗i)

This means that the optimization of arg maxp∈PM
∑
iH(pi) provides the promised approximation algo-

rithm. Since PM has a separation oracle, this concave maximization problem can be solved in polynomial
time. In the next section we describe our implementation of it.

5. Implementation. For our implementation, we study the behavior of the entropy maximiation algo-
rithm on forests and matchings. As suggested by Nima Anari [1], instead of basing our concave maximization
implementation on the separation oracle, we will base it on the linear optimization oracle. That is, we will
exploit the fact that we can quickly determine a max weight forest or max weight matching, in order to op-
timize over the corresponding polytope. This connection is made possible by the Frank-Wolfe algorithm [4],
which we will explain in the following section.

5.1. Frank-Wolfe Algorithm. Let P ⊆ Rn be a polytope, and let f : Rn → R be a differentiable
convex function. We wish to solve

min
x∈P

f(x)(5.1)

We assume that we have an oracle that can solve the following family of problems: For any linear
function l,

(5.2) min
x∈P

l(x)

8

We note that if P is given by a system of inequalities Ax ≤ b, or by a separation oracle, then we can solve
this via linear programming. However, we can sometimes solve (5.2) via other algorithms - we will refer to
such algorithms as linear optimization oracles. We will explain two such oracles in the next section. For now,
we explain how to use such a separation oracle to optimize, via the Frank-Wolfe algorithm. Frank-Wolfe is
also sometimes called the conditional gradient method.

The idea of the Frank-Wolfe algorithm is simple and natural: we will use the gradient of f , ∇f to linearize
the problem, and use the linear separation oracle to determine a vertex of the polytope that optimizes the
linearized problem. That is, we consider the linear function Ly(x) = f(y) + 〈∇f(y), x− y〉, which is the first
order approximation to f at the point y. We now optimize Ly over P , to find an optimal boundary point
of P to move towards, and pick a point between the current point and the target point. There are several
schemes for choosing that intermediate point. Each of these schemes will calculate some λt ∈ (0, 1) at each
stage, and move to (1− λt)current point + λttarget point.

That is:

Definition 5.1 (Frank-Wolfe Algorithm).
1. Initialize with x0 ∈ P .
2. Compute st ∈ argmins∈P 〈s,∇f(xt)〉
3. Set xt+1 = (1− λt)xt + λtst.

Since the gradient of the entropy is infinite on {xi = 0, xj = 1 : i ∈ I, j ∈ J}, to apply Frank-Wolfe
to entropy maximization we will need to avoid points on the coordinate subspaces. It suffices to initialize
with a point in the interior of P . For spanning trees, this is possible as long as the graph contains no loop
or bridge edge. For matchings, this is possible as long as every edge is in some matching, and no edge is in
every matching.

In the remainder of this section, we explain the convergence of the Frank-Wolfe algorithm under the
update rule λt = 2

2+t . We follow http://people.csail.mit.edu/stefje/fall15/notes lecture14.pdf

5.1.1. Convergence.

Definition 5.2 (Curvature constant). The curvature constant of a convex function g is the smallest C
such that, for all w,w′inP and η ∈ [0, 1], g(w + η(w′ − w)) ≤ g(w) + η〈∇g(w), w′ − w〉+ C

2 η
2.

Theorem 5.3. Consider a differentiable, convex function f on a convex domain P . Let w∗ ∈ argminx∈P f(x).
Let wt be the point returned on the tth step of the Frank-Wolfe algorithm,with λt = 2

2+t . Then g(wt)−g(w∗) ≤
C
t+2 .

Proof. We have :

g(wt+1) = g((1− λt)wt + λtst)(5.3)

= g(wt + λt(st − wt))(5.4)

≤ g(wt) + λt〈∇g(wt), st − wt〉+
C

2
λ2t(5.5)

≤ g(wt) + λt〈∇g(wt), st − wt〉+
C

2
λ2t(5.6)

≤ g(wt) + λt〈∇g(wt), w
∗ − wt〉+

C

2
λ2t(5.7)

= (1− λt)g(wt) + λtg(wt) + λt〈∇g(wt), w
∗ − wt〉+

C

2
λ2t(5.8)

≤ (1− λt)g(wt) + λtg(w∗) +
C

2
λ2t(5.9)

(4)to (5) follows because st minimizes the linearization. (6) to (7) follows because of convexity, that is :
g(wt) + 〈∇g(wt), w

∗ − wt〉 = Lwt(w
∗) ≤ g(w∗) , i.e. the graph of the first order approximation is always

below the true function.
From this, obtain λtg(wt)− λtg(w∗) ≤ C

2 λ
2
t , so g(wt)− g(w∗) ≤ C

2 λt = C
2+t .

For the negative entropy function on [0, 1], we have that C = ∞, as the second derivative is 1
p(1−p) .

Therefore, when we apply the Frank-Wolfe algorithm to the entropy maximization problem on a polytope, we

9

http://people.csail.mit.edu/stefje/fall15/notes_lecture14.pdf

do not obtain bounds on the convergence. However, this seems to work reasonably well in our implementation,
where we started with a random interior point obtained by averaging random basis obtained by applying
the greedy algorithm to random weights.

5.2. Linear Optimization Oracles for Matchings and Forests. In this section we explain the two
linear optimization oracles for matchings and for forests. The implementations that we use are built into
the python library networkx. Our code is here: https://github.com/LorenzoNajt/EntropyCounting

5.2.1. Matchings. For matchings, we use an implementation of Edmonds Blossom algorithm.

5.2.2. Forests. For forests, we use the greedy algorithm. Indeed, the greedy algorithm works for any
Matroid given by an independence oracle.

5.3. Empirical Observations. We record our observations about the code here, and link to the
repository.

5.3.1. Some Data:. Spanning trees on a k × k grid graph:

k [Entropy, True]

3 [2076, 192]

4 [7861602, 100352]

5 [491358645942, 557568000]

Perfect matchings on a 2k × k grid graph: 3

k [log(Entropy) - log(True)]/V

12 0.805526983963

13 0.809016320395

14 0.80973110506

5.3.2. Symmetry. For any graph where the symmetry group is edge transitive , the optimum value
and the true marginals will agree: this is because in that case the vector (n− 1)/E is in the polytope, so the
entropy maximization upper bound from that point is met.

We noticed that the optimal values founds by entropy maximization tended to have a lot more symmetry
than the underlying graph. We don’t know what to make of this. For example, when we run the entropy
maximization on the 5× 5 grid graph, we obtain get that every edge weight is about .600.

REFERENCES

[1] N. Anari, Email correspondence.
[2] N. Anari, Geometry of polynomials boot camp: Completely log-concave polynomials and distributions, part i - b, https:

//simons.berkeley.edu/talks/tba-25.
[3] N. Anari, S. O. Gharan, and C. Vinzant, Log-concave polynomials, entropy, and a deterministic approximation algorithm

for counting bases of matroids, in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
IEEE, 2018, pp. 35–46.

[4] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval research logistics quarterly, 3 (1956), pp. 95–110.
[5] S. O. Gharan, Geometry of polynomials boot camp, real stable polynomials, strongly rayleigh distributions, and applica-

tions, part ii - a, https://simons.berkeley.edu/talks/tba-16.
[6] H. Huang, Induced subgraphs of hypercubes and a proof of the sensitivity conjecture, Annals of Mathematics, 190 (2019),

pp. 949–955.

3Bipartite matching is a matroid intersection. Their theory extends to this case.

10

https://github.com/LorenzoNajt/EntropyCounting
https://simons.berkeley.edu/talks/tba-25
https://simons.berkeley.edu/talks/tba-25
https://simons.berkeley.edu/talks/tba-16

	Introduction
	Definitions of Matroids and Log Concavity
	Matroids
	Basis Generating Polynomial
	External Fields
	Cauchy's interlacing theorem

	Complete log concavity in the rank 2 case.
	Description of algorithm
	Entropy of Log Concave Distributions
	The Algorithm

	Implementation
	Frank-Wolfe Algorithm
	Convergence

	Linear Optimization Oracles for Matchings and Forests
	Matchings
	Forests

	Empirical Observations
	Some Data:
	Symmetry

	References

