
Spectral Algorithms and Unique Games

Jeremy McMahan

December 17, 2019

1 Introduction

Graph problems are many of the most interesting and most difficult problems
in computer science. Many graph-theoretic techniques have been developed to
tackle these challenging problems, though there are other useful ways to solve
them. In particular, we can use linear algebraic ideas from spectral graph the-
ory to develop efficient and elegant solutions to many such problems. Spectral
Graph Theory boils down to choosing a matrix associated with a graph that
models properties of the graph thatwe care about, and then using the linear
algebraic structure of this matrix, usually its spectra, to derive solutions to
the problem at hand. We will show many examples of how spectral techniques
can lead to interesting algorithms and new insights on the structure of these
problems. Most notably, we will discuss spectral techniques for approximat-
ing the UniqeGames problem. In fact, the current best known algorithm for
approximating UniqueGames is based on spectral techniques.

The Unique Games Conjecture is a core open problem in theoretical com-
puter science. It involves the hardness of approximating a gap version of
UniqueGames. An instance of UniqueGames consists of a graph G = (V,E)
along with bijections for each edge, π(u,v) : [k] → [k], that we can think of as
constraints on each edge. We call the number k the alphabet size of the game.
The goal of the game is to construct a labeling function ` : V → [k] that satisfies
as many constraints as possible. Specifically, we say that the constraint on edge
(u, v) is satisfied if π(u,v)(`(u)) = `(v) and the goal is to maximize the total
fraction of constraints satisfied. If the game is completely satisfiable, i.e. there
is a labeling that satisfies every constraint, then finding such a labeling is easy.
Thus, the Unique Games Conjecture deals with a gap version of the problem.
Namely, if the game is only (1 − ε) satisfiable, then it is conjectured that it
is NP-hard to compute a labeling that satisfies a δ fraction of the constraints.
There are many equivalent formulations of the conjecture, but we will mostly
focus on the following formulation [4]:

Unique Games Conjecture: For any ε, δ > 0 there is some function
k(ε, δ) so that for any k > k(ε, δ) it is NP-hard to distinguish between instances
of UniqueGames with alphabet size k that are at least (1− ε)-satisfiable from
those that are at most δ-satisfiable.

1

The Unique Games Conjecture is so important because its truth would im-
mediately imply hardness of approximation results for many famous NP-hard
problems [3]. For many of these problems, it further shows that the current
best known approximation algorithm is in fact optimal. The conjecture also
would demonstrate integrality gap instances for many LP or SDP approaches
problems which implies such approaches won’t work for those problems. How-
ever, in this paper, we will consider promising spectral techniques that could
lead to an effecient approximation algorithm for UniqueGames, which would
refute this conjecture. In particular, the techniques we illustrate avoid many
of the issues of standard SDP approaches to UniqueGames and even work in
quasi-polynomial time on the classical integrality gap instance for those SDPs
[4].

2 Preliminaries

Let G = (V,E) be an undirected graph. When G is weighted we associate with
G a function wG : E → R that outputs the weight of each edge. We will always
use n to denote the total number of vertices of the graph. Since we will only
consider undirected graphs, we will denote an edge by (u, v) for convenience
of notation with the understanding that there is no direction associated with
the edge. Whenever we need to discuss ordered pairs of vertices (which need
not be edges) we will use the notation u, v ∈ V . We assume familiarity with
common combinatorial properties of graphs such as connectivity. We define an
independent set in a graph as any subset of nodes having no edges between
them and define a clique to be any subset of nodes having all possible edge
connections between them. Then, we define the independence number of G,
α(G), to be the size of a largest independent set in G and the clique number,
ω(G), to be the size of a largest clique in G.

We also assume a familiarity with linear algebra and eigenvalue theory.
Given a real symmetric n × n matrix, M , M has n real-valued eigenvalues
and a set of n mutually orthonormal eigenvectors. A vector 0 6= x ∈ Rn is
an eigenvector for M if Mx = λx for some λ ∈ R, which is the corresponding
eigenvalue to x. The quanitity xTMx =

∑
i,jMi,jxixj is called a quadratic

form of M with respect to x, and xTMx
xT x

is the Rayleigh quotient of M with
respect to x. We note that if x is an eigenvector of M of eigenvalue λ, then
xTMx
xT x

= λ. More generally, if λi is the ith smallest eigenvalue of M , we have

that λi = minx⊥Si−1

xTMx
xT x

, where Si−1 is the set of eigenvectors corresponding

to λ1, . . . , λi−1. Also, we have that λn = maxx
xTMx
xT x

. Lastly, we note that for

any subspace W ⊆ Rn, that Rn = W +W⊥ where addition denotes direct sum,
which is the set of all sums of vectors from the first set with vectors from the
second, and W⊥ is the orthogonal complement of W containing all vectors that
are orthogonal to every vector in W . If x ∈ W , we will typically denote by
x⊥ any vector that is orthogonal to x and so is an element of W⊥. Lastly, we
assume all norms are the Euclidean norm.

2

We will also use the Iverson bracket notation where appropriate to convert
a boolean predicate, P , into a number in {0, 1}. Specifically, define

[P] =

{
1 if P is true

0 o.w.

3 Spectral Graph Theory

Many important combinatorial properties of a graph can be revealed through
the structure of different matrices associated with the graph. In particular, the
spectra of the adjacency and Laplacian matrices can tell us about the connec-
tivity, cuts, and even chromatic number of the graph. Thus, spectral algorithms
that exploit the eigenvalues of these matrices can lead to elegant solutions to
many complicated graph problems. In this section we will look at linear alge-
braic properties of these matrices and their relation to the graph’s combinatorial
properties. Furthermore, we will use some of these techniques to develop algo-
rithms for fundamental graph problems. Later in the paper, we will give a more
sophisticated spectral algorithm that approximates UniqueGames.

3.1 Spectral Basics

The most natural matrix associated with a graph G = (V,E) is its adjacency
matrix that models which edges exist in the graph. Formally, AG is a matrix
with rows and columns indexed by the vertices of the graph and entries defined
by

AG(u, v) =

{
1 if (u, v) ∈ E
0 o.w.

However, an arguably more useful matrix associated with the graph is the Lapla-
cian matrix, LG, which naturally models the connectivity and structure of cuts
the graph [5]. Formally, we define LG = DG − AG where DG is a diagonal
matrix of the degrees of each vertex. Equivalently, we can specify the Laplacian
by

LG(u, v) =


dG(u) if u = v

−1 if (u, v) ∈ E
0 o.w.

Note each of these matrices can be easily generalized for the case of weighted
graphs. In that case, we can simply replace each 1 in the above definitions
with the weight of the edge wG(u, v) and replace the degree with the weighted
degree, dG(u) =

∑
(u,v)∈E wG(u, v). Most of the results we will discuss apply

equally well to weighted graphs though we will focus on the unweighted case for
simplicity.

We will commonly construe matrices and vectors with functions and conse-
quently use function notation when describing these quantities as commonplace

3

in literature about spectral graph theory. In particular, we will sometimes con-
sider these matrices as linear operators mapping a vector to another vector,
M : x → Mx, or as a function mapping a vector to a real number through its
quadratic form, M : x → xTMx. Below, we summarize a few useful formulas
for the matrices we will consider using this perspective. Let x ∈ RV be a real
valued vector and u ∈ V an arbitrary vertex of G. Then,

(AGx)(u) =
∑

(u,v)∈E

wG(u, v)x(v)

(LGx)(u) =
∑

(u,v)∈E

wG(u, v)(x(u)− x(v))

xTLGx =
∑

(u,v)∈E

wG(u, v)(x(u)− x(v))2

From the last equation, we see the quadratic form is always non-negative
as it is a sum of squares, and so LG is positive semi-definite. Consequently, all
the eigenvalues of LG are at least 0. On the other hand, AG may have negative
eigenvalues.

Since AG and LG are n× n real symmetric matrices, we know by the spec-
tral theorem that they both have n real eigenvalues and a set of n mutually
orthogonal unit eigenvectors. In particular, let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn be
the eigenvalues of LG with corresponding mutually orthogonal unit eigenvectors
ν1, . . . , νn, and µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of AG with corresponding
mutually orthogonal unit eigenvectors φ1, . . . , φn.

In general, the eigenvalues of both matrices are related. This is most easily
seen when G is d-regular since then we have LG = DG − AG = dI − AG. This
implies that λi = d − µi for all i. So, the largest eigenvalue of the Laplacian
corresponds to the smallest eigenvalue of the adjacency and vice versa.

To develop intuition on why the Laplacian is important, lets consider how
its quadratic form behaves on cuts in the graph. In particular, define the char-
acteristic vector of a subset of nodes, S ⊆ V , as χS where

χS(u) =

{
1 if u ∈ S
0 o.w.

we see that

χTSLGχS =
∑

(u,v)∈E

(χS(u)− χS(v))2

=
∑

(u,v)∈E
u,v∈S

(1− 1)2 +
∑

(u,v)∈E
u,v 6∈S

(0− 0)2 +
∑

(u,v)∈E
u∈S,v 6∈S

(1− 0)2

= |∂(S)|

4

where ∂(S) = {(u, v) ∈ E|u ∈ S, v 6∈ S} is the boundary of S, which contains
exactly the edges crossing the cut induced by S.

3.2 Connectivity and Cuts

To start, we will show how these matrices can give us information on the con-
nectivity properties of the graph. One important aspect of connectivity is deter-
mining the number of walks between two vertices. If we want to consider walks
of length 0, the problem is trivial as the only vertices that can be reached from
a vertex, s, in no steps is s itself. Similarly, if we allow only walks of length 1,
the only vertices s can reach are those it has edges to, which is exactly encoded
in the adjacency matrix. In particular, if we want to know the number of walks
between s and t that take 1 step, we merely need to compute AG(s, t). Now,
let us consider what A2

G(s, t) represents.

A2
G(s, t) =

∑
w∈V

AG(s, w)AG(w, t) =
∑
w∈V

[(s, w) ∈ E ∧ (w, t) ∈ E]

The last quantity counts the number of intermediate vertices that could be on
a s − t path of length 2, which is exactly the number of length 2 s − t walks.
If we assume inductively that Ak−1G (s, t) is the number of s− t paths that take
exactly k − 1 steps, we see that

AkG(s, t) =
∑
w∈V

Ak−1G (s, w)AG(w, t) =
∑
w∈V
|{s−t walks of length k−1}|[(w, t) ∈ E]

which is exactly counting the number of s − t walks of length k as every such
path must consist of a s − w walk of length k − 1 for some w followed by the
edge (w, t). Thus, we see that AkG(s, t) is the number of s − t walks in G of
length exactly k. Also, if we add the identity matrix to AG, we give a walk the
option of staying at the current vertex (since we are essentially adding self loops
to the graph). Consequently, an analogous argument shows that (I+AG)k(s, t)
is the number of s− t walks in G of length at most k. Since any path in a graph
can have length at most n− 1, we can determine whether s and t are connected
by checking that An−1G (s, t) > 0. Using repeated squaring, this gives a fairly
efficient algorithm for determining whether two vertices are connected.

Another important problem involving connectivity is counting the number
of minimal sized connected subgraphs in a graph. In other words, we want
to count the number of spanning trees in the graph. This problem, can also
be easily solved using spectral methods, which is encapsulated in the famous
matrix tree theorem. In particular, we consider a version of this theorem for
connected graphs that immediately gives us a way to compute the number of
spanning trees from the spectra of the Laplacian matrix.

Theorem 3.1 (Matrix Tree Theorem). The number of spanning trees contained
in a connected graph G is exactly 1

nλ2 . . . λn

5

This Theorem highlights the surprising power of spectral techniques as the
eigenvalues of the Laplacian matrix are intimately related and in fact exactly
capture the number of spanning trees in the graph. We will not prove this
theorem though we will show in detail why the eigenvalues of these matrices
can be related to several other properties of graphs.

Let’s turn to the simplest question of whether a graph is connected or not.
Recall that the smallest eigenvalue of the Laplacian matrix, λ1, is defined to

be minx
xTLGx
xT x

≥ 0. Suppose G has components G1, . . . , Gk, and consider the
vectors xi that assign 1 to every vertex in Gi and 0 otherwise. In other words,
xi = χVGi . We see these vectors give xTi LGxi = 0 since the boundary of VGi
is 0 being that it is a connected component and so has no edges to the rest of
the graph. Consequently, the Rayleigh quotient is 0 for these xi. Also, each
of these xi are orthogonal since no component shares any vertex by definition.
Hence, we have λ1 = . . . = λk = 0. Also, any vector, x, orthogonal to all the
vectors that are constant on a single component must set a different value for
at least two vertices, u, v, in the same component. Since u, v are connected
but have different x value, it must be at some point along some u − v path
that the value of x on the endpoints of an edge are different and so have a
positive difference. This implies that the Rayleigh Quotient is positive for any
such x and so λk+1 > 0. Thus, if G has k components, the eigenvalue 0 has
multiplicity exactly k for the Laplacian matrix. The converse also holds. In
particular, this means G is connected if and only if λ2 > 0. In general, λ2 is
called the algebraic connectivity for connected graphs and measures how well
the graph is connected.

Another useful graph property we can consider is the isoperimetric number,
which is also called edge expansion, of the graph [8]. This number models ex-
pansion properties of the graph, namely, how large is the ratio of edges leaving
some subgraph to the number of vertices in that subgraph. This notion is very
useful for expanders and many other clustering and cut like problems on graphs.

Formally, the isoperimetric ratio of a subset of nodes is θ(S) = |∂(S)|
|S| and the

isoperimetric number for a graph is the minimal such ratio over strict non-empty
subsets of nodes θG = min∅6=S⊂V θ(S). Since each set implicitly also includes its
complement in the boundary we can further simplify the isopermetric number
to be θG = min|S|≤n2 θ(S). We will show a bound on this number using the
algebraic connectivity. This gives insight on the relationship between the alge-
braic connectivity of the graph and its expansion properties while also giving a
simple approximation algorithm for bounding the isoperimetric number.

Theorem 3.2. θG ≥ λ2

2

Proof. We will in fact prove the stronger statement that for any strict non-

empty subset of nodes, S, θ(S) ≥ λ2(1 − s) where s = |S|
n . By definition of λ2

as minx⊥1
xTLGx
xT x

, we know that xTLGx ≥ λ2x
Tx for any x orthogonal to the

constant vectors. The Rayleigh quotient of LG with respect to the characteristic
vector, χS , is exactly the isoperimetric ratio of S, θ(S). This vector need not
be orthogonal to the constant vectors, but we can perturb it slightly to make

6

accomplish this. Specifically, if we consider y = xS − s defined by

y(u) =

{
1− s if u ∈ S
−s o.w.

we have that

yTLGy =
∑

(u,v)∈E
u∈S,v 6∈S

((1− s)− (−s))2 =
∑

(u,v)∈E
u∈S,v 6∈S

1 = |∂(S)|

Also, we have that

yT y = |S|(1− s)2 + (n− |S|)s2 = |S| − 2|S|s+ |S|s2 − |S|s2 + ns2 = |S|(1− s)

Putting these equalities together gives a Rayleigh quotient of value |∂(S)|
|S|(1−s) .

Lastly, we show y is orthogonal to the constant vectors.

yT 1 = |S|(1− s)− (n− |S|)s = |S| − s|S|+ s|S| − ns = |S| − |S| = 0

Since y is orthogonal to the constant vectors, we then know |∂(S)|
|S|(1−s) ≥ λ2.

Multiplying both sides by (1− s) gives the desired bound. Using the fact that
|S| ≤ n

2 and so (1− s) ≥ 1
2 gives the theorem.

Computing the edge expansion is also closely related to computing a bisec-
tion of minimum size [1]. A bisection is a partition of the graph into two equal
sized subsets, and its size is the size of the cut this partition induces. Finding
a minimum size bisection is hard, but since we can capture information about
cuts using the Laplacian eigenvalues, there is hope for a spectral approach. In
particular, if G is connected, we know the constant vectors are eigenvectors of
the smallest eigenvalue. Thus, it must be that ν2 is orthogonal to all constant
vectors and so must be positive on some vertices and negative on others. Also,
since ν2 minimizes the Rayleigh quotient over all non-constant vectors, we know
that the change of ν2 over endpoints of an edge are not too large in general.
In particular, vertices clustered together with many edges between them likely
have the same sign under ν2, so using the sign of ν2 to determine a bisection is
an effective spectral approach. For the best case scenario, consider the dumbbell
graph. In this case, ν2 could be a small positive constant on all of the left clique
and the same constant though negative on the right clique. This would minimize
total change of ν2 over the edges and clearly gives the smallest size bisection
when using its sign to determine the cut. This same intuition can be refined by
using more sophisticated heuristics on the coordinates of ν2 to get even better
approximations for general graphs. Thus, we see the eigenvalue approximates
the value of the solution, in this case the isoperimetric number, which is closely
related to the size of a bisection, and the second eigenvalue coordinates can be
used to construct the actual solution. This combination of results is common in
spectral methods and all the algorithms we present in this paper will roughly
follow this strategy.

7

There is also an upper bound on the isoperimetric number known as Cheeger’s
inequality. In fact, we can upper bound a seemingly stronger quantity called
the conductance of the graph, where the conductance of a subset of nodes, S, is

φ(S) = |∂(S)|
min(d(S),d(V−S)) . Notice the similarity to the definition of the sparsest

cut which we know is even hard to approximate within a constant factor un-
der the assumption of UGC. Thus, spectral techniques can even be used to get
approximate bounds on very hard problems.

3.3 Coloring

In this section, we will show how spectral algorithms can be used to tackle other
hard problems with our primary example being graph colorability [6]. We will
need to use the following well-known theorem that we will not prove.

Theorem 3.3 (Perron-Frobenius Theorem). Let G be a connected weighted
graph, then the following hold:

1. µ1 ≥ −µn,

2. µ1 > µ2, and

3. µ1 has a strictly positive eigenvector.

Overall, coloring a graph can be viewed as partitioning the graph into several
sections. One simple partitioning question we can ask is whether it can be split
into two parts that only have edges between these parts. In other words, is the
graph bipartite? The general k-partite question is equivalent to the k-coloring
problem, so we start with bipartiteness.

Theorem 3.4. A connected graph G is bipartite if and only if µ1 = −µn

Proof.

• [=⇒] If G is bipartite, let L ∪ R = V be the bipartition. Let φ1 be a
strictly positive eigenvector of AG corresponding to µ1 guaranteed to exist
by the Perron-Frobenius Theorem and define

x(u) =

{
φ1(u) if u ∈ L
−φ1(u) if u ∈ R

We then see that for any u ∈ L,

(AGx)(u) =
∑

(u,v)∈E

x(v) = −
∑

(u,v)∈E

φ1(v) = −(AGφ1)(u) = −µ1φ1(u) = −µ1x(u)

A symmetrical argument holds in the case when u ∈ R, so we see that x is
an eigenvector of AG with eigenvalue −µ1. Now by the Perron-Frobenius
theorem we know µ1 ≥ −µn. If −µ1 were not the smallest eigenvalue, then
it must be that −µ1 > µn which is implies that µ1 < −µn, a contradiction.
Hence, µ1 = −µn.

8

• [⇐=] If µ1 = −µn, construct vector y satisfying y(u) = |φn(u)|, where
φn is an eigenvector for AG with eigenvalue µn. By the triangle inequality,
we have that

|µn| = |φTnAGφn| = |
∑
u,v∈V

AG(u, v)φn(u)φn(v)| ≤
∑
u,v∈V

AG(u, v)|φn(u)||φn(v)|

=
∑
u,v∈V

AG(u, v)y(u)y(v) = yTAGy ≤ µ1y
T y = µ1

the last equality follows from the fact that yT y = φTnφ = 1 since φn is
a unit vector. Now, since µ1 = −µn we know all the inqualities must
hold. In particular, for the first inequality to hold, we need the sign of
every product in the sum to be the same in order for it to equal the sum
of the products of absolute values. Also, since the total sum is negative
as µn < 0 (note this holds since G is connected and so −µn = µ1 > 0)
it must be that whenever AG(u, v) = 1 that φn(u), φn(v) have opposite
signs (or they are both are both 0, but The Perron-Frobenius theorem
again prohibits this since the eigenvector for µ1 is strictly positive). In
other words, every edge goes between a vertex with positive sign under φn
and a vertex with negative sign under φn. Thus, grouping vertices based
on their sign under φn is a valid bipartition, so G is bipartite.

Before tackling the general coloring case, we will need to know how µ1 relates
to the degree sequence of the graph.

Theorem 3.5. davg ≤ µ1 ≤ dmax

Proof. We simply need to consider what the Rayleigh Quotient of the Laplacian
looks like under the all 1s vector.

µ1 = max
x

xTAGx

xTx
≥ 1TAG1

1T 1
=

∑
u,v∈V AG(u, v)

n
=

∑
(u,v)∈E 2

n
=

2|E|
n

= davg

Now, to show the other inequality we need to consider how φ1 interacts with
AG. Suppose φ1(v) is the largest entry of φ1. Suppose WLOG φ1(v) 6= 0.

µ1 =
(AGφ1)(v)

φ1(v)
=

∑
(v,u)∈E φ1(u)

φ1(v)
=

∑
(v,u)∈E

φ1(u)

φ1(v)
≤

∑
(v,u)∈E

1 = d(v) ≤ dmax

where the inequality follows from the fact that v is the maximizer for φ1.

In fact, if G is a connected graph, we see that if µ1 = dmax then it must
be the case that v is a vertex of maximum degree and each neighbor u of v

9

must also be a maximizer for φ1. Hence, we can apply the same argument to
the neighbors of v to show they are all of maximum degree. Since the graph is
connected, we can inductively apply this argument (on the length of a shortest
u to v path) to see that every vertex must be maximum degree. On the other
hand, if G is dmax-regular, then µ1 = dmax can be achieved through the all 1s
vector. So we have just shown the following corollary.

Corollary 3.5.1. If G is connected then µ1 = dmax if and only if G is dmax-
regular.

In fact, we can strengthen the previous theorem’s lower bound further.

Lemma 3.6. For every S ⊆ V , we have davg(S) ≤ µ1 where davg(S) is the
average degree of the induced subgraph of S.

Given these tools, we can give bounds on the chromatic number of the graph.
Recall that a (proper) k-coloring of a graph G is a function c : V → [k] such
that ∀(u, v) ∈ E, c(u) 6= c(v). The chromatic number χ(G) is the smallest k for
which G is k-colorable. In general, k-colorable is equivalent to being k-partite
since there are no edges between vertices of the same color. Given an arbitrary
ordering of the vertices, we continually color a vertex by the least color available
that is different from its neighbors that have already been colored. This clearly
gives a proper coloring using total number of colors 1+maxu |{v|v < u∧(u, v) ∈
E}| where v < u means v appears before u in the ordering. Since any vertex
is adjacent to at most dmax many other nodes, this immediately implies that
χ(G) ≤ dmax + 1. We can improve this bound on the chromatic number by
finding better orderings of the vertices to use in this simply greedy coloring
scheme. In particular, we can use µ1 to choose a good ordering. This leads to
the following result.

Theorem 3.7 (Wilf’s Theorem). χ(G) ≤ bµ1c+ 1

Proof. We will construct a good ordering for the greedy coloring as follows.
First, by Theorem 3.5, we know that davg ≤ µ1 and hence there exists some
vertex u with d(u) ≤ µ1. Since the degree is an integer it must be that d(u) ≤
bµ1c. Let u be the last vertex in our ordering. Now, we know the largest
eigenvalue of AG−u is at most that of AG which is µ1. Thus, we can inductively
order the vertices of G − u so that each vertex has at most bµ1c neighbors
appearing before it. Placing u at the end of this ordering then ensures that
every vertex of G has at most bµ1c neighbors appearing before it and so G is
bµ1c+ 1-colorable using the greedy coloring.

In fact, we can get a lower bound too by using multiple eigenvalues.

Theorem 3.8 (Hoffman’s Bound). χ(G) ≥ 1− µ1

µn

Hoffman’s bound follows from a bound on the indepedence number of the
graph, α(G), which is also classically NP-complete to compute [7].

Theorem 3.9. If G is d-regular, α(G) ≤ n −µnd−µn

10

Proof. We will prove this using the correspondence between the eigenvalues of
the Laplacian and the Adjacency matrix in the case of regular graphs. We show

for any independent set S, that |S| ≤ n(1− davg(S)
λn

). Then, since λn = d− µn
and davg = d in our case, we have |S| ≤ n(λn−dλn

) = n(−µnd−µn).
Again we will look at the Rayleigh Quotient with respect to the vector

y = χS − s. We know yTLGy = |∂(S)| = d(S) = davg(S)|S| since S has
all its incident edges on the boundary by independence. Recall that yT y =

|S|(1−s) = n(s−s2). Thus, λn = maxx
xTLGx
xT x

≥ yTLGy
yT y

=
davg(S)|S|
n(s−s2) =

davg(S)
1−s .

Rearranging gives s ≤ 1− davg(S)
λn

, so |S| ≤ n(1− davg(S)
λn

).

4 Unique Games

In this section, we discuss the best known algorithm for UniqueGames, which
is uses spectral techniques [2].

Theorem 4.1. Let U = (G,M, k) be a (1 − ε) satisfiable instance of unique
games on a d-regular graph G with alphabet size k. Let M be the adjacency
matrix of the label-extended graph of G. Let W be the space spanned by the
eigenvectors of M that have eigenvalue greater than (1−γ)d, for γ > 8ε. There is
an algorithm that runs in O(2

γ
ε dim(W))+poly(nk) time and finds an assignment

that satisfies at least a (1−O(ε
γ−8ε + ε)) fraction of the constraints [4].

For an instance of UniqueGames, U , define the label-extended graph of
U to be the graph of matchings corresponding to the possible labelings of the
endpoints of each edge. In particular, we replace each edge (u, v) ∈ E by a
bipartite subgraph where we have an edge ((u, i), (v, j)) if π(u,v)(i) = j. In
other words, ((u, i), (v, j)) is an edge of the label extended graph if the labeling
that maps u to i and v to j would satisfy the constraint on the original edge
(u, v). Formally, we define the adjacency matrix of the label-extended graph
of the game as M(u, v, i, j) = [π(u,v)(i) = j] if (u, v) ∈ E and M(u, v, i, j) = 0
otherwise. Alternatively, we can define the k×k block of M corresponding to an
edge (u, v) by the permutation matrix Π(u,v) where Π(u,v)(i, j) = [π(u,v)(i) = j].

Given an instance of UniqueGames, U , that is (1 − ε)-satisfiable, we will
consider a completion of the game, Ũ , that is the original game where we replace
each of the ε constraints that are unsatisfiable in some maximal assignment, L,
by any other constraints that will make the instance completely satisfiable.
Then, we will view an almost satisfiable unique game as being derived from a
completely satisfying one where an adversary picked an ε fraction of the con-
straints to change as to potentially make the whole instance (1− ε)-satisfiable.
Thus, we will commonly consider some completion of a game, Ũ , when dis-
cussing solutions to the original game. In particular, if L is a labeling that
satisfies every constraint of the completion game, then L will satisfy an (1− ε)
fraction of the constraints of the original graph since they share all but an ε frac-
tion of constraints. Thus, if we knew which ε constraints were modified from

11

some completion game, we could easily compute a good labeling in polynomial
time. However, finding such a completion seems difficult in general.

Next, if L is a labeling that satisfies all the constraints for Ũ , we define the
characteristic vector of L as yL, where

yL(u, i) =
1√
n

[L(u) = i]

we note that if M̃ is the adjacency matrix of the label-extended graph of Ũ , then
yL is a unit eigenvector of M̃ of maximum eigenvalue, which is d. Specifically,

(yL)T M̃yL =
∑
u,v,i,j

M̃(u, v, i, j)yL(u, i)yL(v, j)

=
1

n

∑
u,v,i,j

[π(u,v)(i) = j][L(u) = i][L(v) = j]

=
1

n

∑
(u,v)∈E

1 =
nd

n
= d

since G is d-regular so the total number of edges is nd. In general,

Lemma 4.2. If U is δ-satisfiable and L is a labeling satisfying at least a δ
fraction of U ’s constraints, then (yL)TMyL ≥ δd

Proof. (yL)TMyL =
∑
u,v,i,j = 1

n∗number of edges satisfied ≥ δnd
n = δd.

As mentioned previously, any labeling, L, satisfying all the constraints of
some completion will be a good labeling for the given game. Consequently, the
characteristic vector of L will have a large Rayleigh Quotient with respect to
M similarly to how this vector maximizes the Rayleigh Quotient for M̃ . Thus,
we could hope that a subspace of eigenvectors for M with large eigenvalues,
W , would be close to the characteristic vectors of perfect labelings for some
completion of the game and so could be used to get good labelings. In particular,
we will construct a set of nice vectors, N , contained in this subspace that are all
guaranteed to be close to the characteristic vectors of the completely satisfying
assignments. Since W will be infinite, finding this set N will be impossible using
an exhaustive search, so we will need to consider a discretized approximation
to W that is guaranteed to have some vectors close to the nice vectors. Then,
we use the following algorithm for computing a good labeling from this set S.

GetLabeling(S,U):

• For each x ∈ S, construct a labeling Lx defined by Lx(u) = arg maxi∈[k] x(u, i).

• Return the labeling Lx that maximizes the fraction of constraints of U
satisfied out of all labelings constructed in the previous part.

In our case, we will consider the subspaceW that is the span of all eigenvctors
of M that have eigenvalue greater than (1− γ)d for some γ > 8ε. The following
claim will help us identify the set of nice vectors, N .

12

Lemma 4.3. For every completely satisfing assingment, L, there is a unit vec-

tor, vL, such that vL = αyL + βyL⊥ for some α ≥
√

1− 2ε
γ > 0 and |β| <

√
2ε
γ

Proof. First, recall by lemma 4.2, (yL)TMyL ≥ d(1− ε) ≥ d(1− 2ε). Now, we
will write yL = avL + b(vL)⊥ for some a > 0, vL ∈ W , and (vL)⊥ ∈ W⊥ and
derive conditions on b. Note we can always write yL as a sum of a vector from
some subspace and a vector from the orthogonal complement of the subspace
by well known results of linear algebra. Also, by absorbing the inverse of the
norm of the vectors, vL, (vL)⊥ into their corresponding multiplicative factors,
a, b, we can assume that vL and (vL)⊥ are unit vectors. We have that

d(1− 2ε) ≤ (yL)TMyL = a2(vL)TMvL + b2(vL)T⊥M(vL)⊥ ≤ a2d+ b2(1− γ)d

where last inequality follows from the fact that d is the largest eigenvalue of d so
no quadratic form of a unit vector can be more than d and (vL)⊥ is orthogonal
to every eigenvector in W and so cannot have Rayleigh Quotient larger than
(1 − γ)d otherwise it would be in W . From these inequalities, we see that
1−2ε ≤ a2 + b2(1−γ). This implies that 2ε−1 ≥ −a2 + b2(γ−1). Rearranging

the inequality gives |b| ≤
√

2ε+a2−1
γ−1 . Since yL is a unit vector and vL, (vL)⊥

are orthogonal to each other, the triangle inequality implies that 1 = ||avL|| +
||b(vL)⊥|| = a2 + b2. From this we see that a2 − 1 ≤ 0 and so |b| ≤

√
2ε
γ . Now,

we can write vL = αyL + βyL⊥ where α =< vL, y
L >. This follows since any

vector can be written as a linear combination of eigenvectors where the scaling
factor of each eigenvector is its inner product with the given vector. Note here
yL⊥ absorbs the terms of all the other eigenvectors besides yL as they are all

orthogonal to yL. Since a > 0, < vL, y
L >= a =

√
1− b2 ≥

√
1− 2ε

γ . Since

vL is also a unit vector, we can repeat a similar argument as before to conclude

that |β| =
√

1− α2 ≤
√

2ε
γ .

If we knew the completely satisfying the assignments, we could simply use
N = {vL} as input to GetLabeling.

Lemma 4.4. If x is a vector such that x = αyL+βyL⊥ for some yL with α > 0,

then L(u) = arg maxi∈[k] x(u, i) in at least (1− 2β2

α2)n blocks of M .

This lemma implies that the approach GetLabeling(N,U) uses to construct-
ing a labeling by reading it off from the nice vectors will work for many of the
vertices.

Lastly, we need to compute the discretized approximation to W , S, that will
have vectors close to some nice vector. Suppose w1, ..., wdim(W) is an eigenbasis
for W . Then, we will consider

S = {v =

dim(W)∑
i=1

αiwi|αs ∈

√
2ε

γdim(W)
Z, ||v|| ≤ 1}

13

It has been show that |S| ≤ 2O(γε dim(W)). By construction, S contains some

vector v for which v = αvL+β(vL)⊥ for some nice vector vL and some β ≤
√

2ε
γ .

Thus, v = ayL + byL⊥ with |b| ≤ 2
√

2ε
γ . So, GetLabeling(S,U) must return a

labeling that satisfies a 1− 2b2

a2 fraction of the blocks. Since the norm of v is at

most 1 we can again argue that a2 ≥ 1 − b2 ≥ 1 − 8ε
γ , so 1 − 2b2

a2 ≥ 1 − 2 8ε
γ−8ε .

Thus, this labeling will satisfy a 1 − O(ε
γ−8ε) fraction of the blocks. We need

to analyze how many constraints are violated by the labeling returned by this
procedure. First, we know there are an ε fraction of the constraints that were
changed by the adversary and so cannot possibly be satisfied. Also, there are an
O(ε

γ−8ε) many constraints that disagree with the perfect labeling. Thus, there

are a total of at most ε+O(ε
γ−8ε) fraction of the edges that are unsatisfied by our

labeling, and so 1−O(ε+ ε
γ−8ε) are satisfied. Lastly, we note that the algorithm

runs in time exponential in the dimension of W . Specifically, we first have to
construct the eigenbasis that defines S, which takes poly(nk) time. Then, the
procedure GetLabeling will take time to do an exhaustive search over S. Since
S has at most 2O(γε dim(W)), this step will take 2O(γε dim(W)) time. Overall, the
algorithm runs in time 2O(γε dim(W)) + poly(nk) as desired.

We now discuss the consequences of this algorithm. First, this algorithm
runs in polynomial time and satisfies enough constraints for expander graphs in
order to disprove the conjecture on expanders. In addition, this algorithm works
in subexponential time on the game that achieves the integrality gap for the
standard SDP formulation for the unique games problem. Thus, this spectral
approach seems to be more powerful. In fact, the best know algorithm for
unique games uses the above algorithm as a subroutine along with a partitioning
procedure for the graph [2]. This best known algorithm runs in subexponential
time on all graphs and satisfies a very large fraction of the constraints. These
spectral approaches could still possibly be improved further to disprove the
Unique Games Conjecture.

5 Conclusion

Graph problems are incredibly difficult and prevalent throughout computer sci-
ence. Of all of these, the Unique Games Conjecture has profound implications if
true. However, using the power of spectral techniques, we can design efficient ap-
proximation algorithms for many NP-hard problems, including UniqueGames.
Further investigation of spectral approaches could potentially lead to the refu-
tation of the Unique Games Conjecture, and so the most interesting open prob-
lem would be to extend the spectral techniques presented in this paper to solve
UniqueGames once and for all or perhaps develop completely new spectral
techniques that could give a completely different perspective on the conjecture.
In particular, the algorithm presented in this paper used only the adjacency
matrix, which is usually not the most natural matrix to use with spectral tech-
niques. Thus, it would be interesting to investigate whether other choices of

14

standard matrix such as the Laplacian or even a completely new matrix could
be used to get better results.

References

[1] Noga Alon. “Spectral Techniques in Graph Algorithms”. In: Proceedings of
the Third Latin American Symposium on Theoretical Informatics. LATIN
’98. Berlin, Heidelberg: Springer-Verlag, 1998, pp. 206–215. isbn: 3-540-
64275-7. url: http://dl.acm.org/citation.cfm?id=646387.690180.

[2] Sanjeev Arora, Boaz Barak, and David Steurer. “Subexponential Algo-
rithms for Unique Games and Related Problems”. In: J. ACM 62.5 (Nov.
2015), 42:1–42:25. issn: 0004-5411. doi: 10.1145/2775105. url: http:
//doi.acm.org/10.1145/2775105.

[3] S. Khot. “On the Unique Games Conjecture (Invited Survey)”. In: 2010
IEEE 25th Annual Conference on Computational Complexity. June 2010,
pp. 99–121. doi: 10.1109/CCC.2010.19.

[4] Alexandra Kolla. “Spectral Algorithms for Unique Games”. In: CoRR abs/1102.2300
(2011). arXiv: 1102.2300. url: http://arxiv.org/abs/1102.2300.

[5] Daniel Spielman. “Introduction”. In: Spectral Graph Theory Lecture Notes
(2015). url: http://www.cs.yale.edu/homes/spielman/561/lect01-
15.pdf.

[6] Daniel Spielman. “The Adjacency Matrix and Graph Coloring”. In: Spectral
Graph Theory Lecture Notes (2015). url: http://www.cs.yale.edu/
homes/spielman/561/lect03-15.pdf.

[7] Daniel Spielman. “The Adjacency matrix and the nth eigenvalue”. In: Spec-
tral Graph Theory Lecture Notes (2012). url: http://www.cs.yale.edu/
homes/spielman/561/2012/lect03-12.pdf.

[8] Daniel Spielman. “The Laplacian”. In: Spectral Graph Theory Lecture Notes
(2015). url: http://www.cs.yale.edu/homes/spielman/561/lect02-
15.pdf.

15

http://dl.acm.org/citation.cfm?id=646387.690180
https://doi.org/10.1145/2775105
http://doi.acm.org/10.1145/2775105
http://doi.acm.org/10.1145/2775105
https://doi.org/10.1109/CCC.2010.19
https://arxiv.org/abs/1102.2300
http://arxiv.org/abs/1102.2300
http://www.cs.yale.edu/homes/spielman/561/lect01-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect01-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect03-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect03-15.pdf
http://www.cs.yale.edu/homes/spielman/561/2012/lect03-12.pdf
http://www.cs.yale.edu/homes/spielman/561/2012/lect03-12.pdf
http://www.cs.yale.edu/homes/spielman/561/lect02-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect02-15.pdf

	Introduction
	Preliminaries
	Spectral Graph Theory
	Spectral Basics
	Connectivity and Cuts
	Coloring

	Unique Games
	Conclusion

