CS 880: Approximation Algorithms Homework 2
Out: 2/22/07 Due: 3/15/07

1. (Euclidean disk-cover.) Givenn pointspy, - -- ,p, in an areal C R?, our goal in this problem is to cover all
of these points with as few disks of diamefer> 0 as possible. In this question you will develop a polynomial-
time approximation scheme for this problem.

(a) Suppose at first thdtis a square of side-lengthD for some constant > 0. Give a polynomial-time

(b)

(©

algorithm that solves these instances exactly. (Remenfiag¥ tis a constant, so it is okay to have a
running time exponential if.)

(Hint: Show that you only need(¢?) disks to cover, and that you only need to consid@(n?) positions
for each disk.)

For a general, consider the following partitioning strategy: partitidralong thex-axis into strips of
width ¢£D. Let this partition bdl, = {S},---, S} }. We are going to approximate each of these segments
separately. But since this partitioning may not work wetlome pathological examples, we will consider
¢ different partitions and pick the best over all of them. Theand partitioril, is obtained by “shifting”
each of the5}'s by a distance to the right 6, is shifted cyclically—the shifted s&&? covers the leftmost
strip of width D that was previously covered [#£). Partitionslls, - - - , II, are obtained similarly. Note
thatIl,4, = II;. In the following, letll; = {S{,---, S;}.
Now suppose that we are given an algoritiitthat gives ap-approximation for the problem whenever
the length of! is bounded by D along one dimension. For each of thie’s, we compute a solution
as follows: used to compute feasible disk-cove€s,--- , C} for each of the strips$y,---, Si. Then,
APX' =CjU---UCj. Return

APX = argmin, ., ., |APX’|

Show thaAPX| < p(1 4+ 1/¢)|OPT].
How do (a) and (b) lead to a PTAS for the Euclidean diskec@roblem?

2. (Vertex cover in planar graphs) It is well-known that planar graphs adecolorable. In other words, any
planar graph can be partitioned intandependent sets. Show how you can use an algoritha-tmoring a
planar graph to find 8/2-approximation to vertex cover in the graph.

Hint: Use the half-integrality of vertex cover.

3. (K-median.) The K-median problem is a variant of facility location in whichcilities don’t have opening
costs, but we can open at mdstof them. In particular, given an complete gragh= (V, E) with non-negative
distances! : £ — R, and a numbelf, find a setS C V of size at most that minimizes the routing cost
Cr(S) = >, ey minges d(s, v).

Note that the distancesdo not necessarily form a metric (that is, they may not sattsé triangle inequality).
We will allow our solution to approximate both the number afdians picked|6|) and the routing cost.(S).

(a) Formulate thd{-median problem as an ILP. Let the optimal value of its LPxalen beC*.

(b) For the general (non-metric) case, show how to roundLtRisolution to an integer solution with at most

O((1 + €)log|V| - K) medians and routing coét((1 + 1) - C*)) for anye > 0.
(Hint: Use the filtering technique of Lin-Vitter from claks.

(c) Forthe metric case (that is, when the distantebey the triangle inequality), show how to round this LP

solution to an integer solution with at masf (1 + ¢) - K') medians and routing cot((1 + 1) - C*)) for
anye > 0.

4. (Multiway Cut revisited.) We can look at MUILTIWAY CUT as a coloring problem: color each nodédirwith
one ofk colors such that the termingl is colored with colori, so as to minimize the number of bichromatic
edges. (Make sure you believe this!)

Consider an extension of the problem: we are given a “codpeimst” function for each vertex € V, C,, :
[k] — R>0, such that the cost of coloringwith colori is C, (). Now we want to find a coloring : V' — []
S0 as to minimize the total cost

O(f) = Z Cy(f(v)) + number of bichromatic edges jh. (1)

veV

Note that if we seC;, (i) to be0 if i = j andoo otherwise, and for each non-terminal nadeve setC, (i) = 0
for all colorsi, then we get back the ML.TIwAY CuT problem.

(a) Our local search algorithm will make moves of the follogiform: if we are at coloring’, pick a color:
and try to find thebestcoloring /' obtained fromf by recoloring some of the vertices by the colot.e.,
/' satisfies the property that eithgi(v) = i or f’(v) = f(v), and it is the one with the least cost over all
such colorings. Call such a best coloringiamove (In case of ties, choose one arbitrariljddte that we
have not shown how to find such @amove; we will discuss this issue later.
Show that iff is a local optimum with respect to these moves, (i.e., nortee potentiali-moves results
in the cost strictly decreasing), théd f) < 2®(OPT). As usual OPT is the optimal coloring.

(b) Since it may take a long time to reach a local minimum, weateange the algorithm to make a move from
f to f" as long as it decreases the cost by at I@dgt) x (¢/k). Show that if we start from a colorinfy,
then the algorithm takes at most

2(fo)

log(m)
o ot — o) @)

local improvement steps to reach a solution of @jst+ ¢)@(OPT).

(c) Note that the number of steps in the above solution istrohgly polynomialif the coloring costs’, ()
are very large, the number of rounds may be very large (afimynomial in the representation of the
instance). One way to fix this is to choose the start sfagtearefully. Can you show a choice ¢f so
that (2) is at mospoly(n, k, €)?

What about the case whén>> n? Can you change the algorithm so that the number of stepsith g
near-local-optimum is at mogbly (n, €)?

(d) Suppose you now wanted to make smaller local-search snafvilne form: pick a vertex and a color,
and paintv with color if the resulting®(f) decreases. (These moves are called3teiber dynamic3
Note that the new algorithm makes much smaller moves thaorbkebove, and hence may take more
time to reach a local optimum.

Are local minima of this new process al8eapproximate? Give a proof or a counterexample.

Remark: We did not address the question: given a céland a coloringf, how can we find the bestmove?
Despite the fact that there may B¥2"™) possiblei-moves to consider, we can indeed find it efficiently using
an s-t min-cut computation in a suitably defined graph! (We'll shibaw to do this in the answers, or you can
think about it.)

