
CS 880: Approximation Algorithms Homework 2

Out: 2/22/07 Due: 3/15/07

1. (Euclidean disk-cover.) Givenn pointsp1, · · · , pn in an areaI ⊂ R
2, our goal in this problem is to cover all

of these points with as few disks of diameterD > 0 as possible. In this question you will develop a polynomial-
time approximation scheme for this problem.

(a) Suppose at first thatI is a square of side-length̀D for some constant̀ > 0. Give a polynomial-time
algorithm that solves these instances exactly. (Remember that ` is a constant, so it is okay to have a
running time exponential iǹ.)
(Hint: Show that you only needO(`2) disks to coverI, and that you only need to considerO(n3) positions
for each disk.)

(b) For a generalI, consider the following partitioning strategy: partitionI along thex-axis into strips of
width `D. Let this partition beΠ1 = {S1

1 , · · · , S1
k}. We are going to approximate each of these segments

separately. But since this partitioning may not work well for some pathological examples, we will consider
` different partitions and pick the best over all of them. The second partitionΠ2 is obtained by “shifting”
each of theS1

j ’s by a distanceD to the right (S1
k is shifted cyclically—the shifted setS2

k covers the leftmost
strip of widthD that was previously covered byS1

1 ). PartitionsΠ3, · · · , Π` are obtained similarly. Note
thatΠ`+1 = Π1. In the following, letΠi = {Si

1, · · · , Si
k}.

Now suppose that we are given an algorithmA that gives aρ-approximation for the problem whenever
the length ofI is bounded bỳ D along one dimension. For each of theΠi’s, we compute a solution
as follows: useA to compute feasible disk-coversCi

1, · · · , Ci
k for each of the stripsSi

1, · · · , Si
k. Then,

APXi = Ci
1 ∪ · · · ∪ Ci

k. Return
APX = argmin1≤i≤` |APXi|

Show that|APX| ≤ ρ(1 + 1/`)|OPT|.

(c) How do (a) and (b) lead to a PTAS for the Euclidean disk-cover problem?

2. (Vertex cover in planar graphs.) It is well-known that planar graphs are4-colorable. In other words, any
planar graph can be partitioned into4 independent sets. Show how you can use an algorithm for4-coloring a
planar graph to find a3/2-approximation to vertex cover in the graph.

Hint: Use the half-integrality of vertex cover.

3. (K-median.) The K-median problem is a variant of facility location in which facilities don’t have opening
costs, but we can open at mostK of them. In particular, given an complete graphG = (V, E) with non-negative
distancesd : E → R+ and a numberK, find a setS ⊆ V of size at mostK that minimizes the routing cost
Cr(S) =

∑

v∈V mins∈S d(s, v).

Note that the distancesd do not necessarily form a metric (that is, they may not satisfy the triangle inequality).
We will allow our solution to approximate both the number of medians picked (|S|) and the routing costCr(S).

(a) Formulate theK-median problem as an ILP. Let the optimal value of its LP relaxation beC∗.

(b) For the general (non-metric) case, show how to round thisLP solution to an integer solution with at most
O((1 + ε) log |V | · K) medians and routing costO((1 + 1

ε
) · C∗)) for anyε > 0.

(Hint: Use the filtering technique of Lin-Vitter from class.)

(c) For the metric case (that is, when the distancesd obey the triangle inequality), show how to round this LP
solution to an integer solution with at mostO((1 + ε) ·K) medians and routing costO((1 + 1

ε
) ·C∗)) for

anyε > 0.
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4. (Multiway Cut revisited.) We can look at MULTIWAY CUT as a coloring problem: color each node inV with
one ofk colors such that the terminalti is colored with colori, so as to minimize the number of bichromatic
edges. (Make sure you believe this!)

Consider an extension of the problem: we are given a “coloring cost” function for each vertexv ∈ V , Cv :
[k] → R≥0, such that the cost of coloringv with color i is Cv(i). Now we want to find a coloringf : V → [k]
so as to minimize the total cost

Φ(f) =
∑

v∈V

Cv(f(v)) + number of bichromatic edges inf . (1)

Note that if we setCtj
(i) to be0 if i = j and∞ otherwise, and for each non-terminal nodev, we setCv(i) = 0

for all colorsi, then we get back the MULTIWAY CUT problem.

(a) Our local search algorithm will make moves of the following form: if we are at coloringf , pick a colori
and try to find thebestcoloringf ′ obtained fromf by recoloring some of the vertices by the colori. I.e.,
f ′ satisfies the property that eitherf ′(v) = i or f ′(v) = f(v), and it is the one with the least cost over all
such colorings. Call such a best coloring ani-move. (In case of ties, choose one arbitrarily.)Note that we
have not shown how to find such ani-move; we will discuss this issue later.

Show that iff is a local optimum with respect to these moves, (i.e., none ofthek potentiali-moves results
in the cost strictly decreasing), thenΦ(f) ≤ 2Φ(OPT). As usual,OPT is the optimal coloring.

(b) Since it may take a long time to reach a local minimum, we can change the algorithm to make a move from
f to f ′ as long as it decreases the cost by at leastΦ(f) × (ε/k). Show that if we start from a coloringf0,
then the algorithm takes at most

O

( log( Φ(f0)
Φ(OPT) )

− log(1 − ε/k)

)

(2)

local improvement steps to reach a solution of cost2(1 + ε)Φ(OPT).

(c) Note that the number of steps in the above solution is notstrongly polynomial: if the coloring costsCv(·)
are very large, the number of rounds may be very large (albeitpolynomial in the representation of the
instance). One way to fix this is to choose the start statef0 carefully. Can you show a choice off0 so
that (2) is at mostpoly(n, k, ε)?

What about the case whenk � n? Can you change the algorithm so that the number of steps to reach a
near-local-optimum is at mostpoly(n, ε)?

(d) Suppose you now wanted to make smaller local-search moves of the form: pick a vertexv and a colori,
and paintv with color i if the resultingΦ(f) decreases. (These moves are called theGlauber dynamics.)
Note that the new algorithm makes much smaller moves than theone above, and hence may take more
time to reach a local optimum.

Are local minima of this new process also2-approximate? Give a proof or a counterexample.

Remark: We did not address the question: given a colori and a coloringf , how can we find the besti-move?
Despite the fact that there may beΩ(2n) possiblei-moves to consider, we can indeed find it efficiently using
ans-t min-cut computation in a suitably defined graph! (We’ll showhow to do this in the answers, or you can
think about it.)
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