
CS880: Approximations Algorithms

Scribe: Michael Kowalczyk Lecturer: Shuchi Chawla
Topic: Intro, Vertex Cover, TSP, Steiner Tree Date: 1/23/2007

Today we discuss the background and motivation behind studying approximation algorithms and
give a few examples of approximations for classic problems.

1.1 Introduction

Approximation algorithms make up a broad topic and are applicable to many areas. In this course
a variety of different techniques for crafting approximation algorithms will be covered. Since there
is no fixed procedure that will always work when attempting to solve new problems, the aim of this
course is to achieve a solid understanding of the most relevant techniques and to get a feel for when
they are likely to apply. For those with a particular interest in theory, another goal of this course
is to provide enough background in the area so that current research papers on approximation
algorithms can be read with relative ease.

1.2 Motivation

In practice, many important problems are NP-hard. If we want to have a good chance at solving
them, we need to modify our goal in some way. We could use heuristics, but these are approaches
that make no guarantees as to their effectiveness. In some applications, we may only need to solve a
special case of the NP-hard problem, and this loss of generality may admit tractibilty. Alternately,
average case analysis may be useful; since NP-hardness is a theory of worst case behavior, a problem
can be NP-hard and yet very easy to solve on most instances. Finally, if the NP-hard problem
deals with optimizing some parameter then we can try to design an approximation algorithm that
efficiently produces a sub-optimal solution. It turns out that we can often design these algorithms
in such a way that the quality of the output is guaranteed to be, say, within a constant factor of
an optimal solution. This is the approach that we will investigate throughout the course.

1.3 Terminology

In order for approximations to make sense, we need to have some quality measure for the solutions.
We will use OPT to denote the quality associated with an optimal solution for the problem at
hand, and ALG to denote the (worst case) quality produced by the approximation algorithm under
consideration. We would like to guarantee ALG(I) ≥ 1

α
OPT (I) on any instance I for maximization

problems, where α is known as the approximation factor. Note that α ≥ 1, and we allow α to be
a function of some property of the instance, such as its size. For minimization problems, we write
ALG(I) ≤ αOPT (I) instead. In other words, we usually state approximations in such a way that
α ≥ 1, although this standard is not universal.

Different problems exhibit different approximation factors. One class of problems have the property

1

that given any positive constant ε, we can give a (1 + ε)-approximation algorithm for it (although
the runtime of the approximation algorithm is efficient for fixed ε, it may get much worse as ε

becomes small). Problems with this property are said to have a polynomial time aproximation
scheme, or PTAS. This is one of the best scenarios for approximation algorithms. At the other
extreme, we can prove in some cases that it is NP-hard to give an approximation algorithm with α

any better than, say nε. We can then categorize optimization problems in terms of how well they
can be approximated by efficient algorithms.

Approximation factor (α) Approximability

1 + ε (PTAS) Very approximable
1.1
2
constant c

log n Somewhat approximable
log2 n√

n

nε

n Not very approximable

Figure 1.3.1: Some various degrees to which a problem can be approximated

We will also study the limits of approximability. Hardness of approximation results are proofs that
no approximation better than a certain factor exists for a particular problem, under some hardness
asumption. For example, set cover cannot be approximated to within an o(log n) factor, where n is
the number of nodes, unless NP = P (in which case we can solve it exactly). For some problems
like set cover, we can get tight results, i.e. any improvement over the currently best known factor
of approximation would imply P = NP or refute another such complexity assumption. Other
problems have a huge gap between the upper and lower approximability bounds currently known,
so there is much variation from problem to problem.

1.4 Vertex Cover

One important step in finding approximation algorithms is figuring out what OPT is. But having
a method for calculating OPT exactly is often enough to get a full solution for the problem. Vertex
cover has this property.

Definition 1.4.1 (Vertex cover) Given an undirected graph G = (V,E), find a smallest subset
S ⊆ V such that every edge in E is incident on at least one of the vertices in S.

Now assume that we have an algorithm that can tell us how many vertices are in an optimal vertex
cover for any given graph. Then we can use this procedure to efficiently find a solution that is
optimal. The idea is to observe how removing a vertex effects the size of an optimal vertex cover.
If the number of vertices needed to make a vertex cover in the induced subgraph is reduced, then
we know that we need to include the removed vertex in S. If the count remains the same, then we
know that there is no harm in leaving that vertex out of S. We continue in this way to determine

2

which vertices to include in the vertex cover. Once our algorithm outputs zero for the remaining
induced subgraph, S is an optimal vertex cover. This property of being able to reduce an instance
to a smaller instance of the same problem is called self-reducibility.

It would be ideal to prove that an algorithm always outputs a solution that is within an α factor
of OPT , even if we don’t know what OPT is. This is where lower bounds come into play. Given a
problem instance I, we can find some property Π such that Π(I) ≤ OPT (I). Then we get around
calculating OPT by showing that ALG(I) ≤ α · Π(I) ≤ α · OPT (I).

For vertex cover, we can look for a collection of edges such that no two of these edges share a
vertex. Since any vertex cover would have to choose at least one of the vertices from each of these
edegs, this shows that the size of any vertex cover for G is at least the size of any matching for G.

Lemma 1.4.2 The size of any matching in G is a lower bound on the size of an optimal vertex
cover in G.

Proof: See above.

Since we want Π(I) to be as large as possible, we choose our lower bound to be the size of a maximal
matching for G. Given a maximal matching, a natural approximation to an optimal solution is just
to include all vertices incident on the edges of our maximal matching. It is easy to see that this
is an admissible solution since the existence of an edge that isn’t incident on one of these vertices
contradicts the maximality of the matching.

Approximate Vertex Cover(G = (V,E) - an undirected graph)
Let M = any maximal matching on G

Let S = all vertices incident on M

return S

Theorem 1.4.3 The above algorithm is a 2-approximation to vertex cover.

Proof: Let Π(I) be the size of the matching found by the above algorithm. Then ALG(I) ≤ 2·Π(I)
and by lemma 1.4.2, Π(I) ≤ OPT (I), so ALG(I) ≤ 2 · Π(I) ≤ 2 · OPT (I).

This is the best known approximation for vertex cover to date. In future lectures we will see other
ways of obtaining the same approximation factor.

1.5 Metric TSP

Now we will consider the traveling salesperson problem.

Definition 1.5.1 (Traveling salesperson problem (TSP)) Given a graph with weights assigned
to the edges, find a minimum weight tour that visits every vertex exactly once.

It’s a good exercise to show that any reasonable approximation for TSP yields a solution for the
Hamiltonian cycle problem (even when the graph is required to be the complete graph). Therefore,
we will consider a less general version of the problem where we relax the ban on revisiting vertices.

Definition 1.5.2 (Metric TSP) Given a graph with weights assigned to the edges, find a mini-

3

mum weight tour that visits each vertex at least once.

This is called metric TSP because it is equivalent to solving the original TSP (without revisiting
vertices) on the “metric completion” of the graph. By metric-completion, we mean that we put an
edge between every pair of nodes in the graph with length equal to the length of the shortest path
between them. The shortest path function on a connected graph forms a metric. A metric is an
assignment of length to every pair of nodes such that the following hold for all u, v, and w.

d(u, v) ≥ 0

d(u, v) = 0 if and only if u = v

d(u, v) = d(v, u)

d(u, v) ≤ d(u,w) + d(w, v) (the triangle inequality)

This is a minimization problem, so now we look for lower bounds on OPT . Some possibilities
include minimum spanning tree, the diameter of the graph, and TSP-path (i.e. a Hamiltonian path
of minimum weight).

One desirable property for a lower bound is that it is as close to OPT as possible. Suppose we had
a property Π such that there exist arbitrarily large instances I such that OPT (I) = 100 · Π(I).
Then we can’t hope to get α better than 100. In our case, if I is the complete graph with unit edge
weights, and Π(I) is the diameter of the graph then we see that OPT (I) = n · Π(I), so we won’t
be able to use graph diameter as a lower bound for metric TSP.

Another quality of a good lower bound is that the property is easier to understand or calculate
than OPT itself. We may run into this trouble with TSP-path. However, minimal spanning tree
can be computed efficiently, so we will try to use this as our lower bound (to see that it is a lower
bound, note that an optimal tour with one edge removed is a tree).

If we use a depth first search tour of our tree as an approximation then we see that ALG =
2 · MST ≤ 2 · OPT so we have a 2-approximation of metric TSP.

Can this analysis be improved upon? The answer is no, because we can find a family of instances
where OPT (I) = 2 · Π(I). The line graph suffices as an example of this. That is, let I be a graph
on n vertices where each vertex connects only to the “next” and “previous” vertices (there will be
a total of n−1 edges, each with edge weight 1). Then OPT (I) = 2(n−1) = 2 ·Π(I). This example
shows that we cannot get a better approximation for TSP using only the MST lower bound. But
it doesn’t preclude the possibility of a different algorithm using a different lower bound.

The crucial observation in improving this algorithm is to observe that our approach was really to
convert the tree into an Eulerian graph and then use the fact there is an Eulerian tour. If we can
find a more cost-effective way to transform the tree into an Eulerian graph, we could improve the
approximation factor. An Eulerian tour exists if and only if every vertex has even degree (given
that we want to start and end at the same vertex). Thus it suffices to find a matching between all
nodes of odd degree in the minimal spanning tree and add these edges to the tree.

Lemma 1.5.3 Given a weighted graph G = (V,E) and a subset of vertices S ⊆ V with even
cardinality, a minimum cost perfect matching for S has weight at most half of a minimum cost
metric TSP tour on G.

4

Proof: Let S as in the statement of the lemma and consider a minimum cost TSP tour on S.
Because of the metric property, this tour has a cost at most OPT . It also induces 2 matchings
(take every other edge), and the smaller matching has cost at most 1

2
OPT .

Approximate Metric TSP(G = (V,E) - a weighted undirected graph)
Let M = minimal spanning tree in G

Let U = set of vertices with odd degree in M

Let P = minimum cost perfect matching on U in G

return Eulerian tour on M ∪ P

Theorem 1.5.4 The above algorithm is a 3

2
-approximation to metric TSP.

Proof: Since there must be an even number of vertices of odd degree in the minimal spanning
tree M , we can use a minimum cost perfect matching beteween these vertices to complete an
Eulerian graph. We know the minimum cost perfect matching has weight at most 1

2
OPT , thus

ALG ≤ MST + MATCHING ≤ 3

2
OPT . We have a 3

2
-approximation for metric TSP.

Note that we used two lower bounds in our approximation. Each lower bound on its own isn’t
fantastic but combining them together produced a more impressive result. As an exercise, find a
family of instances for which there is a big gap between the matching lower bound and the optimal
TSP tour. This simple approximation algorithm has been known for over 30 years [1] and no
improvements have been made since its discovery.

1.6 Steiner Tree

Next time we will talk about the Steiner tree problem.

Definition 1.6.1 (Steiner tree problem) Given a weighted graph G = (V,E) and a subset T ⊆
V of nodes in a graph, find a least cost tree connecting all of the nodes in T (the “helper nodes”
that are in the graph but not in in T are known as Steiner nodes).

Applications of Steiner trees arise in computer networks. We will discuss this problem next lecture.

References

[1] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. In
Technical report no. 388, Graduate School of Industrial Administration, Carnegie-Mellon Uni-
versity, 1976.

5

CS880: Approximations Algorithms

Scribe: Siddharth Barman Lecturer: Shuchi Chawla
Topic: Steiner Tree; Greedy Approximation Algorithms Date: 01/25/07

In this lecture we give an algorithm for Steiner tree and then discuss greedy algorithms.

2.1 Steiner Tree

Problem Statement: Given a weighted graph G = (V,E) and a set R ⊆ V , our goal is to determine
the least cost connected subgraph spanning R. Vertices in R are called terminal nodes and those
in V \R are called Steiner vertices.

Note that the least cost connected subgraph spanning R is a tree. Also we are free to use non
terminal vertices of the graph (the Steiner nodes) in order to determine the Steiner tree.

We first show that we can assume without loss of generality that G is a complete graph. In
particular, let Gc denote the metric completion of G: the cost of an edge (u, v) in Gc for all
u, v ∈ V is given by the length of the shortest path between u and v in G. As an exercise verify
that costs in Gc form a metric.

Lemma 2.1.1 Let T be a tree spanning R in Gc, then we can find a subtree in G, T ′ that spans
R and has cost at most the cost of T in Gc.

Proof: We can get T ′ by taking a union of the paths represented by edges in T . Cost of edges in
Gc is the same as the cost of the paths (shortest) of G they represent. Hence the sum of costs of
all the paths making up T ′ is at most the cost of T .

As seen in the previous lecture a lower bound is a good place to start looking for an approximate
solution. We will use ideas from the previous lecture relating trees to traveling salesman tours to
obtain a lower bound on the optimal Steiner tree.

Lemma 2.1.2 Let Gc

R
be the subgraph of Gc induced by R. Then the cost of the MST in Gc

R
is

at most the cost of the optimal TSP tour spanning Gc

R
.

Proof: See previous lecture.

Lemma 2.1.3 The cost of the optimal TSP tour spanning GR

c
is at most twice OPT (the optimal

Steiner tree in Gc spanning R)

Proof: As shown in Figure 2.1.1 traversing each edge of the Steiner tree twice gives us a path
which covers all the terminal nodes i.e. a tour covering all of R. Hence TSP spanning R ≤ 2OPT .

Corollary 2.1.4 The cost of the MST of Gc

R
is at most twice OPT .

Proof: Follows from the above mentioned lemmas.

The lower bound in itself suggests a 2-approximation to the Steiner tree. The algorithm is to simply
determine the MST on R in Gc

R
i.e.

1

Terminal nodes

Steiner nodes

Figure 2.1.1: Constructing tour spanning R from the optimal Steiner tree

• Consider Gc, the metric completion of graph G.

• Get Gc

R
, the subgraph induced by set R on Gc.

• Determine MST on Gc

R
, translate it back to a tree in G as described in the proof of lemma

2.1.1.

• Output this tree

Theorem 2.1.5 The algorithm above gives a 2-approximation to Steiner tree.

Proof: Follows from the three lemmas stated above.

By a more careful analysis the algorithm can be shown to give a 2
(

1 − 1

|R|

)

approximation. This

is left as an exercise.

The best known approximation factor for the Steiner tree problem is 1.55 [5]. Also from the
hardness of approximation side it is known that Steiner tree is “APX − Hard”, i.e. there exists
some constant c > 1 s.t. Steiner tree is NP- Hard to approximate better than c [1].

2.2 Greedy Approximation Algorithms—the min. multiway cut

problem

Next we look at greedy approximation algorithms. The design strategy carries over from greedy
algorithms for exact algorithm design i.e. our aim here is to pick the myopic best action at each
step and not be concerned about the global picture.

First we consider the Min Multiway Cut Problem.

Problem Statement: Given a weighted graph G with a set of terminal node T and costs (weights)
on edges our goal is to find the smallest cut separating all the terminals.

Let k = |T | denote the cardinality of the terminal set. When k = 2, the problem reduces to simple
min cut and hence is polytime solvable. For k ≥ 3 it is known that the problem is NP-Hard and

2

also APX-Hard [3]. Note that multiway cut is different from the multicut problem. We will study
the latter later on in the course.

We provide a greedy approximation algorithm for the min multiway cut problem and give a tight
analysis to show that it achieves an approximation factor of 2

(

1 − 1

k

)

. The algorithm and analysis
is due to Dahlhaus et al. [3]

Algorithm: For every terminal ti ∈ T , find the min-cut Ci separating ti from T\{ti}. A Multiway
cut is obtained by taking the union of the (k − 1) smallest cuts out of C1,C2,...Ck

.

The size of multiway cut determined by the greedy algorithm is
∑

i≤k
|Ci|.

We proceed to analyze the relative goodness of the greedy solution with respect to that of the
optimal. The idea behind the analysis is captured by figure 2.2.2.

Lemma 2.2.1
∑

i
|Ci| ≤ 2OPT , where OPT is the cost of the minimum multiway cut.

Proof: Consider the components generated by OPT , call them S1,...,Sk
. For each ti, consider

the full cut C ′
i
consisting of all the edges in OPT with exactly one end point in Si. We know that

|Ci| ≤ |C ′
i
|, because C ′

i
separates ti from T\{ti}.

Also (Figure 2.2.2) on summing up the capacities of C ′
i
s each edge of the min multiway cut is

counted twice hence we have
∑

k

i=1
|C ′

i
| = 2OPT . Combining the two we get

∑

k

i=1
|Ci| ≤ 2OPT

1

1

S
2

C ’
2

t

t
t

t
1

2
3

4

C ’

S

Figure 2.2.2: Min multiway cut

A tighter version of the above may be stated as follows.

Lemma 2.2.2 Let j = argmaxi|Ci|, i.e. j is the largest of the cuts then

∑

i∈[k],i6=j

|Ci| ≤ 2

(

1 −
1

k

)

OPT

Proof:

3

As |Cj | is greater than the average value of the cuts we have,

∑

i∈[k],i6=j

|Ci| ≤
(

1 −
1

k

)

∑

i∈[k]

|Ci|

Combining this with the previous lemma we get the desired result.

Theorem 2.2.3 The above algorithm gives a 2
(

1 − 1

k

)

approximation to min multiway cut.

1+ε2

2

2

1+ε
1+ε

Figure 2.2.3: Bad example for Min multiway cut greedy algorithm

We now give a tight example for the algorithm. First let us examine the case of k = 3 as in the
figure above. In this case the algo. returns a cut of cost 4, whereas the min. multiway cut has
cost 3(1 + ε). Generalizing the triangle of Figure 2.2.3 to a k cycle we find that the analysis of the
algorithm provided above is in fact tight. In particular for the k cycle case, |Ci| = 2 for each i and
hence the greedy multiway cut is of size 2(k−1). The min multiway cut is in fact the k cycle hence
OPT = (1 + ε)k. The example shows that our analysis of the provided greedy algorithm is in fact
tight.

Though the analysis provided here is tight, better algorithms exist for the min multiway cut prob-
lem. Calinescu et al. [2] gave a

(

3

2
− 1

k

)

approx. which was subsequently improved to a 1.3438
approx by Karger et al. [4].

References

[1] M. Bern, P. Plassmann. The steiner problem with edge lengths 1 and 2. In Information
Processing Letters Volume 32-1 (1989), pp: 171-176.

[2] G. Calinescu, H.J. Karloff, Y. Rabani. An Improved Approximation Algorithm for Multiway
Cut. In STOC (1998), pp: 48-52.

[3] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis. The Com-
plexity of Multiterminal Cuts. In SIAM J. Comput. Volume 23 (1994), pp: 864-894.

4

[4] D.R. Karger, P.N. Klein, C. Stein, M. Thorup, N.E. Young. Rounding Algorithms for a
Geometric Embedding of Minimum Multiway Cut. In STOC (1999), pp: 668-678.

[5] G. Robins, A. Zelikovsky. Tighter Bounds for Graph Steiner Tree Approximation. In SIAM
Journal on Discrete Mathematics Volume 19-1 (2005), pp: 122-134.

5

CS880: Approximations Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: Greedy Approximations: Set Cover and Min Makespan Date: 1/30/06

3.1 Set Cover

The Set Cover problem is: Given a set of elements E = {e1, e2, . . . , en} and a set of m subsets
of E,S = {S1, S2, . . . , Sn}, find a “least cost” collection C of sets from S such that C covers all
elements in E. That is, ∪Si∈CSi = E.

Set Cover comes in two flavors, unweighted and weighted. In unweighted Set Cover, the cost of a
collection C is number of sets contained in it. In weighted Set Cover, there is a nonnegative weight
function w : S → R, and the cost of C is defined to be its total weight, i.e.,

∑

Si∈C
w (Si).

First, we will deal with the unweighted Set Cover problem. The following algorithm is an extension
of the greedy vertex cover algorithm that we discussed in Lecture 1.

Algorithm 3.1.1 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Pick an element e ∈ E not covered by C.

(b) Add all sets Si containing e to C.

To analyze Algorithm 3.1.1, we will need the following definition:

Definition 3.1.2 A set E′ of elements in E is independent if, for all e1, e2 ∈ E′, there is no
Si ∈ C such that e1, e2 ∈ Si.

Now, we shall determine how strong an approximation Algorithm 3.1.1 is. Say that the frequency of
an element is the number of sets that contain that element. Let F denote the maximum frequency
across all elements. Thus, F is the largest number of sets from S that we might add to our cover
C at any step in the algorithm. It is clear that the elements selected by the algorithm form an
independent set, so the algorithm selects no more than F |E′| elements, where E′ is the set of
elements picked in Step 2a. That is, ALG ≤ F |E′|. Because every element is covered by some
subset in an optimal set cover, we know that |E′| ≤ OPT for any independent set E′. Thus,
ALG ≤ F OPT, and Algorithm 3.1.1 is therefore an F–approximation.

Theorem 3.1.3 Algorithm 3.1.1 is an F–approximation to Set Cover.

Algorithm 3.1.1 is a good approximation if F is guaranteed to be small. In general, however, there
could be some element contained in every set of S, and Algorithm 3.1.1 would be a very poor
approximation. So, we consider a different unweighted Set Cover approximation algorithm which
uses the greedy strategy to yield a ln n–approximation.

1

Algorithm 3.1.4 Set Cover(E, S):

1. C ← ∅.

2. While E contains elements not covered by C:

(a) Find the set Si containing the greatest number of uncovered elements.

(b) Add Si to C.

Theorem 3.1.5 Algorithm 3.1.4 is a ln n

OPT
–approximation.

Proof: Let k = OPT, and let Et be the set of elements not yet covered after step i, with E0 =
E. OPT covers every Et with no more than k sets. ALG always picks the largest set over Et in
step t + 1. The size of this largest set must cover at least |Et|/k in Et; if it covered fewer elements,
no way of picking sets would be able to cover Et in k sets, which contradicts the existence of OPT.
So, |Et+1| ≤ |Et| − |Et|/k, and, inductively, |Et| ≤ n (1− 1/k)t.

When |Et| < 1, we know we are done, so we solve for this t:

(

1−
1

k

)

t

<
1

n

⇒ n <

(

k

k − 1

)

t

⇒ ln n ≤ t ln

(

1 +
1

k − 1

)

≈
t

k

⇒ t ≤ k ln n = OPT ln n.

Algorithm 3.1.4 finishes within OPT ln n steps, so it uses no more than that many sets. We can
get a better analysis for this approximation by considering when |Et| < k, as follows:

n

(

1−
1

k

)

t

= k

⇒ n
1

et/k

= k (because (1− x)1/x ≤
1

e
for all x).

⇒ et/k =
n

k

⇒ t = k ln
n

k
.

Thus, after k ln n

k
steps there remain only k elements. Each subsequent step removes at least one

element, so ALG ≤ OPT
(

ln n

OPT
+ 1

)

.

Theorem 3.1.6 If all sets are of size ≤ B, then there exists a (ln B + 1)–approximation to un-
weighted Set Cover.

Proof: If all sets have size no greater than B, then k ≥ n/B. So, B ≥ n/k, and Algorithm 3.1.4
gives a (ln B + 1)–approximation.

2

Now we extend Algorithm 3.1.4 to the weighted case. Here, instead of selecting sets by their number
of uncovered elements, we select sets by the ”efficiency” of their uncovered elements, or the number
of uncovered elements per unit weight.

Algorithm 3.1.7 Weighted Set Cover(S, C, E, w):

1. C ← ∅, and E′ ← E.

2. While E contains uncovered elements:

(a) s← argmax
X∈S |X ∩ E|/w(X).

(b) C ← C ∪ s, S ← S \ {s}, and E′ ← E′ \ S.

Algorithm 3.1.7 was first analyzed in [5].

Theorem 3.1.8 Algorithm 3.1.7 achieves a ln n–approximation to Weighted Set Cover.

Proof: For every picked set Sj, define θj as |Sj ∩ E|/w(Sj) at the time that Sj was picked. For
each element e, let S′

j
be the first picked set that covers it, and define cost(e) = 1/θj . Notice that

∑

e∈E
cost(e) = ALG.

Let us order the elments in the order that they were picked, breaking ties arbitrarily. At the time
that the ith element (call it ei) was picked, E contained at least n− i + 1 elements. At that point,
the ”per-element” cost of OPT is at most OPT/(n − i + 1). Thus, for at least one of the sets in
OPT, we know that

|S ∩ E|
w(s)

≥
n− i + 1

OPT
.

Therefore, for the set Sj picked by the algorithm, we have θj ≥ (n− i + 1)/OPT. So,

cost(ei) ≤
OPT

n− i + 1
.

Over the execution of Algorithm 3.1.7, the value of i goes from n to 1. Thus, the total cost of each
element that the algorithm removes is at most

n
∑

i=1

OPT

n− i + 1
≤ OPT ln n.

Thus, Algorithm 3.1.7 is a ln n–approximation to Weighted Set Cover.

The above analysis is tight, which we can see by the following example:

3

The dots are elements, and the loops represent the sets of S. Each set has weight 1. The optimal
solution is to take the two long sets, with a total cost of 2. If Algorithm 3.1.7 instead selects the
leftmost thick set at first, then it will take at least 5 sets. This example generalizes to a family of
examples each with 2k elements, and shows that no analysis of Algorithm 3.1.7 will make it better
than a O(ln n)–approximation.

A ln n–approximation to Set Cover can also be obtained by other techniques, including LP-rounding.
However, Feige showed that no improvement, even by a constant factor, is likely:

Theorem 3.1.9 There is no (1− ε) ln n–approximation to Weighted Set Cover unless NP ⊆ DTIME(nlog log n).
[1]

3.2 Min Makespan Scheduling

The Min Makespan Problem is: given n jobs to schedule on m machines, where job i has size si,
schedule the jobs to minimize their makespan.

Definition 3.2.1 The makespan of a schedule is the earliest time when all machines have stopped
doing work.

This problem is NP-hard, as can be seen by a reduction from Partition. The following algorithm
due to Ron Graham yields a 2–approximation.

Algorithm 3.2.2 (Graham’s List Scheduling) [2] Given a set of n jobs and a set of m empty
machine queues,

1. Order the jobs arbitrarily.

2. Until the job list is empty, move the next job in the list to the end of the shortest machine
queue.

Theorem 3.2.3 Graham’s List Scheduling is a 2–approximation.

Proof: Let Sj denote the size of job j. Suppose job i is the last job to finish in a Graham’s
List schedule, and let ti be the time it starts. When job i was placed, its queue was no longer

than any other queue, so every queue is full until ti. Thus, ALG = Si + ti ≤ Si +
(
Pn

j=1
Sj)−Si

m
=

1

m

∑

n

j=1
Sj + (1 − 1/m)Si. It’s easy to see that Si ≤ OPT and that 1

m

∑

n

j=1
Sj ≤ OPT . So, we

conclude that ALG ≤ (2− 1/m)OPT, which yields a 2–approximation.

This analysis is tight. Suppose that after the jobs are arbitrarily ordered, the job list contains
m(m−1) unit-length jobs, followed by one m-length job. The algorithm yields a schedule completing
in 2m− 1 units while the optimal schedule has length m.

This algorithm can be improved. For example, by ordering the job list by increasing duration instead
of arbitrarily, we get a (4/3)–approximation, a result proved in [3]. Also, this problem has a poly-
time approximation scheme (PTAS), given in [4]. However, a notable property of Algorithm 3.2.2
is that it is an online algorithm, i.e., even if the jobs arrive one after another, and we have no
information about what jobs may arrive in the furture, we can still use this algorithm to obtain a
2–approximation.

4

References

[1] Uriel Feige. A Threshold of lnn for Approximating Set Cover. In J. ACM 45(4), pp 634-652.
(1998)

[2] Graham, R. Bounds for Certain Multiprocessing Anomalies. In Bell System Tech. J., 45, pp
1563-1581. (1966)

[3] Ronald L. Graham. Bounds on Multiprocessing Timing Anomalies. In SIAM Journal of Applied
Mathematics, 17(2), pp 416-429. (1969)

[4] Dorit S. Hochbaum, David B. Shmoys. A Polynomial Approximation Scheme for Scheduling on
Uniform Processors: Using the Dual Approximation Approach. In SIAM J. Comput. 17(3), pp
539-551. (1988)

[5] D. S. Johnson. Approximation Algorithms for Combinatorial Problems. In Journal of Computer
and System Sciences, 9, pp 256-278. (1974) Preliminary version in Proc. of the 5th Ann. ACM
Symp. on Theory of Computing, pp 36-49. (1973)

5

CS880: Approximations Algorithms

Scribe: Siddharth Barman Lecturer: Shuchi Chawla
Topic: Edge Disjoint Paths; Dynamic Programming Date: 02/01/07

In this lecture we give an algorithm for Edge disjoint paths problem and then discuss dynamic
programming.

4.1 Edge disjoint paths

Problem Statement: Given a directed graph G and a set of terminal pairs {(s1, t1), (s2, t2), · · · , (s
k
, t

k
)},

our goal is to connect as many pairs as possible using non edge intersecting paths.

Edge disjoint paths problem is NP-Complete and is closely related to the multicommodity flow
problem. In fact integer multicommodity flow is a generalization of this problem. We describe a
greedy approximation algorithm for the edge disjoint path problem due to Jon Kleinberg [4].

Algorithm: Compute shortest path distance between every (si, ti) pair. Route the one with smallest
distance along the corresponding shortest path, remove all the used edges from the graph and repeat.

Theorem 4.1.1 The above algorithm achieves an O(
√

m) approximation, where m is the number
of edges in the given graph.

Before we dwell on the proof of the above theorem we present an instance of the problem (Figure
1) for which the greedy algorithm gives an Ω(

√
m) approximation. This shows that the analysis is

in fact tight.

See Figure 1; The graph is constructed such that the length of the path between terminal vertices
s
l+1, tl+1 is smaller than all other (si, ti) paths. Hence the greedy algorithm picks the path con-

necting s
l+1 and t

l+1 at the first go. This in turn disconnects all other terminal pairs. Thus the
greedy algorithm returns a single path, but we can connect (si, ti) pairs for all i between 1 and l

by edge disjoint paths.

Note that for the construction to go through length of the path between s
l+1 and t

l+1 must be at
least l and so the length of the shortest path between si and ti for 1 ≤ i ≤ l must be more than l.
So m = O(l2) and the approximation achieved is l = Ω(

√
m).

Relation between the optimal solution and our greedy algorithm is achieved by charging each path
in OPT to the first path in ALG that intersects it. For this we define short and long paths. A
short path is one which has no more than k edges. Rest of the paths shall be referred to as long
paths. We will pick an approximate value of k later.

Lemma 4.1.2 OPT has no more than m/k long paths, where m is the number of edges.

Proof: The paths in OPT are edge disjoint hence m/k paths of length more than k will cover all
the m edges.

Lemma 4.1.3 Each short path in OPT gets charged to some short path in ALG.

Proof: The greedy algorithm picks the shortest path which is still available. Say PG is the path

1

l+1

s

s

s

s

s

1

2

3

l

l+1

t

t

t

t

t 1

2

3

l

Figure 4.1.1: Bad example for greedy algorithm

picked up ALG that “cuts” POPT a fixed short path in OPT for the first time. As described earlier
POPT gets charged to PG. At that point of time all of previously selected paths of ALG are edge
disjoint with POPT , hence POPT is still available, but ALG decides to choose PG which implies that
length of PG is less than k, i.e. it is a short path.

Lemma 4.1.4 Each short path in ALG gets charged at most k times.

Proof: Paths of OPT are edge disjoint themselves hence in the worst case each edge of a short
path selected by ALG cuts a different path of OPT . This bound the charge to k.

Next we use the above mentioned lemmas to prove Theorem 4.1.1.

Proof of Theorem 4.1.1: We partition the optimal solution in long and short paths i.e. OPT =
OPT

long
+ OPT

short
. By lemma 4.1.2 we have that OPT

long
is at most m/k and using the other

two lemmas we can bound OPT
short

by ALG × k. Hence,

OPT ≤
m

k
+ ALG × k

Setting k =
√

m and noting that ALG ≥ 1 we get

OPT ≤ 2
√

m × ALG

Hence the algorithm achieves an approximation factor of 2
√

m.

The above algorithm and analysis is from Kleinberg’s thesis [4]. Chekuri and Khanna [2] gave a
better analysis of the same algorithm in terms of the number of vertices of the graph. In particular
they showed that the greedy algorithm achieves an approximation of O(n4/5) in general and an
O(n2/3) approximation for undirected graphs.

Surprisingly with complexity theoretic assumptions the greedy algorithm turns out to be the best
one could hope for, although the same factor can also be achieved using linear programming.

2

Hardness results for the edge disjoint paths problem show that unless P = NP, in directed graphs
it is not possible to approximate the edge disjoint path problem better than Ω(m1/2−ε) for any
fixed ε ≥ 0 [3]. For undirected graphs, edge disjoint paths cannot be approximated better than
Ω(log1/3−ε m) exists unless NP ⊆ ZT IME(npolylog n) [1].

4.2 Dynamic Programming: Knapsack

The idea behind dynamic programming is to break up the problem into several subproblems, solve
these optimally and then combine the solutions to get an optimal solution use them to solve the
prob at hand. Generally for approximation we do not use dynamic programming to solve the
given instance directly. We use two approaches. First we morph it into an instance with some
special property and then apply dynamic programming to solve the special instance exactly. The
approximation factor comes from this morphing.

Secondly, dynamic programming can as well be viewed as a clever enumeration technique to search
through the entire solution space. With this in mind, approximation algorithms can be designed
that restrict the search to only a part of the solution space and not the entire space and apply
dynamic programming over this subspace. In this case the approximation factor reflects the gap
between the overall optimal solution and the optimal solution over the subspace. Over the next
two lectures we will see both kinds of techniques used.

We proceed to design an approximation algorithm for the knapsack problem which uses the mor-
phing idea. Note that knapsack is known to be NP-complete.

Problem Statement: Given a set of n items each with a weight wi and profit pi, along with a
knapsack of size B our goal is to find a subset of items of total weight less than B and maximum
total profit.

Knapsack can be solved exactly using dynamic programming. The exact algorithm proceeds by
filling up a n × B matrix recursively. Each entry (i, b) in the matrix corresponds to the maximal
profit that can be achieved using elements 1 through i with total weight less than b. Each entry
takes a constant amount of time hence the time complexity is O(nB). We can also employ another
exact algorithm. This time we fill up an n × P matrix M , where P =

∑

i
pi is the total profit. An

entry (i, p) of M holds the value of the minimum possible weight required to achieve a profit of p

using elements 1 through i. This algorithm takes time O(nP).

These exact algorithms fall in the class of pseudo polynomial time algorithms. Formally, a pseudo
polynomial time algorithm is one that takes time polynomial in the size of the problem in unary.
Problems that have pseudo-poly time algorithms and are NP-Hard are called weakly NP-Hard.

We now describe how to obtain a polytime approximation algorithm. The main idea is to modify
the instance so as to reduce P =

∑

i
pi to some value that is bounded by a polynomial in n. In

particular, we pick K = n/ε to be the new maximum profit, for some ε > 0. We scale the profits
uniformly, such that the max. profit equals K., and then we round down these scaled values to the
nearest integer to ensure that we have integer profits i.e.

p′
i
=

⌊

pi ×
K

pmax

⌋

3

We then solve the knapsack exactly on the new profit values p′
i
. We now show that we do not loose

much in rounding.

Theorem 4.2.1 The above mentioned algorithm achieves a 1 + ε approximation.

Proof: Let O denote the value of the optimal solution OPT on the original instance and O′

denote the value of OPT on new instances, i.e. O =
∑

i∈OPT
pi and O′ =

∑

i∈OPT
p′

i
.

Similarly A and A′ be the value of the solution obtained by the algorithm on original and new
instances respectively.

Note that pi ≥ pmax

K

⌊

pi × K

pmax

⌋

. Hence

∑

i∈ALG

pi ≥
∑

i∈ALG

pmax

K

⌊

pi ×
K

pmax

⌋

Which is equivalent to A ≥ pmax

K
× A′. We solve the problem exactly on the new instances hence

A′ is the optimal value for p′
i
s. Hence A′ ≥ O′. Combining the two inequalities we get A ≥ pmax

K
O′.

Expanding O′ we get the following

pmax

K
O′ =

pmax

K

∑

i∈OPT

⌊

pi ×
K

pmax

⌋

≥
pmax

K

∑

i∈OPT

(

piK

pmax

− 1

)

=
∑

i∈OPT

pi − n
pmax

K

= O − εpmax

≥ O(1 − ε)

Hence A ≥ O(1 − ε)

Note that the above mentioned algorithm takes O(pmaxn2) time, hence the algorithm runs in time
poly(n, 1

ε
). Such algorithms belong to the so called FPTAS (Fully Polynomial Time Approx.

Scheme) class. In general we have the following two relevant notions:

Definition 4.2.2 FPTAS (Fully Polynomial Time Approx. Scheme): An algorithm which achieves
an (1 + ε) approximation in time poly(size, 1/ε), for any ε > 0.

Definition 4.2.3 PTAS(Polynomial Time Approx. Scheme): Approximation scheme which achieves
an (1 + ε) approximation in time poly(size) , for any ε > 0.

Note that an FPTAS is the best algorithm possible for an NP -Hard problem. As mentioned
before, knapsack also has a pseudo polytime algorithm. In fact, problems with an FPTAS often
have pseudo polytime algorithms. The following theorem formalizes this.

4

Theorem 4.2.4 Suppose that an NP Hard optimization problem has an integral objective function,
and the value of the function at its optimal solution is bounded by some polynomial in the size of the
problem in unary, then an FPTAS for that problem implies an exact pseudo-polytime algorithm.

Proof: Suppose that B = poly(size), where size is the size of the problem in unary, upper bounds
the optimal objective function value. Then we pick ε = 1

2B
an run the FPTAS with this value.

Then

ALG ≤ OPT

(

1 +
1

2B

)

< OPT + 1

Since the objective function is integral, ALG = OPT , and we obtain an optimal solution. The
algorithm runs in time poly(size).

References

[1] M. Andrews, L. Zhang. Hardness of the undirected edge-disjoint paths problem. In: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing (STOC) (2005), pp:
276–283

[2] C. Chekuri, S. Khanna. Edge disjoint paths revisited. In: Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2003), pp: 628–637

[3] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, M. Yannakakis. Near-optimal hard-
ness results and approximation algorithms for edge-disjoint paths and related problems. In:
Proceedings of thirty-first annual ACM symposium on Theory of computing (STOC) (19993),
pp: 19–28

[4] J. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. Ph.D Thesis, Dept. of
EECS, MIT (1996).

5

CS880: Approximations Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Bin Packing and Euclidean TSP Date: 2/6/2007

In the previous lecture, we saw how dynamic programming could be employed to obtain an FPTAS
for the Knapsack problem. The key idea was to morph the given instance into another instance with
additional structure — namely that the item profits weren’t too large — that allowed us to solve
it exactly, and such that an optimal solution for the morphed instance could be used to construct
a near-optimal solution for the original instance. In this lecture, we will further explore this idea
by applying it to the Bin Packing and Euclidean TSP problems. For the Bin Packing problem, our
morphed instanced will have a solution space that is small enough to search exhaustively. For the
Euclidean TSP problem, we will place geometric contraints on the morphed instance that allow us
to solve it exactly using dynamic programming.

5.1 Bin Packing

5.1.1 The Problem

The Bin Packing problem is, in a sense, complementary to the Minimum Makespan Scheduling
problem, which we studied in a previous lecture. In the latter problem, the goal is to schedule jobs
of various lengths on a fixed number of machines while minimizing the makespan, or equivalently
to pack items of various sizes into a fixed number of bins while minimizing the largest bin size. We
now consider the problem where we swap the roles of constraint and objective: all bins have a fixed
size, and we wish to minimize the number of bins needed.

Definition 5.1.1 (Bin Packing) Given items with sizes s1, . . . , sn ∈ (0, 1], pack them into the
fewest number of bins possible, where each bin is of size 1.

Note that the assumption that the bins are of size 1 is without loss of generality, since scaling the
bin size and all item sizes by the same amount results in an equivalent instance.

It is easy to see that Bin Packing is NP -hard by a reduction from the following problem.

Definition 5.1.2 (2-Partition) Given items with sizes s1, . . . , sn, can they be partitioned into
two sets of equal size?

Clearly, an instance of 2-Parition is a yes-instance if and only if the items can be packed into two
bins of size 1

2

∑

n

i=1
si. Thus a polynomial-time algorithm for Bin Packing would yield a polynomial-

time algorithm for 2-Partition. In fact, even a (3/2 − ε)-approximation algorithm for Bin Packing
would yield a polynomial-time algorithm for 2-Partition: on no-instances it would clearly use at
least three bins, but on yes-instances it would use at most (3/2 − ε)2 < 3 bins.

Theorem 5.1.3 For all ε > 0, Bin Packing is NP -hard to approximate within a factor of 3/2− ε.

Corollary 5.1.4 There is no PTAS for Bin Packing unless P = NP .

1

The above result exploited the fact that OPT could be small. Can we do better if OPT is large?
The answer is yes. We will obtain an asymptotic PTAS, where we only require a (1+ε)-approximate
solution if OPT is sufficiently large.

Definition 5.1.5 An asymptotic PTAS is an algorithm that, given ε > 0, produces a (1 + ε)-
approximate solution provided OPT > C(ε) for some function C, and runs in time polynomial in
n for every fixed ε.

In particular, we will obtain the following result.

Theorem 5.1.6 There is an algorithm for Bin Packing that, given ε > 0, produces a solution using
at most (1 + ε)OPT + 1 bins and runs in time polynomial in n for every fixed ε.

Corollary 5.1.7 There is an asymptotic PTAS for Bin Packing.

Proof: Given ε > 0, running the algorithm from Theorem 5.1.6 with parameter ε/2 yields
a solution using at most (1 + ε/2 + 1/OPT)OPT bins, which is at most (1 + ε)OPT provided
OPT > 2/ε.

The following algorithm is due to W. Fernandez de la Vega and G. Lueker [4].

5.1.2 The Algorithm

We seek to prove Theorem 5.1.6. Given an instance I of Bin Packing, we would like to morph it
into a related instance that can be solved optimally, and for which an optimal solution allows us to
construct an near-optimal solution for the original instance I. Our strategy will be to reduce the
solution space so it is small enough to be searched exhaustively. One idea is to throw out small
items, since intuitively the large items seem to be the bottleneck in finding a good solution. Another
idea is to make sure there aren’t too many different item sizes. The following result confirms that
these ideas accomplish our goal.

Theorem 5.1.8 There is a polynomial-time algorithm that solves Bin Packing on instances where
there are at most K different sizes of items and at most L items can fit in a single bin, provided
K and L are constants.

Proof: Call two solutions equivalent if they are the same up to the ordering of the bins, the
ordering of the items within each bin, and the distinguishing of items of the same size. We will
show that there are polynomially many nonequivalent solutions, and thus an optimal solution can
be found by exhaustive search.

The number of configurations for a single bin is at most KL, even if we distinguished between
different orderings of the items, since a configuration can be specified by the size of each of the at
most L items in the bin. The important thing is that it is a constant.

If we are not careful about only counting nonequivalent solutions, we might reason that since a
solution uses at most n bins, each of which can be in one of at most KL configurations, there are
at most (KL)n solutions. This bound is not good enough, and we can do better by remembering
that it only matters how many bins of each configuration there are, not what order they’re in. If
xi denotes the number of bins with the ith configuration, then nonequivalent solutions correspond

2

to nonnegative integral solutions to the equation

x1 + x2 + · · · + x
K

L ≤ n,

of which there are at most
(

n + KL

KL

)

by a classic combinatorial argument. This bound is at most a polynomial of degree KL.

In light of the previous theorem, we pause to remark that in contrast to the clever FPTAS for
Knapsack we saw in the last lecture, the running time of the algorithm we are developing for Bin
Packing is prohibitively expensive. Typically, PTAS’s have a bad dependence on 1/ε. For this
reason, PTAS’s are not usually very practical and are of primarily theoretical interest.

Given instance I, we seek to morph it into an instance where Theorem 5.1.8 applies. We will first
obtain an instance I ′ by throwing out all items of size less than ε. We will worry about packing
these items later. Now at most L = d1/εe items can fit into any one bin.

There could still be as many as n different item sizes, so we need to morph I ′ further to get an
instance with a constant number K of different item sizes. One way to do this is to consider the
items in sorted order, partition them into K groups, and round each item’s size up to the largest
size in its group, yielding an instance Jup. Another way is to round each item’s size down to the
smallest size in its group, yielding an instance Jdown.

0 1
I’

0 1
J
up

0 1
J
down

Neither of these two possibilities seems ideal. We want our new instance to satisfy the following
two (informal) properties.

(1) Given a solution to the new instance, it is easy to construct a comparable solution to I ′.

3

(2) The optimum value of the new instance isn’t too much worse than the optimum value of I ′.

The instance Jup satisfies (1), since when we go back to instance I ′, the items can only shrink, which
means that the same solution is still feasible. However, it doesn’t seem to satisfy (2), since if we try
to translate the optimal solution for I ′ into a solution for Jup, all the bins could overflow, requiring
many new bins to be opened up. The instance Jdown satisfies (2) since the optimal solution for
I ′ immediately yields a feasibile solution for Jdown with the same number of bins. However, it
doesn’t seem to satisfy (1) since a solution to Jdown can’t generally be translated to a solution for
I ′ without lots of bins overflowing.

It turns out that if we select the parameters in the right way, Jup does satisfy property (2). We
can argue this by comparing Jup to Jdown. (However, our final algorithm will apply the algorithm
from Theorem 5.1.8 only to Jup, not to Jdown.)

We consider the items in sorted order and partition them into K = 1/ε2 groups of size Q = nε2

each , breaking ties arbitrarily. (The last group might have fewer items.) We tacitly ignore the
pedantic details associated with rounding these quantities to integers, as these details distract from
the essense of the algorithm. We obtain Jup by rounding each item’s size up to the size of the
largest item in its group, and similarly obtain Jdown by rounding each item’s size down to the size
of the smallest item in its group. For each of these instances, there are at most K different item
sizes.

Our algorithm will actually construct Jup and apply the algorithm from Theorem 5.1.8 to it. The
resulting solution is also a feasible solution for I ′, as noted above. We would like to show that
the number of bins this solution uses is not too much more than OPT (I ′). As usual, we will need
a lower bound on OPT (I ′) to compare with. Observe that OPT (Jdown) ≤ OPT (I ′) since each
feasible solution of I ′ is also a feasible solution of Jdown. We will use this lower bound. How much
worse than OPT (Jdown) can OPT (Jup) be? The critical observation is that a solution to Jup can
be constructed from a solution to Jdown by taking each group of items, except the last, and moving
them to the locations occupied by the items in the next group, and assigning each item of the
last group to its own new bin. Since all groups (except possibly the last) have the same size, this
correspondence can be made.

0 1
J
up

0 1
J
down

4

Since the size of every item in a group in Jup is at most the size of every item in the next group
in Jdown, it follows that every item of Jup is at most the size of the item of Jdown whose place
it’s taking. (Note that the locations of the items of the first group of Jdown aren’t filled by any
items of Jup.) This shows that the resulting solution of Jup is feasible. Moreover, it has at most Q

additional bins, one for each item in the last group. We conclude that

OPT (Jup) ≤ OPT (Jdown) + Q

≤ OPT (I ′) + Q

= OPT (I ′) + nε2

≤ OPT (I ′) + OPT (I ′)ε

= (1 + ε)OPT (I ′).

In going from the first line to the second, we used our lower bound on OPT (I ′). In going from the
third line to the fourth, we use a second lower bound on OPT (I ′), namely that no solution can do
better than to pack every bin completely, which would use at least nε bins (since every item is of
size at least ε). This reveals why we chose Q the way we did: to make sure that the number of
extra bins we used in our comparison of OPT (Jup) to OPT (Jdown) was at most εOPT (I ′).

With this result in hand, we can prove the main result of this section.

Proof of Theorem 5.1.6: We are given instance I and ε > 0. First, we construct I ′ by throwing
out all items of size less than ε, and then we construct Jup and solve it optimally using the algorithm
of Theorem 5.1.8. The resulting solution, we have argued, is a feasible solution to I ′ using at most
(1 + ε)OPT (I ′) bins. The running time so far is

O(nK
L

) = O(nO(1/ε)
O(1/ε)

) = poly(n).

But we still have to pack the items of size less than ε. For this, we can make use of the empty space
in the bins used by our current packing. A natural thing to do is use a greedy strategy: pack each
item of size less than ε into the first bin it fits in, only opening a new bin when necessary. We next
argue that this does the job.

If the greedy phase does not open any new bins, then the number of bins is at most (1+ε)OPT (I ′) ≤
(1 + ε)OPT (I) as shown above. Here we used the trivial lower bound OPT (I ′) ≤ OPT (I). If the
greedy phase does open a new bin, then at the end, all but the last bin must be more than 1− ε full
(since otherwise the item that caused the last bin to be opened would have fit into one of them).
Denoting by ALG the number of bins used by our algorithm’s solution, we conclude that

(1 − ε)(ALG − 1) ≤
n

∑

i=1

si ≤ OPT (I).

Here we have used a second lower bound on OPT (I). It follows that

ALG ≤
1

1 − ε
OPT (I) + 1.

5

We have 1

1−ε
= 1 + O(ε) provided ε is at most some fixed positive constant, which is no loss of

generality. Since we may run this algorithm with a smaller ε parameter than the one we are given,
this suffices to prove the theorem.

It’s worth noting what prevents this approach from giving a PTAS (instead of an asymptotic PTAS).
In the final greedy phase, we can’t say anything about how full the last bin to be opened is. This
prevents us from applying the

∑

n

i=1
si ≤ OPT (I) bound to this last bin. Thus we get an extra +1

term floating around, which as a fraction of OPT , only goes down as OPT goes up, not as ε goes
down.

There are a number of heuristics for Bin Packing that give good worst case performance. See [3]
for a survey.

Finally, we remark that the practical importance of the Bin Packing problem spawned research
into algorithms for generalizations of this problem. For example, one can consider packing higher-
dimensional items into higher-dimensional bins. This generalization presents tricky issues not
present in the one-dimensional case that we considered. In the 2-dimensional case under certain
restrictions on the packing, one can get an asymptotic PTAS [2]. For higher (but still constant)
dimensions, constant factor approximations are known. However, we will not explore these results
in this course.

5.2 Euclidean TSP

5.2.1 The Problem

In this section we consider the following practically important special case of the traveling sales-
person problem (TSP).

Definition 5.2.1 (Euclidean TSP) Given n points in the d-dimensional Euclidean metric space
(for some fixed d), find a minimum length tour that visits all of them.

For simplicity, we will restrict our attention to the 2-dimensional case d = 2. The algorithm we
will present generalizes easily to higher dimensions.

The Metric TSP problem, for which we obtained a 3/2-approximation algorithm in a previous
lecture, is known to be APX-hard. Euclidean TSP in the plane is NP -hard, but it is conceivable
that the special structure of the Euclidean case allows us to overcome the obstacle that prevents
us from obtaining a PTAS for Metric TSP. We will show that this is, in fact, the case.

Theorem 5.2.2 There is a PTAS for the Euclidean TSP problem.

This result was proved independently by Arora [1] and Mitchell [5]. We will present Arora’s
algorithm and analysis.

We pause to emphasize the distinction between the problem at hand and the restriction of TSP to
planar metrics. A planar metric is one that arises as the shortest path metric of a planar graph.
The edge weights on this planar graph can be selected in any way, and need not have anything to
do with Euclidean distance. There is also a PTAS for the TSP on planar metrics, but it is quite
different from the algorithm we will present.

6

5.2.2 The Algorithm

Following the theme of the Bin Packing result and the Knapsack result from the previous lecture,
our overall strategy will be to morph the given instance into a related instance that has additional
structure that allows us to solve it optimally, and which allows us to construct a “good” solution
for the original instance from the optimal solution for the morphed instance. In short, we will first
modify the instance by moving each point a little bit so that it is in a convenient location, and then
we will further modify the instance by imposing some geometric constraints on the tours. We will
be able to solve the new instance exactly by dynamic programming, and then construct a tour for
the original instance without the cost growing by too much.

Before getting to the details, we first make the simplifying assumption that the smallest bounding
square of the given points has side length exactly n2. This is without loss of generality since we
can scale the given instance without affecting its solution set in any significant way. We denote the
resulting instance by I. We also observe that the smallest bounding square must have two points
on opposite sides (either one on the left side and one on the right side, or one on the bottom and
one on the top). Since every tour must traverse the distance from one of these points to the other
and back, we get the following lower bound on the optimum, which will be useful later.

Lemma 5.2.3 OPT (I) ≥ 2n2.

Now we describe the first modification we will make to our instance. We round the coordinates of
each input point to integers values, yielding an instance I ′. We can argue that this modification
doesn’t prevent us from getting a good approximation.

Lemma 5.2.4 If I ′ can be approximated within factor 1 + ε, then I can be approximated within
factor 1 + ε + 4/n.

Proof: Given a tour of I ′ of cost ALG′ ≤ (1+ε)OPT (I ′), it suffices to show that the corresponding
tour of I is of cost ALG ≤ (1 + ε + 4/n)OPT (I). Note that each point in I is at most

√
2 distance

from its location in I ′. Now given a tour in one of these two instances, the tour in the other instance
that follows the same path but “sidesteps” at each input point to visit it’s new location and come
back has additional total cost at most 2

√
2n and is at least as long as the tour that visits the input

points along straight line paths. It follows that corresponding tours in the two instances can differ
in cost by at most 2

√
2n. Hence, OPT (I ′) ≤ OPT (I)+2

√
2n and ALG ≤ ALG′ +2

√
2n, and thus

ALG ≤ (1 + ε)OPT (I ′) + 2
√

2n

≤ (1 + ε)(OPT (I) + 2
√

2n) + 2
√

2n

= (1 + ε)OPT (I) + (2 + ε)2
√

2n

≤ (1 + ε)OPT (I) + (2 + ε)
√

2
OPT (I)

n

≤ (1 + ε + 4/n)OPT (I).

We have used Lemma 5.2.3 in going from the third line to the fourth. In going from the fourth
line to the fifth, we have assumed that ε ≤ 2

√
2 − 2, which is no loss of generality. Thus given a

(1 + ε)-approximate solution to I ′, the corresponding solution to I is (1 + ε + 4/n)-approximate.

7

We would like to attempt to solve our morphed instance exactly by dynamic programming. A
natural line of attack is to break up the bounding square into four equal parts, and try to recom-
bine solutions to these four subproblems into a solution for the original problem. Each of these
subproblems would be broken up into four more subproblems in a similar way, and so on, leading
to a 4-ary tree of subproblems.

This motivates the modification we made earlier of rounding all coordinates to integer values. We
would like our base case to be when there’s just a single point, and this modification ensures that
our tree of subproblems won’t have to be too deep in order to separate two points that are close to
each other.

There seems to be a problem with this naive approach: it’s not clear how recombine optimal tours
for the four subproblems into an optimal tour for the subproblem at hand. For example, we could
have the pathological case where the optimal tour zigzags across one of the dividing lines. Our
subproblems need to take into account how they interact with each other across the dividing lines.

On each dividing line we will introduce some number of equidistant portals and only consider portal-
proper tours: ones that only cross dividing lines at portals. Then for each node in the 4-ary tree of
subproblems, we will actually have many subproblems, corresponding to different ways of entering
and exiting the square at its portals. This increases the number of subproblems, but by setting the
parameters properly, we will be able to keep the number under control. This also allows us to form
the optimal solution to the subproblem at hand by trying all possible ways of specifying how its four
subproblems interact with each other at the portals, and stitching the solutions together. We will
require that the number of portals be small enough that we can do this quickly, but large enough
that the optimum tour length doesn’t deteriorate by too much when we impose this geometric
restriction.

More details on this construction will be provided in the next lecture.

8

References

[1] S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other
Geometric Problems. In FOCS, 1996, pp. 2-12.

[2] N. Bansal, A. Lodi, and M. Sviridenko. A Tale of Two Dimensional Bin Packing. In FOCS,
2005, pp. 657-666.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation Algorithms for Bin Packing:
A Survey. In Approximation Algorithms for NP-Hard Problems, Dorit S. Hochbaum (editor),
PWS Publishing Company, 1997, pp. 46-93.

[4] W. Fernandez de la Vega and G. Lueker. Bin Packing Can Be Solved within 1 + ε in Linear
Time. In Combinatorica, 1(4), 1981, pp. 349-355.

[5] J. S. B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple
Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems. In
SIAM Journal on Computing, 28, 1999, pp. 1298-1309.

9

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Euclidean TSP (contd.) Date: 2/8/07

Today we continue the discussion of a dynamic programming (DP) approach to the Euclidean Trav-
elling Salesman Problem (TSP). Finally, a randomized modification in introduced which acheives
an expected approximation factor of 1 + 2ǫ.

6.1 Euclidean TSP

6.1.1 Intro

As introduced in the previous lecture, the Euclidean TSP invovles finding the minimum cost tour
of a set of points in a plane with a Euclidean metric.

The approaches to Bin-Packing and Knapsack discussed in the previous lecture work by first trans-
forming or restricting the original problem, then using DP to obtain an exact solution to the
transformed problem. This is the strategy we will apply to Euclidean TSP.

First, we will assume without loss of generality that the points are contained within a minimum
bounding box with side length n2. Second, we will assume all points have integer coordinates. It
can be shown that this modification can add no more than 2

√
2n to the total length of an optimal

tour in the transformed instance (see previous lecture). Also, note that this rounding may ’collapse’
several nearby points to the same coodrdinates. This means that the distance between any two
points in our tranformed instance must be either 0 or ≥ 1.

6.1.2 Divide anhd conquer

Our DP approach divides the minimum bounding box into 4 equal subboxes. These boxes are
further subdivided, and so on. Following the standard DP strategy, we will find optimal subpaths,
join them together, and then move up to the next level until we have a full solution.

Our key problem then is determining how to combine these subpaths. Obviously we cannot simply
consider all possible start/end point pairs within each subpath. The solution is to subdivide each
box into 4 boxes using 4 lines we will call the ”level i lines”, where i is the current recursion level.
On each of these lines we then place 2m equidistant ”portal” points. We then restrict our attention
to paths which only cross level i lines through these portals.

Definition 6.1.1 A tour is portal proper if it only crosses level i lines through the portal points.

We now place further restrictions on the paths we will consider.

Definition 6.1.2 A tour is proper if

1. it is portal proper

2. it crosses each portal ≤ 2 times

1

3. it only self-crosses at portals

We need to show that these new restrictions do not affect the length of a portal proper tour.

Lemma 6.1.3 If T is a portal proper tour, then we can find a proper tour T’ that is not longer.

Proof: First, we must show how any self-crossing can be eliminated without any additional
length. A diagram of a simple example shows how any crossover can be removed, resulting in a
path that is no longer than the original.

Figure 6.1.1: A self-crossing can be removed without additional length.

Second, we must show how any path which crosses a portal > 2 times can be modified to cross ≤ 2
times without additional length. This can be accomplished by having paths simply ”turn back”
instead of going through the portal again. Any odd number of portal crossings can be reduced to
a single crossing, and any even number of crossings can be reduced to two, as shown below.

6.1.3 DP for proper tours

Now we need to analyze the DP approach for finding the optimal proper tour. The key questions
here are:

1. how long to solve one subproblem?

2. how many subproblems have we created?

6.1.3.1 Subproblem size

First we will consider the number of possible solutions for a single subproblem. For a given ǫ, let
us choose m to be a power of 2 in the range

2

Figure 6.1.2: An odd number of portal crossings reduced to a single crossing.

[

log n

ǫ
,
2 log n

ǫ

]

(6.1.1)

Then for any given box, the maximum number of portals on a side is m. The maximum number
of sides with portals is 4, so the total number of portals on the box is then ≤ 4m. Since we are
restricting ourselves to paths that only use each portal 0,1, or 2 times the total number of portal
usage assignments 34m = nO(

1

ǫ
). Since every path which enters the box must also leave it, we can

throw out all portal usage assignments which sum to an odd number of portal crossings. Say a
given portal usage assignment uses 2r portals.

Given the portal usage assignment, how many possible paths are there? The ”no self-cross” property
of a proper tour allows us to further constrains the number of allowable paths. Within a single
box, there is a bijection between portal matchings which satisfy the ”no self-cross” constraint and
balanced arrangements of parentheses. This is most easily seen by arbitrarily choosing a ’starting’
portal on the box and going around the box clockwise to order the portals. Once a path ’enters’
through a portal, any paths entering ’afterwards’ must exit before the first path does. Portals used
twice can be considered equivalent to two adjacent portals for the purposes of this analysis.

Starting from the lower left-hand portal and going clockwise, the diagram below illustrates a portal
matching equivalent to the parenthesization ”(()) (() ())”.

The number of balanced parenthesizations for r pairs of parentheses is equal to the rth Catalan
number [2], which is bounded from above by 22r = nO(

1

ǫ
).

3

Figure 6.1.3: An even number of portal crossings reduced to two crossings.

This finally tells us that the total number of possible portal proper paths for a given box is nO(
1

ǫ
).

6.1.3.2 Number of subproblems

We now need to determine how many subproblems we have created. Each division creates 4 boxes,
so the total number of problems is given by 4L where L is the number of recursion levels.

Since we are only allowing integer coordinates, and our minimum bounding box has side length n2,
this means that the depth of our recursion is L = 2 log n. Combining this with the previous result
gives us 42 log n = n4 squares at the lowest level level of recursion. This result also could have been
arrived at by noticing that we have restricted the problem the integer coordinates and that our
minimum bounding square has side length n2. Since the smallest boxes cover exactly one point,
we get n4 one-point boxes.

6.1.3.3 Putting it all together

For any given box, we have nO(
1

ǫ
) valid portal matchings (a ’visit’). For a given visit, the portal

usages on the outer portals are fixed, so we then need to consider only the compatible visits for the
4 sub-boxes. Since each sub-box has nO(

1

ǫ
) valid visits, there are still only nO(

1

ǫ
) sets of 4 visits to

consider, only some of which will be compatible with the larger box portal matching and with each
other. The cost of a compatible set of 4 visits is then the sum of the optimal visit costs for each
sub-box, which have already been calculated at the lower level of recursion. The cost of the lowest
cost path for is then stored as the optimal cost for this particular visit of the larger box.

4

Figure 6.1.4: A portal proper path.

This process is started at the leaves and then proceeds up the tree. Combining the per subproblem
cost with the total number of subproblems gives us a final result of nO(

1

ǫ
) for the cost of our optimal

DP algorithm for proper tours.

6.1.4 Proper tour vs OPT

Now that we know we have a polynomial time algorithm for computing optimal proper tours. But
how much worse is the optimal proper tour than OPT?

To determine this, we construct a worst case OPT tour which has to go out of its way to go through
portals. Assuming that we are making a detour at each of the 2m portals and that each detour
adds ≤ n

2

2m
, then we are adding ≈ n2 total distance beyond OPT . Since we defined n2 to be the

side length of the minimal bounding box, 2n2 forms a lower bound on OPT . In our worst-case
scenario, saying that OPT ≈ 2n2 and our detours add ≈ n2 means that we have a constant-factor
approximation.

6.1.5 Randomized version

We can see that the worst-case example was very specific to our division line placement. This
provides the intuition for a randomized approach, which acheives an expected cost within a (1+2ǫ)
multiple of OPT .

The randomized version makes the top-level divisions at an offset from the n2/2 center lines. The
offsets are chosen uniformly. The rest of the algorithm is unchanged, giving virtually identical
analysis.

The one difference is that we can now compute the expectation of the number of line corssings.

Lemma 6.1.4 E(ci) = OPT 2
i+2

M
where ci is the number of times the optimal path crosses a level

i line, and M is the length of the level i line.

Proof: Divide the OPT path into segments with length δ. The probability that a segment crosses

5

Figure 6.1.5: A worst-case portal proper path.

Figure 6.1.6: Randomized level 1 division.

the vertical level i line is then ≤ 2δ

M
. The expected number of segments which cross the vertical

level i line is then given by
OPT

δ

2δ

M
=

2OPT

M
(6.1.2)

Since the same analysis holds for the horizontal line, the expected number of crossings is then 4OPT

M
.

To take the crossings at each lower level into account, notice that each lower level has twice as
many lines as the level above it.

The expected number of crossings at level i is then equal to the our previous calculation times 2i.

2i(
4OPT

M
) =

22+iOPT

M
(6.1.3)

6

Now that we have the expected number of crossings, we can compute the expected additional detour
cost. Our definition of m with respect to log n will now play a crucial role.

Theorem 6.1.5 An OPT tour can be made proper at an increased length cost ≤ 2ǫOPT .

Proof: First we need to calculate the worst-case distance from a crossing point to a portal on a
level i line. Since on level i we have 2i+1m portals per line, the distance must be ≤ M

2i+1
m

.

Now we can see that even though the expected number of crossings grows exponentially with i, the
distance to the nearest portal shrinks exponentially with i. The expected extra distance d necessary
to go through the portals can now be calculated.

E(d) ≤
∑

i

M

2i+1m

22+iOPT

M
=

OPT

m
2 log n (6.1.4)

We recall that m ∝ log n, and substitute in our definition of m.

E(d) ≤ 2ǫOPT (6.1.5)

It is now clear that our randomized version has expected cost arbitrarily close to OPT.

E(ALG) ≤ (1 + 2ǫ)OPT (6.1.6)

Now that we have a bound on the expected error, we can use the Markov inequality to get a
probability bound on how much worse our solution is than OPT. This probability can then be
made arbitrarily small by repeatedly running the randomized algorithm.

A de-randomization of this algorithm is also possible [1].

References

[1] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems. In Journal of the ACM, 1996.

[2] R. A. Brualdi. Introductory Combinatorics, 4th ed. New York: Elsevier, 1997.

7

CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

In previous lectures we saw how dynamic programming could be used to obtain PTAS for certain
NP-hard problems. In this lecture we will discuss local search and look at approximation algorithms
for two problems — Max-Cut and Facility Location.

7.1 Local Search

Local search is a heuristic technique for solving hard optimization problems and is widely used
in practice. Suppose that a certain optimization problem can be formulated as finding a solution
maximizing an objective function in the solution space. A local search algorithm for this problem
would start from an arbitrary or carefully chosen solution, then iteratively move to other solutions
by making small, local changes to the solution, each time increasing the objective function value,
until a local optimum is found.

We view the solution space as a graph where vertices are the candidate solutions. An edge exists
between two solutions if we can move from one to the other by making some small changes. A
solution is a global optimum if its objective function value is maximized (or minimized, depending
on the context) over all candidate solutions. A solution is a local optimum if none of its neighbor
solutions has a greater (or smaller) objective function value.

When we apply local search to solving optimization problems we require that the solution graph
has low (polynomially bounded) vertex degrees, so that at each vertex only polynomial time is
needed to find a “good” neighbor. In order to show that the algorithm runs in polynomial time,
we need to show that starting from any solution we can reach a local optimum in a polynomial
number of steps. It doesn’t suffice to show that the diameter of the solution graph is polynomial.
We will see a few different arguments including a potential function based argument. And lastly, to
show that the algorithm is indeed a good approximation algorithm, we must prove that any local
optimum is nearly as good as a global optimum.

In the following sections we will see how local search can be used as approximation algorithms for
two problems. The first problem we consider is the Max-Cut problem. The second problem is the
Facility Location problem for which the analysis is a bit more involved. We will defer the last part
of the analysis to the next lecture.

7.2 Max-Cut

7.2.1 The Problem

We first review the notion of a cut in graph theory.

Definition 7.2.1 Let G = {V,E} be a weighted graph where each edge e ∈ E has a weight we. A

1

cut is a partition of V into two subsets S and S′ = V \S. We simply denote a cut by either one of
its subsets. The value of a cut S is

c(S) =
∑

(s,s
′
)∈E

s∈S,s
′∈S

′

w
s,s

′ .

Now we can define the Max-Cut problem on weighted graphs.

Definition 7.2.2 (The Max-Cut Problem) Given a weighted graph G = {V,E} where each
edge e ∈ E has a positive integral weight we, find a cut in G with maximum cut value.

While the Min-Cut problem is polynomial-time solvable by reducing it to Maximum Flow, the
Max-Cut problem is known to be NP-hard. It has been shown that approximating Max-Cut to a
factor of 17/16 is still NP-hard. In the following we present a simple 2-approximation local search
algorithm for Max-Cut.

7.2.2 The Algorithm

The algorithm we are going to describe is a straightforward application of local search. The only
thing we need to specify is the small changes we are allowed to make in each step. Since each
candidate solution is a just a partition of the vertex set V , the following local step seems natural:
Two partitions S1 and S2 are joined by an edge if and only if |S1\S2| ≤ 1 and |S2\S1| ≤ 1.
Intuitively this means moving one vertex from one subset to the other. Thus we obtained the
following algorithm:

1. Start with an arbitrary partition (for example, ∅).

2. Pick a vertex v ∈ V such that moving it across the partition would yield a greater cut value.

3. Repeat step 2 until no such v exists.

Before we move on to prove that this algorithm is 2-approximate, let us first analyze its running
time. Each step involves examining at most |V | vertices and selecting one that increases the cut
value when moved. This process takes O(|V |2) time. Since we assume that edges have positive
integral weights, the cut value is increased by at least 1 after each iteration. The maximum
possible cut value is

∑

e∈E
we, hence there are at most such number of iterations. The overall time

complexity of this algorithm is thus O(|V |2
∑

e∈E
we). For the special case of unweighted graphs

(all weights equal to 1), the time complexity becomes O(|V |4), which is strongly polynomial in the
input size.

Note. There exist modifications to the algorithm that give a strongly polynomial running time,
with an additional ε term in the approximation coefficient. An example of such modifications will
be shown when we discuss the Facility Location problem.

We now proceed to prove that the above algorithm is 2-approximate.

Theorem 7.2.3 The local search algorithm described above gives a 2-approximation to the Max-
Cut problem.

2

Proof: First of all, we observe that the maximum cut value cannot be larger than the sum of all
edge weights, thus giving

∑

e∈E

we ≥ OPT.

We say that an edge contributes to a cut if its endpoints lie in different subsets of the cut. Let S be
a cut produced by our algorithm. Let v be a vertex in S. Consider the set Ev of edges incident to
v. If we move v from S to S′ = V \S, edges in Ev that contributed to S become non-contributing,
and vice versa. Edges not in Ev are not affected. Since S is a local optimum, moving v to S′ does
not increase the cut value. Therefore we have

∑

u∈S
′

(u,v)∈E

wu,v ≥
∑

u∈S

(u,v)∈E

wu,v

2
∑

u∈S
′

(u,v)∈E

wu,v ≥
∑

u∈S

(u,v)∈E

wu,v +
∑

u∈S
′

(u,v)∈E

wu,v

∑

u∈S
′

(u,v)∈E

wu,v ≥
1

2

∑

u:(u,v)∈E

wu,v.

Similarly, for any v′ ∈ S′ we get

∑

u∈S

(u,v
′
)∈E

w
u,v

′ ≥
1

2

∑

u:(u,v
′)∈E

wu,v.

Summing over all vertices, we obtain the desired result:

2c(S) = 2
∑

u∈S,v∈S
′

(u,v)∈E

wu,v ≥
∑

e∈E

we ≥ OPT.

There are many other 2-approximate algorithms for Max-Cut. One example is the following simple
randomized algorithm: Construct the cut by uniformly assigning each vertex to one of of two
subsets. It is trivial to show by linearity of expectation that this algorithm produces a cut with
an expected value of 1

2

∑

e∈E
we ≥ 1

2
OPT . This algorithm can be made deterministic by applying

derandomization.

As a sidenote, the best known approximation for Max-Cut is 1.134-approximate [1]. This algorithm
is based on semidefinite programming. The approximation factor (1.134) arises from geometric
arguments and is suspected to be the best possible. (We will learn more about this in a subsequent
lecture.) It is not likely that this approximation result can be improved unless P = NP [2].

3

7.3 Facility Location

7.3.1 The Problem

Suppose there is a set of customers and a set of facilities serving these customers. Our goal is to
open some facilities and assign each customer to the nearest opened facility. Each facility has an
opening cost. Each customer has a routing cost, which is proportional to the distance (see the next
paragraph) traveled. The Facilitiy Location problem asks for a subset of facilities to be opened
such that the total cost (opening costs plus routing costs) is minimized. While the aforementioned
“distance” could mean geographic distance, in general any metric would do. Recall the definition
of a metric:

Definition 7.3.1 Let M be a set. A metric on M is a function d : M × M → R that satisfies the
following three properties:

1. d(x, y) ≥ 0; and d(x, y) = 0 iff x = y (non-negativity)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

The formal definition of the the Facility Location problem is given below.

Definition 7.3.2 (The Facility Location Problem) Let X be a set of facilities and Y be a set
of customers. Let c be a metric defined on X ∪ Y . For each i ∈ X, let fi be the cost of opening
facility i. Let S be a subset of X. For each j ∈ Y , the routing cost of customer j with respect to
S is rS

j
= mini∈S c(i, j). The total cost of S is C(S) = C

f
(S) + Cr(S), where C

f
(S) =

∑

i∈S
fi is

the facility opening cost of S and Cr(S) =
∑

j∈Y
rS

j
is the routing cost of S. The Facility Location

problem asks for a subset S∗ ⊆ X that minimizes C(S∗) over all subsets of X.

The requirement that c is a metric seems arbitrary at first sight. However, if we let c be any
general weight function, we will be able to reduce Set Cover to this relaxed Facility Location
problem, implying that it is unlikely to be approximable within a constant factor (see lecture 3).
By imposing the metric constraints, we are able to get a constant factor approximation algorithm
for Facility Location.

The Facility Location problem arises very often in operations research. There are many variants of
the problem, such as Capacitated Facility Location, in which each facility can only serve a certain
number of customers. Another variant is the k-Median problem, in which facilities have no opening
costs but at most k of them can be opened.

We remark that the best known approximation algorithm for Facility Location has an approximation
coeffcient of 1.52 [3]. On the other hand, it has been shown that approximating this problem within
a factor of 1.46 is NP-hard unless NP ⊆ DTIME(nlog log n) [4].

7.3.2 The Algorithm

We present a local search algorithm for approximating Facility Location within a factor of 5+ ε for
any constant ε > 0 [5]. In fact, it can be shown that this algorithm is a (3 + ε)-approximation [6],

4

but the analysis is more involved and we will not go through that in class.

We start by specifying the solution graph. Each vertex in the graph represents a subset of facilities
to be opened. At each step, we can add a facility to the subset, remove a facility from a subset, or
swap a facility in the subset with one outside the subset. The algorithm is as follows:

1. Start with an arbitrary subset of facilities.

2. Carry out an operation (add, remove or swap) that leads to a decrease in the total cost by a
factor of at least (1 − ε/p(n)), where p(n) is a polynomial to be determined later.

3. Repeat step 2 until such an operation does not exist.

We first bound the running time of this algorithm. Let n = |X| + |Y |. For easier analysis we
assume that all distances and costs are integers. Observe that the cost of any solution is bounded
from above by some polynomial in n, c and f . Let q(n, c, f) be such a polynomial. The cost of
the solution after t iterations is at most (1 − ε/p(n))tq(n, c, f). After p(n)/ε iterations, the cost is
at most q(n, c, f)/e since (1 − x)1/x ≈ 1/e. Thus the algorithm halts after O(log q(n, c, f)p(n)/ε)
steps, which is polynomial in 1/ε and the size of the instance (in binary).

Theorem 7.3.3 says that any local optimum in the solution graph is nearly as good as any global
optimum. Note that in the analysis, we will assume that in step 2 of the algorithm we carry out an
operation as long as there is some improvement, even if the improvement is not by a factor of at
least (1 − ε/p(n)). We will deal with this issue later on, and instead of a 5-approximation we will
only get a (5+ε)-approximation. This theorem follows directly from Lemma 7.3.4 and Lemma 7.3.5
which we will see in a second.

Theorem 7.3.3 Let S∗ be a global optimum and S be a local optimum. Then C(S) ≤ 5C(S∗).

Remark. As mentioned at the beginning of this section, the bound on C(S) in Theorem 7.3.3 can
be improved to 3C(S∗). We will not go into details.

For the proofs of the two lemmas we need a few notations. We define, for any j ∈ Y ,

• σ∗(j) = facility that customer j is assigned to in S∗

• σ(j) = facility that customer j is assigned to in S

• r∗(j) = routing cost for customer j in S∗

• r(j) = routing cost for customer j in S.

Lemma 7.3.4 Let S∗ be a global optimum and S be a local optimum. Then Cr(S) ≤ C(S∗).

Proof: Let i∗ ∈ S∗. Consider adding i∗ to S. Since S is a local optimum, this operation does not
decrease the total cost, and therefore

fi
∗ +

∑

j:σ∗(j)=i
∗

(r∗(j) − r(j)) ≥ 0.

5

Summing over all i∗ ∈ S∗, we get

C
f
(S∗) + Cr(S

∗) − Cr(S) ≥ 0

C(S∗) − Cr(S) ≥ 0.

Lemma 7.3.5 Let S∗ be a global optimum and S be a local optimum. Then C
f
(S) ≤ 2C(S∗) +

2Cr(S) ≤ 4C(S∗).

Proof: To bound C
f
(S), we consider swapping facility i in S for the nearest facility i∗ in S∗. We

reassign all customers of i to i∗ in S∗. Since S is a local optimum, this operation does not increase
the total cost, and hence we can bound the opening cost of i by the increase in routing cost plus the
opening cost of i∗. However, the opening cost of i∗ will be charged multiple times in our analysis if
there is more than one facility in S whose nearest facility in S∗ is i∗. To avoid this, we only charge
the opening cost of i∗ to the one nearest to i∗ among those facilities. We call that facility primary,
and the rest secondary. A formal argument is presented below.

p p s s p s
S

S∗

Figure 7.3.1: Primary and secondary facilities. Solid arrows represent the σ function; dotted arrows
represent the π function; ‘p’ means primary and ‘s’ means secondary.

For any i ∈ S, let σ∗(i) be the facility in S∗ which is nearest to i, i.e. σ∗(i) = arg mini
∗∈S

∗ c(i, i∗).
For any i∗ ∈ {σ∗(i) | i ∈ S} ⊆ S∗, let π(i∗) be the primary facility associated to i∗, i.e. π(i∗) =
arg min

i∈S:σ∗(i)=i
∗ c(i, i∗).

For any i ∈ S, let Ri be the total routing cost of all customers of i in S, i.e. Ri =
∑

j:σ(j)=i
rj ; let

R∗
i

be the total routing cost of the same set of customers in S∗, i.e. R∗
i

=
∑

j:σ(j)=i
r∗
j
. Note that

Ri and R∗
i

sum over the same set of customers — R∗
i

does not sum over {j | σ∗(j) = i}.

Claim 7.3.6 If i ∈ S is primary, then fi ≤ Ri + R∗
i

+ fi
∗.

Proof: Consider swapping i for i∗, then assigning all customers of i to i∗. Since S is a local
optimum, such an operation would not decrease the total cost, and therefore

fi
∗ − fi +

∑

j:σ(j)=i

(c(j, i∗) − c(j, i)) ≥ 0. (7.3.1)

We are going to show that the term c(j, i∗) − c(j, i) in the summation is small. By the triangle
inequality, we have c(j, i∗) − c(j, i) ≤ c(i, i∗). Now since i∗ is the facility in S∗ that is closest to i,

6

i

j

σ∗(j)

r∗
jr

j

i∗

Figure 7.3.2: Entities in Claim 7.3.6.

and noting that σ∗(j) ∈ S∗, we get c(i, i∗) ≤ c(i, σ∗(j)). By applying the triangle inequality again,
c(i, σ∗(j)) ≤ c(j, i) + c(j, σ∗(j)) = rj + r∗

j
. Combining the above, we get the following inequality:

c(j, i∗) − c(j, i) ≤ rj + r∗
j
.

Now we can substitute it into Equation 7.3.1 to obtain the desired result:

0 ≤ fi
∗ − fi +

∑

j:σ(j)=i

(rj + r∗
j
)

≤ fi
∗ − fi + Ri + R∗

i
.

For a secondary facility i in S, we remove it and assign its customers to a nearby facility in S.
Specifically, we assign them to the primary facility associated to σ∗(i).

Claim 7.3.7 If i ∈ S is secondary, then fi ≤ 2(Ri + R∗
i
).

Proof: Let i∗ = σ∗(i) and i′ = π(i∗). Consider removing i from S and assigning its customers to
i′. Let j be a customer assigned to i in S, and consider the increase in its routing cost:

c(i′, j) − c(i, j) ≤ c(i, i∗) + c(i∗, i′)

≤ 2c(i, i∗)

≤ 2c(i, σ∗(j))

≤ 2(rj + r∗
j
)

The first and last inequalities follow from the triangle inequality; the second inequality follows from
the fact that i′ is the primary facility associated to i∗; the third inequality follows from the fact
that i∗ is the facility in S∗ closest to i.

Summing over all customers of i, we have shown that the total increase in routing costs is no more
than 2(Ri + R∗

i
). Since the increase in the total cost is non-negative, we get

−fi + 2(Ri + R∗
i
) ≥ 0.

7

i

j

r
j

σ∗(j)

i∗
i′

r∗
j

Figure 7.3.3: Entities in Claim 7.3.7.

From the above two claims we obtain

C
f
(S) ≤ C

f
(S∗) + 2

∑

i∈S

(R∗
i

+ Ri)

= C
f
(S∗) + 2Cr(S

∗) + 2Cr(S)

≤ 2C(S∗) + 2Cr(S).

Finally, by Lemma 7.3.4 we have

C
f
(S) ≤ 2C(S∗) + 2Cr(S) ≤ 4C(S∗).

Finally, we will show that carrying out step 2 only when the cost decreases significantly increases
the approximation factor by only a small amount. Our algorithm moves from one solution to
another only if the total cost decreases by a factor of at least (1 − ε/p(n)), so it may not halt at
a local optimum. Nevertheless, we can still bound the cost of the solution by slightly modifying
the above proofs. In Lemma 7.3.4 and Lemma 7.3.5, we can replace 0 with (−ε/p(n))C(S) when
we set up inequalities for the increases in cost. There are less than n2 inequalities. Summing them
up we get (1 − εn2/p(n))C(S) ≤ 5C(S∗). By choosing p(n) = n2, we have shown that C(S) is a
(5 + ε)-approximation for C(S∗).

Recall that our analysis of the algorithm is not tight — the bound can be improved to C(S) ≤
3C(S∗) by reassigning customers more carefully in Lemma 7.3.5. In the following, we present an
example showing that this is in fact the best we can get from this local search algorithm.

Suppose that there are k + 2 facilities and k + 1 customers “connected” in the way shown in
Figure 7.3.4. (The distance between any two entities is the shortest path distance between them.
Note that shortest path distances on a graph always form a metric.) The opening cost of facility
x

k+2 is 2k; other facilities have zero opening cost. The global optimum S∗ = {i1, . . . , ik+1} has

8

x2
x1 x

k
x

k+1· · ·

y
k+1y

ky2y1

1 1 1 1 1 1

1
1111

1

· · ·

x
k+2

Figure 7.3.4: A worst case example for our local search algorithm.

total cost k+1. Let S = {x
k+2}. The total cost of S is 3k+1. We claim that S is a local optimum:

We cannot remove a facility from S since that would result in the empty set. Adding a facility does
not help either. Swapping x

k+2 for another facility, say xm, does not decrease the total cost, since
each customer except ym is 3 units away from x1. The total cost of S is roughly 3 times that the
total cost of S∗, thus showing the tightness of the bound.

References

[1] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. In JACM, 42, 1115–1145, 1995.

[2] S. Khot, G. Kindler, E. Mossel and R O’Donnell. Optimal inapproximability results for max-
cut and other 2-Variable CSPs? In 45th Annual IEEE Symposium on Foundations of Computer
Science, pp. 146–154, 2004.

[3] M. Mahdian, Y. Ye and J. Zhang. Improved approximation algorithms for metric facility location
problems. In Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization, pp. 229–242, September 17–21, 2002.

[4] S. Guha and S. Khuller. Greedy Strikes Back: Improved Facility Location Algorithms. In
Journal of Algorithms, Volume 31, Issue 1, pp. 228–248, 1999.

[5] M. R. Korupolu, C. G. Plaxton and R. Rajaraman. Analysis of a local search heuristic for
facility location problems. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1–10, 1998.

[6] V. Arya, N. Garg, R. Khandekar, K. Munagala and V. Pandit. Local search heuristics for
k-median and facility location problems. In Symposium on Theory of Computing, pp. 21–29,
2001.

9

CS880: Approximations Algorithms

Scribe: Siddharth Barman Lecturer: Shuchi Chawla
Topic: Min Degree Spanning Tree Date: 02/15/07

In this lecture we give a local search based algorithm for the Min Degree Spanning Tree problem.

8.1 Min Degree Spanning Tree

Problem Statement: Given an unweighted graph G, find a spanning tree with least possible max
degree.

This problem cab be shown to be NP-Hard by reducing Hamiltonian path to it. Essentially ex-
istence of a spanning tree of max degree two is equivalent to a having a Hamiltonian path in the
graph. This also shows that the best approximation we can hope for (unless P = NP) is ∆∗ + 1
where ∆∗ is the max degree of the optimal tree. Note that we usually express approximations in a
multiplicative form, but also occasionally in an additive form. In general, for additive approxima-
tions to be meaningful the optimal value should be bounded from below. As in this case ∆∗ is an
integer no less than two.

In this lecture we provide a local search approximation algorithm which achieves an approximation
of 2∆∗ +log n. The algorithm and its analysis is by Fürer and Raghavachari [1]. They also provide
an improved approximation with max degree ∆∗ + 1 in the same paper.

The main idea behind local search is to consider a graph over the solution space; nodes of this meta
graph represent possible solutions. We then define a set of low cost operations (edges in the meta
graph) which morph one solution into another. The strategy is to start from some solution/node
and traverse the meta graph, improving the objective function at each step. We stop when we hit
a local optimum. The length of the path traversed dictates the time complexity of the algorithm.
Also for a good approximation factor we must show that (compared with the global optima) any
local minimum reached by the algorithm is not too bad.

For the min degree spanning tree problem the solution space consists of all spanning trees. The
connecting operation is to swap edges till the degree goes down. Formally:

Definition 8.1.1 (T-swap:) Add edge e1 /∈ T and remove edge e2 ∈ T s.t. e2 is on the unique
cycle that is formed by adding e1 to the tree.

In order to improve the objective function value, we would like our local search algorithm to perform
T-swaps as long as one of the following happens:

• the max degree of the current tree decreases or,

• the number of max degree nodes decrease

Unfortunately the T-swap operation with the above defined improvement criteria might get stuck
with a high max degree tree (as shown in Figure 1). In particular in the figure, adding edge (2, 3)

1

Max degree: 5

Graph G

Optimal

Max Degree=3

T−swap

1

2 3

Local Optima

Figure 8.1.1: Allowed T-swaps

introduces cycle 1 → 2 → 3 → 1, but removing any edge edge from this cycle keeps the max degree
at 5. So although the optimal tree has max degree only 3; the local optimal has max degree 5.
Extending this example we can show that a local optimum can have max degree Ω(n) even when
the optimal solution has max degree 3.

To overcome this problem, we allow T-swaps even when the above two conditions do not hold. In
particular, consider edges e1 = (u1, u2) and e2 = (u3, u4) with e1 /∈ T , e2 ∈ T and e2 lying on the
unique cycle in T ∪{e1}, say the T-swap of e1 and e2 transforms T into T ′. Finally let δ indicate the
max degree of the four end points of edges e1 and e2 in T , i.e. δ = maxi{degT (ui)} and similarly
in T ′, δ′ = maxi{deg

T
′(ui)}. We perform a T-swap if δ′ < δ, i.e. we perform a T-swap if the max

degree over the four end points of the involved edges goes down.

This operation does not necessarily decrease the objective function value, however we note that the
degree sequence of the tree decreases lexicographically. In particular, say the string χT represents

2

the multiset of degrees of the vertices in tree T arranged in decreasing order. For example, with a
max degree d, χT would look something like d d d−1 d−1221111. By performing a T-swap we
replace the degree entry of δ by a lower value, δ′, thus decrementing χT . The relevant observation
here is that each step of the local search decreases χT lexicographically.

Let T be a locally optimal tree obtained by the above mentioned algorithm and T ∗ be the globally
optimal tree. We denote by ∆ the degree of T and by ∆∗ the degree of T ∗. Then we have the
following,

Theorem 8.1.2 ∆ ≤ 2∆∗ + log n + 1, i.e. the degree of the local optimal found by the local search
algorithm is bounded above by twice the degree of the global optimal with an additive factor of
log n + 1.

We first give a generic lower bound on ∆∗ in the following lemma. This along with the fact that
T is a local optima will be used to establish a witness for ∆∗. We define c(X) as the number of
connected components in G[V \ X].

Lemma 8.1.3 For any X ⊆ V we have

|X| + c(X) − 1

|X|
≤ ∆∗

Proof:

We consider the average degree of X in any spanning tree of the given graph G. Any spanning
tree must contain at least |X|+ c(X) − 1 edges connecting the c(X) components and the nodes in
X to each other. Fewer edges would leave at least one of these disconnected from the other. Also
components are not connected amongst themselves so each of these |X|+ c(X)−1 edges is incident

to a vertex belonging to set X hence the average degree of X is no less than |X|+c(X)−1

|X| . This is

true for any spanning tree hence ∆∗ ≥ |X|+c(X)−1

|X|

We now proceed to prove Theorem 8.1.2.

Proof of Theorem 8.1.2: Say the local optimal reached is T , we consider Xt the set of all nodes
with degree no less than t in T . We denote the number of connected components in T [V \ Xt] by
cT (Xt). Note that the total degree of nodes in Xt is no less than t|Xt|.

We can bound this degree sum t|Xt| by counting edges in T : Let us consider each of the cT (Xt)
components as a single vertex and preserve connections of T between connected components and
vertices in Xt i.e. edges between a connected component and a node of Xt are preserved, along
with edges with both end points in Xt. The number of edges in this tree is |Xt|+ cT (Xt)− 1. The
degree contribution of edges with both end points in Xt needs to be counted once more. But such
edges are at most |Xt| − 1. Hence degree sum t|Xt| ≤ |Xt| + cT (Xt) − 1 + |Xt| − 1, which gives us

cT (Xt) ≥ t|Xt| − 2(|Xt| − 1) (8.1.1)

We essentially use cT () to determine c(), T being a local optimum. The observation is that if A

and B are two different connected components in T [V \ Xt] and there is a graph edge between A

and B then the end points of this edge is in Xt−1 (see Figure 2). Otherwise this edge would have

3

edge bw nodes of deg t−1

T

T

T1

2

3

Tc (X)
T t

X

Figure 8.1.2: Connected components in tree

been T-swapped in to reduce the degree of one of the vertices currently in Xt. So if A and B are
connected in the graph, it must be via an edge with end points in Xt−1. Hence, if we remove the
Xt−1 vertices all the cT (Xt) components definitely get disconnected in the original graph. This
implies that c(Xt−1) ≥ cT (Xt) for all t.

By lemma 8.1.3 we have

∆∗ ≥
c(Xt−1) + |Xt−1| − 1

|Xt−1|
Since |Xt−1| ≥ |Xt| and c(Xt−1) ≥ cT (Xt) the above along with eqn. 8.1.1 reduces to

∆∗ ≥
t|Xt| − 2(|Xt| − 1) + |Xt| − 1

|Xt−1|

=
(t − 1)|Xt| + 1

|Xt−1|

≥
(t − 1)|Xt|
|Xt−1|

We now pick a t that is large, and simultaneously for which |Xt| is a large fraction of |Xt−1|. Note
that there is always a t in [∆ − log n,∆] s.t. |Xt| ≥ 1

2
|Xt−1|. This holds because log n jumps of

relative size more than 1/2 will use up all the n vertices.

For this t, ∆∗ ≥ (∆ − log n − 1) × 1

2
hence we have ∆ ≤ 2∆∗ + log n + 1.

We now proceed to determine the running time of algorithm. We prove that the number of steps
required to reach a local optimal is polynomial n.

4

Consider the degree sequence χT of nodes in the tree ∆ ∆ ∆ − 1 . . . 2 2 1 1. As stated earlier at
every step χT moves down lexicographically. But the number of different sequences and therefore,
the number of possible steps is exponentially large. Instead we use a potential function argument to
show fast convergence. We define the following potential function φ(T) =

∑

v
3deg(v). The intuition

behind this definition is that we assign exponential higher weight to high degree vertices. Also note
that φ(T0) ≤ n3n−1.

Define ∆φ as the change in potential function value obtained after a T-swap. Say currently we
are at tree T1 and T-swap edge (u1, u2) by introducing (v1, v2) to obtain new tree T2, i.e. T2 =
T1 \ {(u1, u2)} ∪ {(v1, v2)}. Say

• degT1
(u1) = x1 and degT1

(u2) = x2

• degT1
(v1) = y1 and degT1

(v2) = y2

Assume w.l.o.g. that x1 ≥ x2, since the T-swap was legal we have y1 + 1 ≤ x1 − 1 and y2 + 1 ≤ x2.
This implies

∆φ = φ(T1) − φ(T2) =
2

3
3x1 +

2

3
3x2 −

4

3
3x1−1

We ignore the second term in the summand to obtain

∆φ ≥
2

3
3x1 −

4

3
3x1−1 ≥

2

3
3x1−1

We modify the algorithm to allow a T-swaps only if the max degree of the four end points of e1

and e2 is greater than ∆− log n (this does not impact the analysis of Theorem 8.1.2). Hence ∆φ ≥
const ×3

∆

n
.

As φ(T1) ≤ n3∆, we have ∆φ ≥ const ×φ(T1)

n
2 . In other words in n2 steps we shave off a constant

factor. Therefore in n2× log(Initial value) = O(n2 log(n3n−1)) = O(n3) steps the algorithm would
reach a local optimum. This implies that the running time of the algorithm is polynomial in n.

To summarize the local search algorithm is given as follows:

1. Start with an arbitrary spanning tree.

2. Say current max degree of tree is ∆

3. Consider edges e1 = (u1, u2) and e2 = (u3, u4) with e1 /∈ T , e2 ∈ T and e2 lying on the
unique cycle in T ∪ {e1};
Let xi = degT (ui) for i ∈ [4] and δ = max

i∈[4]{xi};
Let δ′ = max{x1 + 1, x2 + 1, x3 − 1, x4 − 1};

4. If (δ > δ′ and δ ≥ ∆ − log n) perform T-swap of edges e1 and e2.

5. Repeat steps 2 through 4 until no edges satisfy the conditions in step 4.

5

References

[1] M. Fürer, B. Raghvachari. Approximating the minimum degree spanning tree to within one
from the optimal degree. In: Proceedings of the third annual ACM-SIAM symposium on
Discrete algorithms(SODA) (1992), pp: 317-324

6

CS880: Approximations Algorithms

Scribe: Matt Darnall Lecturer: Shuchi Chawla
Topic: Linear Programming Date: 2/22/07

9.1 Linear Programming

Linear programming is a method for solving a large number of maximization/minimization prob-
lems. Linear programming problems have the property that the constraints and the objective
function are all linear functions of the input variables. The existence of a polynomial time algo-
rithm for solving linear programs and the multitude of optimization problems that they can encode
makes them particularly useful in practice.

To be precise, a linear programming problem (LP) is one that can be formulated as follows:

Minimize cTx (9.1.1)
Subject to Ax ≤ b (9.1.2)

Here x is a vector of real-valued variables (sometimes assumed to be nonnegative), c and b are
vectors of real constants, and A is a matrix of real constants. A useful geometric interpretation of
this problem can be useful for understanding. We view each constraint

∑n
i=1 aijxi ≤ bj in Ax ≤ b

as a hyperplane in <n, where the vector x has n entries. The constraint says that the solution
vector x must lie below this hyperplane. The intersection of the constraints will be a polytope
in <n, with the points inside the polytope called feasible solutions. We then look at the planes
cTx = k for real k. The solution to the linear program is the largest value of k such that the
intersection of the constraint polytope and the hyperplane cTx = k is nonempty.

Using our geometric interpretation, it is easy to see that the solution of a linear program will
occur at a vertex of the constraint polytope. These vertices are are called basic solutions. A
possible method of solving a linear program is to enumerate the basic solutions and find the one
with the largest value of the objective function. Unfortunately, there can be an exponential number
of basic solutions. An example of this is the cube in <n. Here, using only n variables and the 2n
constraints xi ≤ 1 and xi ≥ 0 for all i, we can describe a constraint polytope with 2n basic points.

9.2 Methods of Solving LPs

The first class of algorithms to solve LPs attempt to find the optimal solution by searching the
boundary of the constraint polytope. These methods use ”pivot rules” to determine the next di-
rection of travel once a basic point is reached. If no direction of travel yields an improvement

1

to the objective function, then the basic point is the optimal solution. The first algorithm to
use this idea was the Simplex Method from George Dantzig in 1947. Though these methods per-
form well in practice, it is not known if any ”pivot rule” algorithm can run in polynomial time.
In particular, an example has been given that takes exponential time using the Simplex Method [1].

The first polynomial time algorithm for solving an LP was derived from the Ellipsoid Method
of Shor, Nemirovsky, and Yudin. This algorithm gives way of finding a feasible solution to an
optimization problem. The idea is to enclose feasible solutions in an ellipse. Then, check to see
center of the ellipse is a feasible solution. If not, find a violating constraint using a seperation
oracle. Then, enclose the half of the ellipse where the feasible solutions must lie in another ellipse.
Since this next ellipse is at least a fixed constant times smaller, by repeating we are able to hone
in on a solution exponentially fast. Khachiyan was able to adapt this method of finding a feasible
solution to give a polynomial time solution to LPs. Though this result was a breakthrough in the
theory, the algorithm usually takes longer than the Simplex Method in practice.

The next class of algorithms for solving LPs are called ”interior point” methods. As the name
suggests, these algorithms start by finding an interior point of the constraint polytope and then
proceeds to the optimal solution by moving inside the polytope. The first interior point method was
given by Karmarkar in 1984. His method is not only polynomial time like the Ellipsoid Method,
but it also gave good running times in practice like the Simplex Method.

9.3 Integer Linear Programming

To recall from last time, a linear programming problem is given by

Minimize cTx (9.3.3)
Subject to Ax ≤ b (9.3.4)

where x is a vector of real-valued variables (sometimes assumed to be nonnegative), c and b are
vectors of real constants, and A is a matrix of real constants. We saw that there exists a polynomial
time algorithm for solving an LP. If we add the additional condition that the variables in x be inte-
gers, we get what is called an integer linear programming problem, or IP. Unfortunately, there is no
polynomial time algorithm for solving an IP. In fact, the existence of one would imply that P = NP!

We can relax the conditions of an IP make it an LP. It is obvious that the optimal solution to
the LP, xL is a lower bound on the optimal solution to the IP, xI. To approximate an IP, we can
solve the ”relaxed” LP and then find an integer solution close to the optimal solution of the LP.
If we do it correctly, the approximate solution for the IP will be close to the solution for the LP,
and we will have a good approximation algorithm. The ratio the LP solution and IP solution is
called the integrality gap. We will attack many of the previous problems we looked at using this

2

technique.

9.4 Vertex Cover

The first problem we will approximate using this technique is vertex cover. In vertex cover we are
given a graph G = (V,E) and a cost function c : V → <+. We want to the subset S ⊂ V of least
cost such that every edge is attached to at least one of the vertices in S. To start, we must phrase
the problem as an IP. For each vertex v ∈ V , we shall have a variable xv in x corresponding to v.
xv shall be 1 if v ∈ S and 0 otherwise. Our objective function to minimize is then

Ob(x) =
∑
v∈V

c(v)xv

Since every edge must be incident to a vertex in S, our constraints shall be that, for every edge
(u, v),

xv + xu ≥ 1

Now, we relax the conditions to say that xv can be a positive real number less than or equal to 1 for
every v. This gives us an LP that we can solve in polynomial time to get an optimal solution xL.
We shall now find a solution to the IP, xI , such that Ob(xI) is close to Ob(xL). To get xI , we shall
round all the entries in xL to the nearest integer. First, we notice that each entry at most doubles
in value, so we have Ob(xI) ≤ 2Ob(xL). The rounded solution still satisfies the constraints because,
for xu + xv ≥ 1 in xL we must have that at least one of xu and xv is greater than 1/2. Thus, this
variable will be rounded to 1 in xI and the condition shall still be satisfied. This technique gives
us a 2-approximation to vertex cover.

It turns out that the basic solutions of the Vertex Cover LP have the property that every variable
xv is either 0, 1/2 or 1. We prove this by showing that for every point in the feasible polytope that
doesn’t have this property, there exists a line through this point that contains feasible solutions on
both sides of the point. Since every line through a basic point has feasible solutions on at most one
side of the line, we know that the basic solutions have xv = 0, 1/2, or 1. To show the line property,
we fix an ε > 0. Now, in a feasible solution x, we consider the set, S, of xv ∈ (ε, 1/2 − ε) and the
set T of xv ∈ (1/2+ ε, 1− ε). If we lower the xv in S by ε and raise the xv in T by ε, we still have a
feasible solution. This is because for each edge, if we lowered one of the xv coresponding to it, we
either raised the other by the same amount, or the other was already large enough to satisify the
edge’s requirement. Likewise, we can lower the xv in T by ε and raise the xv in S by ε and we shall
still have a feasible solution. The only way that this doesn’t give three colinear points with our
original point in the middle is if S and T are empty. By taking ε small enough, this only happens
if xv is 0, 1/2, or 1.

3

9.5 Set Cover

We shall obtain an f approximation to set cover using algorithm similar to the one for vertex cover.
Let X be a finite set and let C be collection of subsets of X. Let c : C → <+ be a cost function for
the elements of C. Our goal is to find a collection of subsets in C of minimal cost such that every
element of X is in at least one chosen subset. Here f is the maximum number of subsets in C that
an element of X belongs to. As with vertex cover, for any subset S ∈ C we define an variable xS

that is 1 if S is chosen in our covering collection and 0 otherwise. Our objective function is∑
S∈C

c(s)xS

For an element e ∈ X, let Ce be the sets of C that contain e. As constraints, we have that for
every e, ∑

S∈Ce

xS ≥ 1

As before, we relax the conditions on x to allow real values between 0 and 1. Now, we get an
optimal solution xL to this LP. To get xI , we round an entry in xL up to 1 if it is greater than or
equal to 1/f and set it to 0 otherwise. For every e ∈ X at least one of the xS in xL for S ∈ Ce

must be larger than 1/f . This means that in xI at least one of the sets chosen contains e for all
e ∈ S. Thus, xI is a feasible solution to the IP. It is an f-approximation since each entry in xL was
raised by at most a factor of f .

9.6 Max Flow

As a final example for this lecture, we shall look at the max flow problem on a graph. We are given
a directed graph G = (V,E), a capacity function c : E → <+, as well as a pair of vertices (s, t).
Our goal is to route the maximum amount from s to t subject to the constraint that any edge, E,
must have at most c(E) routed through it. To phrase this problem as a linear program, we make a
variable xe for every edge in the graph. This variable represents the amount routed on this edge.
Our goal is to maximize: ∑

e→t

xe

For a vertex, v, and an edge, e; e→ v denotes that e goes to v and e← v means e goes from v. As
constraints, we need that the amount flowing out of a particular vertex is the same as the amount
flowing in. So for every vertex, v, that is not s or t, we must have∑

e→v

xe =
∑
e←v

xe

We also must have that the amount flowing out of s is equal to the amount flowing into t, so∑
e→t

xe =
∑
e←s

xe

4

Finally, each edge must not exceed its capacity, so the final constraints are that for each edge e,

xe ≤ c(e)

If the capacity function only takes integer values, it turns out that the optimal solution will have
an integer amount of flow on each edge. We did not go over the proof of this statement, though
it has to do with the fact that the incidence matrix of a directed graph is totally unimodular (all
determinants of submatrices are 0, 1, or −1). Thus the solution to the IP where we require all
the flow on an edge to be an integer can be solved in polynomial time, since it is the same as the
solution of the LP where all the capacities have been rounded down to the nearest integer.

References

[1] Klee-Minty Polytope Shows Exponential Time Complexity of the Simplex Method . University
of Colorado at Denver, 1997.

5

CS880: Approximations Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: LP Rounding and Randomized Rounding Date: 2/22/2007

In out last lecture, we discussed the LP Rounding technique for producing approximation algo-
rithms. The idea behind LP Rounding is to write the problem as an integer linear program, relax
its integrality restraints to efficiently solve the general linear program, and then move the LP so-
lution to a nearby integral point in the feasible solution space. The difficulty of this process lies in
the rounding step, which demands that a bound on its suboptimality.

We discussed how to apply this method to vertex cover, set cover, and network flow. Here, we give
somewhat more complicated rounding methods for facility location, and introduce the technique of
randomized rounding in application to set cover and min-congestion rounding.

11.1 Facility Location

Again, the facility location problem gives a collection of facilities and a collection of customers, and
asks which facilities we should open to minimize the total cost. We accept a facility cost of fi if we
decide to open facility i, and we accept a routing cost of c(i, j) if we decide to route customer j to
facility i. Furthermore, we know that the routing costs form a metric.

First, we design a linear program to answer a “relaxed” version of this problem. We let the variable
xi denote the extent to which facility i is open, and let yij denote the extent to which customer j

is assigned to facility i. The following linear program then expresses the problem:

minimize
∑

i

fixi +
∑

i,j

c(i, j)yij ,

where 0 ≤ yij ≤ xi ≤ 1 ∀i, j

For convenience, let C
f
(x) denote the total factory cost induced by x, i.e.,

∑

i
fixi. Similarly, let

Cr(y) denote the total routing cost induced by y,
∑

i,j
c(i, j)yij .

If this LP were modified to require that these variables each equal 0 or 1, this system would be
precisely the ILP we need to solve. But, again, solving general ILPs is NP-hard problem, so we
solve this related real-valued LP instead.

Let x∗, y∗ be the optimal solution to this linear program. Since every feasible solution to the original
ILP lies in the feasible region of this LP, the cost C(x∗, y∗) is less than the optimal solution to the
ILP. Since x∗ and y∗ are almost certainly non-integral, we need a way to round this solution to a
feasible, integral solution without increasing the cost function much.

To do so, we first employ the filtering technique of Lin and Vitter [1] to produce x̃, ỹ. This filtering
will later allow us to put upper bounds on the routing cost that we accept.

1. For each customer j, compute the average cost c̃j =
∑

i
c(i, j)y∗

ij
.

1

2. For each customer j, let the Sj denote the set {i | c(i, j) ≤ 2c̃j}.

3. For all i and j: if i 6∈ Sj, then set ỹij = 0; else, set ỹij = y∗
ij
/
∑

i∈Sj
y∗

ij
.

4. For each facility i, let x̃i = min(2x∗
i
, 1).

Lemma 11.1.1 For all i and j, ỹij ≤ 2y∗
ij
.

Proof: If we fix j and treat y∗
ij

as a probability distribution, then we can show this by Markov’s
inequality. However, the proof of Markov’s Inequality is simple enough to show precisely how it
applies here:

c̃j =
∑

i

c(i, j)y∗
ij
≥
∑

i/∈Sj

c(i, j)y∗
ij
≥
∑

i/∈Sj

2c̃jy
∗
ij
≥ 2c̃j

∑

i/∈Sj

y∗
ij
.

So, 1/2 ≥
∑

i/∈Sj
y∗

ij
. For any fixed j, y∗

ij
is a probability distribution, so

∑

i∈Sj
y∗

ij
≥ 1/2. Therefore,

ỹij = y∗
ij
/
(

∑

i∈Sj
y∗

ij

)

≤ 2y∗
ij
.

Lemma 11.1.2 x̃, ỹ is feasible, and C(x̃, ỹ) ≤ 2C(x∗, y∗).

Proof: For any fixed j, the elements ỹij form a probability distribution. For every i and j,
ỹij ≤ 2y∗

ij
and thus x̃i ≥

∑

i
ỹij. It is clear that 0 ≤ xi, yij ≤ 1 for all i and j, so x̃ and ỹ are feasible

solutions to the LP.

Now, given x̃ and ỹ, we perform the following algorithm:

1. Pick the unassigned j that minimizes c̃j .

2. Open factory i, where i = argmin
i∈Sj

(fi).

3. Assign customer j to factory i.

4. For all j′ such that Sj ∩ S
j
′ 6= ∅, assign customer j′ to factory i.

5. Repeat steps 1-4 until all customers have been assigned to a factory.

Let L be the set of facilities that we open in this way. We now show that the solution that this
algorithm picks has reasonably limited cost.

Lemma 11.1.3 C
f
(L) ≤ C

f
(x∗) and Cr(L) ≤ 6Cr(y

∗).

Proof: For any two customers j1 and j2 that were picked in Step 1, Sj1
∩ Sj2

= ∅.

Consider the facility cost incurred by one execution of Steps 1 through 4. Let j be the customer
chosen in Step 1, and let i be the facility chosen in Step 2. Since x̃ is part of a feasible solution,
1 ≤

∑

k∈Sj
x̃

k
. So, fi ≤ fi

∑

k∈Sj
x̃

k
; and since fi is chosen to be minimal, fi ≤

∑

k∈Sj
f

k
x̃

k
.

Facility i is the only member of Sj that the algorithm can open.

Let J be the set of all customers selected in Step 1. Considering the above across the algorithm’s
whole execution yields

C
f
(L) ≤

∑

j∈J

∑

k∈Sj

f
k
x̃

k
=
∑

i

fix̃i = C
f
(x̃) ≤ C

f
(x∗).

2

Consider now the routing cost Cr. If j was picked in Step 1, then its routing cost is c(i, j) for some
facility i; so Cr(j) ≤ 2c̃j .

Now, suppose instead that j′ was not picked in Step 1. By the algorithm, there is some j that
picked in Step 1 such that Sj ∩S

j
′ 6= ∅. Suppose that facility i′ is in this intersection, and say that

facility i is the facility to which customers j and j′ are routed. Now, at long last, we use the fact
that c(i, j) forms a metric: we know that Cr(j

′) ≤ c(i′, j′) + c(i′, j) + c(i, j). Because i is in both
Sj and S

j
′ , we know by their definition that c(i′, j′) ≤ 2c̃

j
′ and that c(i′, j) + c(i, j) ≤ 4c̃j . The

customer j′ was not picked in Step 1, and customer j was, so c̃j ≤ c̃
j
′ , and thus, Cr(j

′) ≤ 6c̃
j
′ .

Now, c̃j was the routing cost of customer j in the y∗ LP solution. So, Cr(L) ≤ 6Cr(y
∗).

This lemma yields the following as a corollary:

Theorem 11.1.4 This algorithm is a 6-approximation to Facility Location.

Notice that, in the preceding construction, we picked Sj to be all i such that the cost c(i, j) ≤ 2c̃j .
This 2 is actually fairly arbitrary. Suppose we replace it with α, some parameter of the construction.
If you redo the above arithemetic, you find that C

f
(L) ≤ (1/(1 − α))C

f
(x∗) and that Cr(L) ≤

(3/α)Cr(y
∗). Thus, if we let α = 3/4 instead of 1/2, this method yields a 4-approximation. If we

let α be a variable in the actual computed values of C
f
(x∗) and Cr(y

∗), we would get a somewhat
better approximation.

11.2 Set Cover

Again, the set cover problem is: given a set of elements E, a collection of sets S ∈ P(E), and a cost
for each set c : S → R, find a collection of sets C ⊆ S such that every element in E is contained in
a set in C, and the total cost of C is minimized.

As an integer linear program, we can state this problem as follows:

Minimize
∑

S∈C

c(S)xS ,

where
∑

S∈C

S3e

xS ≥ 1 ∀e,

and xS ∈ {0, 1} is 1 iff S ∈ C

To find an approximate solution to this ILP, we relax the condition xS ∈ {0, 1} to xS ∈ [0, 1],
getting an LP. Then, we perform the following:

1. Solve the LP to get x∗.

2. For each set S, pick S with probability x∗
S
.

3. Repeat Step 2 until all elements are covered.

Lemma 11.2.1 The expected cost of Step 2 is the cost of x∗.

3

Proof: Let ZS be an indicator variable, which is 1 iff we pick set S in this run of Step 2. We
compute:

E[cost of Step 2] = E

[

∑

S

ZSc(S)

]

=
∑

S

E[ZS] = c(x∗).

We now need to estimate the number of times that Step 2 is executed. To do so, we estimate the
probability that any one element is covered in a particular execution of Step 2. Fix some element
a. We know that

∑

S3a
x∗

S
≥ 1. This gives us the following reasoning:

Pr[a is picked] = 1 −
∏

S3a

(1 − x∗
S
) ≥ 1 −

∏

S3a

exp (−x∗
S
) = 1 − exp

(

−
∑

S3a

x∗
S

)

≥ 1 − e−1.

So, the probability that e is unpicked after k steps is no more than e−k, because each execution of
Step 2 is independent. So, the probability that any particular element is unpicked after, say, 2 ln n

steps is no more than (1/n2). By the union bound, the probability that there exists an unpicked
element after 2 ln n steps is at most n(1/n2) = 1/n.

Thus, with high probability, the number of executions of Step 2 is O(log n). So the expected
total cost of the algorithm is c(x∗)O(log n), and this algorithms is a O(log n)-approximation in
expectation. Standard methods can convert this to an arbitrarily high-probability result.

References

[1] JH Lin and JS Vitter. Approximation Algorithms for Geometric Median Problems. In Infor-
mation Processing Letters, 1992.

4

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Randomized routing, LP-Duality Date: 3/1/07

The first part of the lecture shows how a randomized rounding scheme can be used to transform
an optimal LP solution to a valid solution of the original problem. The specific problem used for
this example is the min-congestion routing problem.

The second part of the lecture introduces the concept of LP-Duality, and the primal-dual interpre-
tation of the maxflow-mincut problem.

12.1 Randomized rounding

12.1.1 Min congestion routing problem

GIVEN: a graph G = (V,E) and k pairs of demand vertices (si, ti).
DO: find a single path pi from si to ti for every i, trying to minimize the congestion C. The
congestion is defined as the number of paths going through the most-used edge in the graph.

C = max
e∈E

|{i|e ∈ pi}|

We then cast the problem as an LP where xie is defined as the amount of path i flow being sent
through edge e.

min t obj fcn
∑

e∈δ
+(v)

xie =
∑

e∈δ
−(v)

xie ∀i,∀v 6= si, ti

∑

e∈δ
−(si)

xie =
∑

e∈δ
+(ti)

xie = 1 ∀i

∑

i

xie ≤ t ∀e

xie ≥ 0 ∀i,∀e

The sets δ+(v) and δ−(v) correspond to the incoming and outgoing flow, respectively, for vertex v.
The summation constraints then enforce flow conservation, and source/sink assignments.

Since the objective function is to minimize t, which is constrained to be an upper bound for the
flow across any edge, t will give us the (possibly fractional) congestion for a solution point of this
LP.

In order to recover an integral/unsplittable flow solution from the LP solution, we will consider an
equivalent formulation of the LP.

1

In this alternative formulation xp refers to the flow along path p, and Pi is the set of all possible
paths from si to ti.

min t obj fcn
∑

p∈Pi

xp = 1 ∀i

∑

{p|e∈p}

xp ≤ t ∀e

xp ≥ 0 ∀p

These formulations are equivalent in the sense that any solution to one can be converted into a
solution of the other.

To convert from the first to the second, find all non-zero xie for a given i. Then, considering only
these edges, perform DFS from si to find a path to ti. For this path p, set xp to the minimum xie

value on the path, then subtract that amount from all xie on the path. That will effectively remove
the minimum edge from our edge set. Repeat this procedure until there are no edges remaining,
building a set of xp values as you go.

To convert from the second LP to the first, find all non-zero xp for a given Pi, then simply add
that much flow to the edge flow xie for each e ∈ p.

It is important to note that the second formulation is impractical to solve directly, as the number of
possible paths in the Pi sets will lead to exponentially many constraints. However the xp quantities
will come in useful for our randomized rounding scheme, as we will see.

12.1.2 Randomized rounding transformation

As on previous problems, the optimal objective function value of our LP forms a lower bound on
the true optimal solution of the original problem. That is, LP ∗ ≤ OPT . However, we need a way
to do rounding from the flows in our LP solution to legal unsplittable flows for the original problem.

Our approach will be to solve the LP in the first formulation, convert the solution to the second
formulation, and then treat the xp values as path selection probabilities. For a given path set
Pi, the constraints that all xp must be ≥ 0 and sum to 1 ensure that this is a valid probability
distribution. The algorithm is then relatively simple.

1. solve original formulation LP,

2. convert solution LP ∗ to second formulation

3. for each i, pick a p ∈ Pi with probability xp

Obviously, this algorithm will select exactly one path for each (si, ti) pair, yielding a valid solution.
What will the congestion be?

2

For every edge, total traffic in LP ∗ is ≤ t. The traffic corresponds to the xp values, which also then
correspond to the path selection probabilities.

For each edge define a set of indicator random variables Xi.

Xi =

{

1 if algo picks edge e for commodity i

0 else

Then define the expectation of Xi.

E(Xi) = µi =
∑

{p∈Pi|e∈p}

xp

Then for any edge e and set of random variable values Xi = xi, define its congestion to be Ce =
∑

i
xi. The expectation of the edge congestion can then be computed using our µi values and the

linearity of expectation.

E(Ce) = E(
∑

i

Xi) =
∑

i

E(Xi) =
∑

i

µi ≤ t

For our approximation factor, we want the sum of all Xi for every edge to be small. As shown
above, we know the expectation for each edge e to be ≤ t. More specifically, we want to show that
for an appropriate value of λ, Pr[Ce ≥ λE(Ce)] is small, for all e.

This can be accomplished through the use of a concentration bound result, specifically Chernoff’s
bound [1]. This bound assumes that the individual Xi are independent variables which can take on
the values {0, 1}, and then uses Markov’s inequality applied to a certain function to get the bound.
For λ ∈ [0, 1], the bound is:

Pr[X /∈ (1 ± λ)E(X)] ≤ exp
−λ2E(X)

3

We customize the bound to our specific situation, using the fact that
∑

i
µi ≤ t to get the following

inequality.

Pr[Ce ≥ (1 + λ)t] ≤ exp
−λ2

∑

i
µi

3

Note that
∑

i
µi may be quite small, meaning that no value of λ ≤ 1 will give a small probability of

error. So in order to obtain a smaller bound we must use a more general formulation of Chernoff’s
bound that also holds for λ > 1.

P (Ce ≥ (1 + λ)t) ≤
(

exp λ

(1 + λ)1+λ

)

P

i µi

3

We then manipulate the right-hand side.

(

eλ

(1 + λ)1+λ

)

P

i µi

≤
(

eλ

λλ

)

P

i µi

≤
(

1

(λ/e)λ

)

P

i µi

We now pick a value of λ for which the term λλ in the denominator becomes nO(1). Specifically
we set λ = O(log n

log log n
). We then substitute in our definition of λ.

λλ = exp(λ log λ)

= exp

(

log n

log log n
(log log n − log log log n

)

= Θ(nc)

where c is a factor determined by the actual terms in the O() equation used to calculate λ. Setting
λ appropriately to get c = 3, we plug this back into the original bound and end up with the result
that for any edge e:

Pr[Ce > (1 +

(

log n

log log n

)

)t] < 1/n3

We take the union of this bound over all ≤ n2 edges to get a total probability bound.

P (∃e|Ce > (1 +

(

log n

log log n

)

)t) < 1/n

By repeatedly applying our algorithm, we can then achieve an arbitrarily low probability of ex-
ceeding an (1 + log n

log log n
)-approximation to OPT .

12.2 LP-Duality

12.2.1 Definition/Derivation of LP-Duality

Consider the following example linear program. (For more discussion of this example, see [1].)

min x + 4y

x + 2y ≥ 5

2x + y ≥ 4

x, y ≥ 0

4

How could we obtain a lower bound on the true optimal objective function value for this LP (without
actually solving it, that is)?

We can take a non-negative linear combination of the constraint equations. Since x, y ≥ 0, if
the x coefficient in our combination is ≤ the x coefficient in the objective function, and the same
holds true for the y coefficients, our linear combination of constraints must also be ≤ the objective
function for any legal x, y.

When taking linear combinations of the constraints, we will also end up a linear combination of
the right-hand side of the constraints. Since it is a lower bound on the left-hand side, the linear
combination of the right-hand sides of the constraints is also a lower bound on the objective function.

To see what we mean, call the linear combination coefficients u, v.

min x + 4y

(x + 2y)u ≥ 5u

(2x + y)v ≥ 4v

x, y, u, v ≥ 0

Enforcing that the x, y coefficients in the linear combination are ≤ than the x, y coefficients in
the original objective function gives us some constraints on u, v. Since we want the tightest lower
bound possible, we then want to maximize the right-hand size of the constraint linear combination.
This mix of constraints and objective function give us a new LP.

max 5u + 4v

u + 2v ≤ 1

2u + v ≤ 4

u, v ≥ 0

This LP is known as the dual of the original LP, which is called the primal. It is interesting to note
that the objective function coefficients of the primal have become the constraint bounds in the dual,
while the constraint bounds of the primal have become the objective function coefficients of the
dual. Also, the u, v constraint coefficient matrix is the transpose of the x, y constraint coefficient
matrix.

The relationship between the primal and dual LPs is very special and useful. The specifics will be
spelled out in series of lemmas. For notation, V alP (x, y) and V alD(u, v) are the objective function
values of the primal and dual LPs, respectively, with an ∗ denoting the optimal objective function
value.

Theorem 12.2.1 Let (x, y) be any feasible primal solution. Let (u, v) be any feasible dual solution.
Then V alP (x, y) ≥ V alD(u, v).

This result follows from manipulation of the constraints in the definition of the dual presented
above, and is known as the Weak LP-Duality Theorem.

5

Theorem 12.2.2 V al∗
P

is finite iff V al∗
D

is finite.

Theorem 12.2.3 If both the primal and the dual have feasible solutions, then V al∗
P

= V al∗
D
.

These results are known as the Strong LP-Duality Theorem.

What if there are no feasible solutions for one of the versions of the problem, or if one of the
problems is unbounded? It turns out that the dual has no feasible solutions iff the primal is
unbounded below. Likewise, the primal has no feasible solution iff the dual is unbounded above.

Finally, it is interesting to note what happens when we take the dual of the dual.

Lemma 12.2.4 The dual of the dual is the original primal.

12.2.2 Applications of LP-Duality

12.2.2.1 General motivation

Why do we care about LP-Duality? For one thing, some of the optimization algorithms for actually
finding LP solutions rely heavily on LP-Duality and its consequences.

Aside from that, it may be that the primal formulation is unwieldy, or that the rounding transfor-
mation for the dual solution may be more favorable. The dual formulation also may yield useful
combinatorial insight into problem structure.

Finally, we can use the structure of the primal and dual to guide a purely combinatorial approxima-
tion algorithm for the underlying optimization problem. This technique is known as the primal-dual
method and will be sketched out more fully in the next lecture.

12.2.2.2 Mincut-Maxflow

Consider the following LP formulation of the standard maxflow problem. Let xp be the flow on
path p, which is a path from source s to sink t.

max
∑

p

xp obj fcn

∑

{p|e∈p}

xp ≤ ce ∀e

xp ≥ 0 ∀p

Then take the dual.

min
∑

e∈E

yece obj fcn

∑

e∈p

ye ≥ 1 ∀p

ye ≥ 0 ∀p

6

Note that since all ce ≥ 0 and we are trying to minimize the sum over e, in a solution no ye will be
assigned a value greater than 1.

What is the intuitive interpretation of the dual of our maxflow LP? Each ye corresponds to ’choosing’
an edge. The constraints state that we must choose ≥ 1 edge from every path, and the objective
function tells us to minimize the sum of yece over all e.

Ignoring fractional ye, this means that our optimal LP solution to this dual needs to choose edges
so that every path contains one of the chosen edges, and also choose the edges with the smallest
total capacity. The smallest capacity set of edges which interesects every path from s to t is, by
definition, the minimum weight separating cut between s and t.

As it turns out, all basic points of the primal and dual LPs are integral. This, along with the Strong
LP Duality theorem (Theorem 12.2.3), implies the Max-Flow Min-Cut Theorem. The following
lemma and theorem formalize this notion.

Lemma 12.2.5 The Mincut LP has integral basic points.

Corollary 12.2.6 Maxflow-Mincut Theorem: The maximum possible flow between s and t is equal
to the capacity of the minimum cut separating s and t.

In this way LP-Duality allows us to clearly see the duality of the maxflow and mincut problems.

References

[1] V. Vazirani. Approximation Algorithms. Springer, 2001.

7

CS880: Approximations Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Primal-Dual Method: Vertex Cover and Steiner Forest Date: 3/6/2007

In the previous few lectures we have seen examples of LP-rounding, a method for obtaining approx-
imation algorithms that involves solving a linear programming relaxation of the problem at hand
and rounding the solution. In the last lecture we also discussed the basic theory of LP-duality.
Today we will apply this theory to obtain a second LP-based technique for obtaining approxima-
tion algorithms — the primal-dual method. This technique has the advantage that it circumvents
the need to actually solve an LP relaxation, leading to efficient algorithms that are purely com-
binatorial. We will apply this technique to the Vertex Cover and Steiner Forest problems. The
primal-dual method in the context of approximation algorithms was first used by Goemans and
Williamson [1].

13.1 Linear Programming Duality

Consider the general linear program

minimize cT x

subject to Ax ≥ b

x ≥ 0

where x = (x1, . . . , xn)T is vector of variables, A = (Aij) is an m× n matrix, and c = (c1, . . . , cn)T

and b = (b1, . . . , bm)T . Recall that the dual of this linear program is given by

maximize bT y

subject to AT y ≤ c

y ≥ 0

where y = (y1, . . . , ym)T is a vector of variables. The variables in y are in one-to-one correspondence
with the constraints of the primal LP, and the variables in x are in one-to-one correspondence with
the constraints of the dual LP. In the last lecture we showed that the dual of the dual of an LP
is again the original LP. We also proved the following result, stating that the objective value of
every feasible solution to the dual lower bounds the objective value of every feasible solution to the
primal. We reiterate the proof since it will come in handy later.

Theorem 13.1.1 (Weak Duality Theorem) If x and y are feasible solutions to the primal and
dual respectively, then cT x ≥ bT y.

Proof: We have

cT x =

n
∑

i=1

cixi ≥
n

∑

i=1

(

m
∑

j=1

Ajiyj

)

xi =

m
∑

j=1

(

n
∑

i=1

Ajixi

)

yj ≥
m

∑

j=1

bjyj = bT y,

where the two inequalities hold by feasibility of x and y.

1

We also stated, but did not prove, the following result, which establishes an intimate connection
between the primal and dual LPs.

Theorem 13.1.2 (Strong Duality Theorem) The optimal objective value of the primal is finite
if and only if the optimal objective value of the dual is finite, and in this case the optimal objective
values are equal.

If x and y are optimal solutions to the primal and dual LPs, then Theorem 13.1.2 tells us that
cT x = bT y, and it follows that both inequalities in the proof of Theorem 13.1.1 must hold with
equality. That is,

n
∑

i=1

cixi =

n
∑

i=1

(

m
∑

j=1

Ajiyj

)

xi

and
m

∑

j=1

bjyj =

m
∑

j=1

(

n
∑

i=1

Ajixi

)

yj.

Let us consider the first equation. Since
∑

m

j=1
Ajiyj ≤ ci for all i, the only way the first equation

can hold is if cixi = (
∑

m

j=1
Ajiyj)xi for all i. This is certainly true if ci =

∑

m

j=1
Ajiyj for all

i, i.e. all dual constraints are tight. However, this is not necessary; even if ci < (
∑

m

j=1
Ajiyj)

for some i, we can still have cixi = (
∑

m

j=1
Ajiyj)xi provided xi = 0. Similarly, for all j, either

yj = 0 or bj =
∑

n

i=1
Ajixi. Conversely, if x and y are feasible solutions to the primal and dual

respectively such that these conditions hold, then equality holds throughout the proof of Theorem
13.1.1, implying that x and y have the same objective value and are thus both optimal. This proves
the following result.

Lemma 13.1.3 Let x and y be feasible solutions to the primal and dual respectively. Then x and
y are both optimal if and only the following two conditions hold.

Primal complementary slackness conditions: For i = 1, . . . , n, either xi = 0 or
∑

m

j=1
Ajiyj = ci.

Dual complementary slackness conditions: For j = 1, . . . ,m, either yj = 0 or
∑

n

i=1
Ajixi = bj.

This suggests an approach for finding optimal solutions to the primal and dual LPs: search for
feasible solutions satisfying both complementary slackness conditions. We can use this idea to
obtain approximation algorithms by searching for feasible solutions satisfying a relaxed version
of the complementary slackness conditions. We say that x and y satisfy the α-approximate dual
complementary slackness conditions if for j = 1, . . . ,m, either yj = 0 or

∑

n

i=1
Ajixi ≤ αbj . That

is, when yj 6= 0, we don’t require the corresponding primal constraint to be tight, but it shouldn’t
be too far from being tight. The following lemma is useful for proving approximation guarantees.

Lemma 13.1.4 Suppose x and y are feasible solutions to the primal and dual respectively, satis-
fying the primal complementary slackness conditions and the α-approximate dual complementary
slackness conditions. Then x is an α-approximate solution to the primal LP.

Proof: We have
cT x = (AT y)T x = yT Ax ≤ αyT b,

2

where the first equality follows from the primal complementary slackness conditions and the in-
equality follows from the α-approximate dual complementary slackness conditions. The lemma
follows since yT b is at most the optimal objective value of the primal LP, by Theorem 13.1.1.

Our strategy is to construct feasible solutions x and y such that x is integral and the primal
complementary slackness conditions and α-approximate dual complementary slackness conditions
are satisfied. We do so without actually solving the LP, which makes this approach appealing from
a practical standpoint. Lemma 13.1.4 then guarantees that x is an α-approximate solution to the
LP relaxation and hence an α-approximate solution to the problem at hand. This is the main idea
behind the primal-dual method.

This is not the only way to design primal-dual algorithms, however. For example, our primal-
dual algorithm for the Steiner Forest problem does not satisfy the 2-approximate complementary
slackness conditions for every j, yet we can show that nevertheless, we obtain a 2-approximate
solution.

13.2 Vertex Cover

13.2.1 Linear Programming Formulation

Our first example of a primal-dual algorithm is for the weighted version of the Vertex Cover problem.

Definition 13.2.1 (Vertex Cover) Given a graph G = (V,E) and vertex weights w : V → R
+,

find a minimum weight subset of the vertices such that every edge is covered.

We can capture this problem with an ILP that is very similar to the ILP we saw in a previous
lecture for the unweighted version. We introduce a variable xv for each vertex v to indicate whether
v is in the chosen vertex cover. We seek to minimize the total weight of the picked vertices subject
to the constraint that for every edge, at least one of its endpoints is picked.

minimize
∑

v∈V
wvxv

subject to xu + xv ≥ 1 ∀{u, v} ∈ E

xv ∈ {0, 1} ∀v ∈ V

We relax this to the following LP.

minimize
∑

v∈V
wvxv

subject to xu + xv ≥ 1 ∀{u, v} ∈ E

xv ≥ 0 ∀v ∈ V

The dual of this LP can be written by inspection. Since the constraints of the primal correspond
to the edges of G, we have a dual variable ye for each edge.

maximize
∑

e∈E
ye

subject to
∑

e:v∈e
ye ≤ wv ∀v ∈ V

ye ≥ 0 ∀e ∈ E

3

Incidentally, if all vertex weights are 1, then the ILP corresponding to this dual LP exactly cap-
tures the Maximum Matching problem. Theorem 13.1.1 then tells us that the cardinality of every
matching is a lower bound on the size of every vertex cover, which is exactly the lower bound we
used to design a 2-approximation algorithm for the unweighted version of Vertex Cover in the first
lecture. That algorithm can be viewed as a primal-dual algorithm and the algorithm we are about
to describe can be viewed as a generalization.

13.2.2 Primal-Dual Algorithm

We begin by giving a high-level overview of the primal-dual method. We assume throughout this
discussion that the problem at hand is a minimization problem where both c and b are positive.
We start with a dual feasible solution and a primal infeasible solution, typically y = (0, . . . , 0)T

and x = (0, . . . , 0)T . These solutions certainly satisfy the primal and dual complementary slackness
conditions. We iteratively modify x and y, making x closer to being feasible and y closer to being
optimal, while maintaining the dual feasibility of y, the primal complementary slackness conditions,
and the α-approximate dual complementary slackness conditions. If we can get to a point where x

is feasible, then we can use Lemma 13.1.4 to conclude that x is an α-approximate solution.

A more detailed plan is as follows.

• Start with x = (0, . . . , 0)T and y = (0, . . . , 0)T .

• Intuitively, we want our dual solution y to have as high an objective value as possible, since
this is our lower bound. So begin by raising some y variables, improving the dual objective
value, until some dual constraint goes tight. The crucial design aspect is deciding how to
raise the variables — this depends on the structure of the problem at hand.

• When some dual constraint goes tight, we are then free to raise the x variable corresponding
to that constraint while maintaining the primal complementary slackness condition. This
makes the primal solution x closer to being feasible. In particular, we usually raise the x

variable in such a way that all the primal constraints involving this variable are satisfied.

• At this point, raising any of the y variables involved in the constraint that just went tight
would violate that constraint, so “freeze” all of these variables and repeat the whole process,
alternating between raising y and raising x, and only selecting unfrozen y variables to raise.

• Finally, show that when all y variables become frozen, the primal solution x becomes feasible,
and that the α-approximate dual complementary slackness conditions are satisfied.

We now show how to employ this method to obtain a 2-approximation algorithm for Vertex Cover.
We start out with x = (0, . . . , 0)T , i.e. no vertex is picked, and y = (0, . . . , 0)T , i.e. every edge has
a label of 0. We seek to improve the feasibility of the primal, so we pick an arbitrary unsatisfied
edge e and raise its label ye until some dual constraint, say the one corresponding to vertex v, goes
tight, which is to say the sum of the labels of edges incident with v is exactly the weight of v. The
fact that the primal complementary slackness conditions would still be satisfied if we set xv = 1 is
a hint that we should pick v to be in the cover. So we set xv = 1, and since increasing the label

4

of any edge incident with v would violate the dual constraint corresponding to v, we freeze the
dual variables associated with these edges. If the constraints corresponding to both endpoints of
e go tight at the same time, then we put both of them in the cover and freeze all edges incident
with them. Then we repeat the process by picking an unfrozen edge, raising its label until some
dual constraint goes tight, putting the corresponding vertex in the cover, and freezing the edges
incident with it. We continue until all edges are frozen, and then output the set of vertices v such
that xv = 1.

We remark that although we think of the dual variable ye as being raised in continuous time, an
implementation of this algorithm just needs to set ye = minv∈e (wv −

∑

e
′3v

y
e
′).

Lemma 13.2.2 At termination, y is dual feasible.

Proof: When a dual constraint goes tight, we freeze all dual variables appearing in it, so this
constraint cannot be violated.

Lemma 13.2.3 At termination, the primal complementary slackness conditions are satisfied.

Proof: We only set xi = 1 when the corresponding dual constraint is tight.

Lemma 13.2.4 At termination, x is primal feasible.

Proof: Suppose for contradiction that some edge e is not covered by the corresponding vertex
cover. Since all frozen edges are incident with picked vertices, it must be the case that e is not
frozen. But the algorithm does not terminate with unfrozen edges.

Lemma 13.2.5 At termination, the 2-approximate dual complementary slackness conditions are
satisfied.

Proof: This follows from the fact that for each edge {u, v}, xu ≤ 1 and xv ≤ 1 and therefore
xu + xv ≤ 2.

Although trivial to prove, the above lemma dictates our final approximation guarantee.

Theorem 13.2.6 The primal-dual algorithm described above is a 2-approximation algorithm for
Vertex Cover.

Proof: This follows from Lemma 13.1.4 and the previous four lemmas.

13.2.3 Examples

We illustrate the behavior of our algorithm on the example in the following figure.

The algorithm may begin by choosing to raise the edge between the vertices of weight 4 and 5.
Once the label of this edge hits 4, the constraint corresponding to the vertex of weight 4 goes tight,
since the sum of the labels of the edges incident with it is 4 + 0 + 0 = 4. This vertex is picked
to be in the cover, and the three edges incident with it become frozen. The algorithm may then
pick the edge between the vertices of weight 5 and 6 to raise. Once the label of this edge hits 1,
the constraint corresponding to the vertex of weight 5 goes tight, since the sum of the labels of the
edges incident with it is 4 + 0 + 1 = 5. This vertex is picked to be in the cover, and the two edges
incident with it that weren’t already frozen become frozen. There are now three unfrozen edges;
the algorithm may pick the edge between the vertices of weight 2 and 7 to raise. Once the label of

5

4

1
3

2

7

6
5

this edge hits 2, the constraint corresponding to the vertex of weight 2 goes tight, so this vertex is
picked to be in the cover, and the remaining three edges become frozen. Now each edge is frozen,
so each edge is incident on a picked vertex. The algorithm outputs the vertices of weight 2, 4, and
5, which form a vertex cover of total weight 11. Note that the output is not optimal; the vertex of
weight 4 could be replaced with the vertex of weight 1 to yield a vertex cover of total weight 8.

Finally, we observe how this algorithm behaves when all vertex weights are 1. It selects an edge
and raises the corresponding variable to 1, at which point the constraints corresponding to both
endpoints go tight, so both endpoints are picked to be in the cover. All edges incident with these
two endpoints become frozen, so every edge raised in the future will not share an endpoint with
the edge raised in this iteration. In other words, the algorithm finds a maximal matching in G and
outputs all endpoints of edges in the matching. This is exactly the 2-approximation algorithm for
the unweighted version of Vertex Cover that was described in the first lecture.

13.3 Steiner Forest

13.3.1 Linear Programming Formulation

The primal-dual algorithm we just described for Vertex Cover worked by raising dual variables one
at a time. Our next example is a primal-dual algorithm that operates differently; it raises many
dual variables simultaneously until one of the corresponding primal constraints goes tight. This
algorithm also has the feature that Lemma 13.1.4 does not apply directly; a more ad-hoc argument
is needed. We choose to study the following problem instead of the Steiner Tree problem since the
extra generality doesn’t end up complicating the algorithm or analysis significantly.

Definition 13.3.1 (Steiner Forest) Given a graph G = (V,E), edge costs c : E → R
+, and sets

Si ⊆ V , find a minimum-cost forest F such that for all i and all u, v ∈ Si, there is a path from u

to v in F .

Our first task is to fomulate this problem as an ILP. There are several ways of doing this. One
natural approach would be to have a variable for every edge indicating whether it is in the forest,

6

as well as a variable for each path connecting two vertices in the same Si, and constraints enforcing
that every pair of vertices in the same Si is connected by some path and that every edge on this
path is indeed picked. This yields an ILP with exponentially many constraints. A polynomial-sized
ILP can be obtained by expressing the problem as a flow problem, with a different commodity for
each pair of vertices in the same Si. We will use an equivalent but more structured formulation
with a dual that is simpler to state.

We still have a variable xe for each edge indicating whether it is in the forest, but instead of thinking
of pairs of vertices in the same Si as being connected, we think of them as being not disconnected.
That is, every cut separating them must contain some picked edge. More formally, for every S ⊆ V

such that S ∩ Si 6∈ {∅, Si} for some i, we require that xe = 1 for at least one edge e ∈ δ(S) have .
Letting S denote the set of all such S, we have the following ILP formulation.

minimize
∑

e∈E
cexe

subject to
∑

e∈δ(S)
xe ≥ 1 ∀S ∈ S

xe ∈ {0, 1} ∀e ∈ E

An immediate concern is that the above ILP has exponentially many constraints. However, this
serves to illustrate a key point about the primal-dual method: the linear programming formulation
of a problem is merely a conceptual tool; the algorithms are purely combinatorial. In this case,
our algorithm only ever needs to deal with polynomially many of the primal constraints and dual
variables, so the exponential size of the LP formulation is not prohibitive.

We obtain the LP relaxtion for this problem.

minimize
∑

e∈E
cexe

subject to
∑

e∈δ(S)
xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E

For the dual, we introduce a variable yS for each S ∈ S. The dual LP can be written by inspection.

maximize
∑

s∈S yS

subject to
∑

S:e∈δ(S)
yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

13.3.2 Primal-Dual Algorithm

Our primal-dual algorithm starts with the primal infeasible solution x = (0, . . . , 0)T and the dual
feasible solution y = (0, . . . , 0)T . We would like to raise some dual variables, thereby increasing
the dual objective, until some dual constraint goes tight, at which time the primal complementary
slackness conditions would indicate that it is safe to put the corresponding edge in our forest. For the
Vertex Cover problem, we picked a single unsatisfied primal constraint and raised the corresponding
dual variable until some dual constraint went tight. The order in which the unsatisfied constraints
were picked didn’t affect the final cost much. In the present settting, it turns out that raising
one dual variable at a time does not work. The costs for satisfying different constraints can vary

7

wildly, so ordering matters more. Instead, we raise many dual variables simultaneously until some
dual constraint goes tight. This way, we are not focusing on making progress toward satisfying any
particular primal constraint, but rather taking a more global perspective.

Another difference between our Vertex Cover algorithm and the current example is that we are not
able to guarantee that the α-approximate dual complementary slackness conditions are satisfied.
But nevertheless we can show that our algorithm yields a 2-approximate solution, by a similar ar-
gument to the one used to show that if the 2-approximate dual complementary slackness conditions
are satisfied then the resulting solution is 2-approximate. In particular, we will show that these
constraints hold “on average”.

We will see more details about this algorithm in the next lecture. We will also see a primal-dual
algorithm for the Facility Location problem.

References

[1] M. X. Goemans and D. P. Williamson. A General Approximation Technique for Constrained
Forest Problems. In SIAM Journal on Computing, 24, 1995, pp. 296-317.

8

CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Primal-Dual Method: Steiner Forest and Facility Location Date: 3/8/2007

Last time we discussed how LP-duality can be applied to approximation. We introduced the primal-
dual method for approximating the optimal solution to an LP in a combinatorial way. We applied
this technique to give another 2-approximation for the Vertex Cover problem. In this lecture, we
present and analyze a primal-dual algorithm that gives a 2-approximation for the Steiner Forest
problem. We also briefly talk about a primal-dual algorithm for Facility Location.

14.1 Steiner Forest

We restate the Steiner Forest problem here.

Definition 14.1.1 (Steiner Forest) Given an undirected graph G = (V,E), edge costs c : E →
R+, and disjoint subsets Si ⊆ V , find a minimum-cost forest F such that for all i and u, v ∈ Si,
there exists a path connecting u to v in F .

To formulate Steiner Forest as an ILP, we introduce an indicator variable xe for each edge e. Let
S be the collection of all sets S ⊆ V that cut some Si into two parts, i.e. S = {S ∈ V | S ∩ Si /∈
{∅, Si} for some i}. Then from last lecture we have the following ILP formulation for Steiner Forest.

minimize
∑

e∈E cexe

subject to
∑

e∈δ(S) xe ≥ 1 ∀S ∈ S
xe ∈ {0, 1} ∀e ∈ E

where δ(S) denotes the boundary of S, i.e. the set of edges in E with exactly one endpoint in S.
The LP relaxation for this problem is as follows. Note that we do not restrict xe to be at most 1
since any optimal solution x∗ to the LP must satisfy x∗e ≤ 1 for all e ∈ E.

minimize
∑

e∈E cexe

subject to
∑

e∈δ(S) xe ≥ 1 ∀S ∈ S
xe ≥ 0 ∀e ∈ E

We introduce a variable yS for each S ∈ S and obtain the dual LP.

maximize
∑

S∈S yS

subject to
∑

S:e∈δ(S) yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

If ce = 1 for all e and integer constraints are imposed, the dual LP can be interpreted as the
problem of picking a largest collection C ⊆ S such that no two sets in C have a common edge on
their boundaries.

We start with the primal infeasible solution x = (0, . . . , 0)T and the dual feasible solution y =
(0, . . . , 0)T . We then raise some of the dual variables until some dual constraint goes tight. At this

1

point, we put the edge corresponding to the constraint into F , and freeze all dual variables in the
constraint. We repeat this process, all the time keeping the dual solution feasible, until all dual
variables are frozen. A detailed description of our primal-dual algorithm is as follows.

1. Set xe = 0 for all e ∈ E, and yS = 0 for all S ∈ S.

2. Raise uniformly the dual variables yS ’s corresponding to all minimal unsatisfied sets.

3. When a dual constraint goes tight, assign the value 1 to the primal variable xe corresponding
to the constaint, and freeze all dual variables yS in the constraint. Without loss of generality,
we assume that at most one dual constraint goes tight at any point in time.

4. Repeat the above two steps until all yS are frozen.

After the above primal-dual steps, we get a collection of edges F . Finally, we need a pruning step
to remove extra edges from F .

5. For all edges e ∈ F such that F\{e} is still feasible, remove e from F . We denote the resulting
collection of edges by F ′.

Intuitively, we can think of the algorithm as expanding minimal unsatisfied sets (active sets) until
some of them touch on some edge, at which time we merge the active sets to form a larger set. The
newly formed set may be active or inactive. If it is active, we start expanding it with other existing
active sets. Initially, each terminal node forms an active set. The above process continues until all
sets become inactive. Also note that when we expand an active set, it may touch a non-Steiner
node. In such a case, a new set is formed by adding that node into the active set.

Lemma 14.1.2 At termination, y is dual feasible.

Proof: In our algorithm, whenever a dual constraint goes tight, all its variables are frozen,
therefore no dual constraints can be violated throughout the algorithm. Since all dual constraints
are satisfied at the beginning, they remain satisfied.

By weak duality, we have the following corollary.

Corollary 14.1.3 Let OPT be the cost of an optimal Steiner forest. Then
∑

S∈S yS ≤ OPT .

Lemma 14.1.4 At the end of the primal-dual steps, F is a forest and is primal feasible.

Proof: Since we consider dual constraints one by one, and always add edges between two minimal
unsatisfied sets, we never form a cycle, and thus F is a forest. If F was not feasible, then some
S ∈ S remained unsatisfied upon termination. That means none of the edges in δ(S) were in F ;
equivalently, yS had not been frozen. This contradicts step 4 of our algorithm.

Lemma 14.1.5 F and y satisfy the primary complementary slackness conditions.

Proof: We only raise the value of a primal variable in step 3 of our algorithm. Such an event
happens only when the corresponding dual constraint goes tight. Hence, xe > 0 implies that∑

S:e∈δ(S) yS = ce.

2

In view of Corollary 14.1.3 and Lemma 14.1.5, we may want to show that yS > 0 implies
∑

e∈δ(S) xe ≤
2. Then this would give∑

e∈F

ce =
∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S∈S

∑
e∈F∩δ(S)

yS =
∑
S∈S

yS

∑
e∈δ(S)

xe ≤ 2
∑
S∈S

yS ≤ 2OPT.

However, this is not true in general, because average degree of the sets can be high when the sets
become inactive. That is why we need the pruning step to remove extra degrees. We now shift our
attention to the pruned solution F ′.

Lemma 14.1.6 F ′ is a forest and is primal feasible.

Proof: F ′ is a forest follows from the fact that its superset F is forest. To show that F ′ is
feasible, pick an i and u, v ∈ Si. Since F is feasible and is a forest, there exists a unique path in
F connecting u to v. Removing any edge in the path would make the solution infeasible, therefore
the whole path must be contained in F ′.

Lemma 14.1.7 F ′ and y satisfy the primary complementary slackness conditions.

Proof: This is a direct corollary of Lemma 14.1.5.

Lemma 14.1.8 Let OPT be the cost of an optimal Steiner forest. Then∑
e∈F ′

ce ≤ 2
∑
S∈S

yS ≤ 2OPT.

Proof: By Lemma 14.1.7, ∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS .

Rewriting the summations on the right-hand side, we get∑
e∈F ′

ce =
∑
S∈S

∑
e∈F ′∩δ(S)

yS

=
∑
S∈S

yS · degF ′(S)

where degF ′(S) is the number of edges in F ′ crossing the boundary of S, i.e. |F ′ ∩ δ(S)|. Our goal
is to show that

∑
S∈S yS · degF ′(S) ≤ 2

∑
S∈S yS . We use an inductive argument to show that the

inequality holds at any point in time. The base case (t = 0) is trivial since
∑

S∈S yS = 0. For the
inductive part, we assume that the inequality is satisfied at time t. Let ∆ > 0 be an amount such
that no dual constraint goes tight in the time interval [t, t + ∆). Let A(t) be the collection of all
active sets at time t. Then, the increase in the left-hand side of the inequality within [t, t + ∆] is

∆ ·
∑

S∈A(t)

degF ′(S),

whereas the increase in the right-hand side is

2∆ · |A(t)|.

3

We claim that any time t, the average degree of all active sets is at most 2, i.e.
∑

S∈A(t) degF ′(S) ≤
2 · |A(t)|. If that holds, then the increase in LHS is at most the increase in RHS, thus completing
our induction. To prove the claim, we consider all components of F at time t. The average
degree of these components under the final F is at most 2, implying that the average degree of
these components under F ′ is at most 2. Some of these components are active sets while others are
inactive. If we can show that all the inactive ones have degree (under F ′) not equal to 1, then we are
done. We prove this by contradiction. Suppose that for some inactive component S, degF ′(S) = 1.
Let e be the only edge in F ′ ∩ δ(S). Then e must lie on some path in F ′ connecting u, v ∈ Si for
some i, otherwise it would have been removed from F ′. But then u ∈ S and v /∈ S (or vice versa),
implying that S ∈ S, which is a contradiction since we have assumed that S is inactive.

Remark. The above 2-approximation is due to Agarwal, Klein and Ravi [1]. Later, Goemans
and Williamson [2] started to use the primal-dual method in solving many other approximation
problems.

14.2 Facility Location

We restate the Facility Location problem here.

Definition 14.2.1 (Facility Location) Given a set of facilities I, a set of customers J , facility
opening costs f : I → R+ and a metric c on I ∪J , find a subset S ⊆ I that minimizes the total cost
C(S) = Cf (S)+Cr(S), where Cf (S) is the total facility openning cost defined as Cf (S) =

∑
i∈S f(i),

and Cr(S) is the total routing cost defined as Cr(S) =
∑

j∈J mini∈S c(i, j).

To formulate Facility Location as an ILP, we introduce an indicator variable xi for each facility i.
For each facility i and customer j, we introduce a variable yij which is set to 1 if and only if j is
assigned to i. For notational convenience, we write fi and cij instead of f(i) and c(i, j). Then we
have the following ILP formulation for Facility Location.

minimize
∑

i∈I fixi +
∑

i∈I,j∈J cijyij

subject to
∑

i∈I yij ≥ 1 ∀j ∈ J
xi − yij ≥ 0 ∀i ∈ I, j ∈ J
xi, yij are non-negative integers ∀i ∈ I, j ∈ J

By introducing a variable αj for each customer j and βij for each facility-customer pair (i, j), we
get the following dual of the LP relaxation.

maximize
∑

j αj

subject to αj − βij ≤ cij ∀i ∈ I, j ∈ J∑
j βij ≤ fi ∀i ∈ I

αi, βij ≥ 0 ∀i ∈ I, j ∈ J

We can interpret the dual LP as follows. We are the owners of the facilities and are going to collect
money from the customers in order to open some of the facilities. For each customer j, αj is the
amount paid by j. For each facility i and customer j, βij is the portion of αj that pays for facility
i. The constraint αj − βij ≤ cij states that the amount paid by customer j should not exceed

4

the portion that goes to facility i plus the routing cost cij , for every facility i. The constraint∑
j βij ≤ fi states that no facility should overcharge its customers, i.e. the customers should not

pay more than enough to open the facility. Under these constraints, we want to maximize
∑

j αj ,
the total amount collected from the customers. Note that each customer may be paying for several
facilities. To deal with this, we close some of the facilities in our primal solution such that every
customer pays for at most one facility, and reassign all unassigned customers to the remaining
facilities. We will look at the primal-dual algorithm next lecture.

References

[1] A. Agrawal, P. Klein and R. Ravi. When Trees Collide: An Approximation Algorithm for the
Generalized Steiner Problem on Networks. In SIAM Journal on Computing, 24, pp. 440–456,
1995.

[2] M. X. Goemans and D. P. Williamson. A General Approximation Technique for Constrained
Forest Problems. In SIAM Journal on Computing, 24, pp. 296–317, 1995.

5

CS880: Approximations Algorithms

Scribe: Matthew Darnall Lecturer: Shuchi Chawla
Topic: Primal/Dual Method: Facility Location/Cut Date: 3/08

17.1 Facility Location

Recall from last time the formulation of the facility location problem as an LP with primal and
dual. We have costs cij of routing a person j to facility i. There is a cost fi of opening facility i.
We have a variable xi for each facility i that is the amount that the facility is open. We have a
variable yij for the amount that person j is routed to facility i. We wish to minimize∑

i

fixi +
∑
i,j

yijcij

suject to the constraints that for each j
yij ≤ xi

and for each j ∑
i

bij ≥ 1

The dual problem then has variables αj for every person j and βij for every customer/facility pair.
The dual problem is to maximize ∑

j

αj

subject to the constraints that for any i, j

αj − βij ≤ cij

and for any i ∑
j

βij ≤ fi

as well as the usual condition that all variables are non-negative.

17.2 Algorithm

We shall construct an integral solution to the primal LP as well as a feasible solution to the dual
LP such that the integral primal is within a factor of three of the dual solution. Thus, our final
solution shall be a three approximation for the facility location problem, since any dual feasible
solution is an upper bound on a primal solution. As we usually do, we shall ensure that one of the
complementary slackness conditions remains tight, while relaxing the other. This time, we shall
relax the primal slackness condition. We shall do the following to get a set I of possible facilities
to open. We continue until all the people are assigned a facility.

1

For all unassigned customers, raise the corresponding αj uniformly. If an equaltiy of the form
αj = cij is reached the corresponding βij must be raised also to ensure that the constraint
αj − βij ≤ cij isn’t violated. Remember that we want this to be a feasible dual solution. For
such customers, αj − βij is fixed to be cij and that constraint is tight. Once a constraint of the
form

∑
j βij ≤ fi is reached for some i, we include this i in our set I of possible facilities to open.

Also, we consider the j that have nonzero bij to be assigned to i and freeze the values of βij and
αi. Then we continue the process.

At this point, we have a set of facilities I that we wish to open. We call a pair i, j tight if
αj − βij = cij at the time i was included in the set I. We shall decide the final facilities to open
by dong the following. There is a natural ordering on the facilities by the time at which they were
included in I. We call a pair i, j tight if αj = cij . Now, we recursively do the following. Select the
first facility in I that is not thrown out or already selected. Now, throw out all the facilities that
share a tight customer with the selected facility. Continue until all facilities are selected or thrown
out. The selected facilities shall be the ones we open, call this set of facilities S. We shall route
each customer completely to a tight facility if one exists. If one doesn’t exist, we route the customer
to a facility that caused one of the tight facilities to the customer to be thrown out. By the metric
propery, we know that the cost of routing to the open facility shall be bounded appropriately.

17.3 Analysis

For each customer, we break down the αj into two portions, the portion payng for facility opening
αf

j and a portion for routing αr
j . If j is assigned to a facility with which it is tight, then αj = βij +cij

for that facility. We call αf
j = βij and αr

j = cij . Else, αr
j = αj and the facility portion for this αj

is zero. Let Si be the set of customers assigned to facility i. We notice that for any facility in S,∑
j∈Si

αf
j =

∑
j∈Si

βij = fi. Since these Si are disjoint,
∑

j αf
j is precisely the opening cost of the

facilities in S. Now, for the routing costs we have that for j with a tight facility αr
j is exactly the

cost of routing j to that facility. For the other j, we don’t have a tight facility to route to. But, the
facility that j is routed to must share a customer, j′, with a tight facility, i′, for j. By the order in
which we chose the facilities to include, the routing cost from i to j′, from i′ to j′ and from i′ to
j are all bounded by αj , since each of these pairs is tight. The metric property gives us that the
cost paid to route j is then at most 3αj . So, we have that:

3
∑

j

αj ≥
∑
i∈S

fi +
∑
i,j

cij

Since the RHS is the objective function of the original problem and the optimal value for facility
location is bounded by the sum of the αj , we get a 3 approximation to facility location. This idea
was first seen in [1].

2

17.4 Min Cut/Max Flow

Recall the Min Cut problem. We are given two nodes, s and t, in a graph G. We wish to find the
cheapest set of edges to remove such that s and t are in different components of the graph. We
shall consider the Min Cut problem in our primal dual setting. First, we must state the Min Cut
problem as an ILP. To do this, we can give a variable xe to each edge in the graph that stands for
whether or not we remove e. Let ce be the cost of removing e. We seek to minimize:

∑
e

cexe

The constraints we have say that there should be no path from s to t that doesn’t cross a selected
edge. Thus, for every path P from s to t: ∑

e∈P

xe ≥ 1

As we saw in lecture 12, the dual of this LP describes the Max Flow problem. Using the Duality
Theorem and the fact that the basic solutions of these LPs are integral, we get the famous Max
Flow = Min Cut Theorem.

17.5 Metric LPs

Though the Min Cut problem is simple enough not to need another formulation, it is useful to use
the Min Cut to expalin Metric LPs. Notice that any cut, C, defines a metric, dC on the set of
vertices. Namely, the distance dC(x, y) from x to y is length of the shortest path from x to y where
the length traveled by moving across edge e is xe. xe is 1 if e is cut, zero otherwise. Now, our goal
is to:

Minimize
∑

e

cexe (17.5.1)

Subject to dC(s, t) ≥ 1 (17.5.2)

Unfortunately, the constraint dC(s, t) ≥ 1 is not linear in the variables xe. To get over this, we
change how we phrase the problem. Instead of assigning a varible xe for each edge, we have a
variable d(u, v) for each pair of vertices. We shall want d to form a metric and shall think of d(u, v)
as being the amount we select the edge (if it exists) between u and v. Now we seek to minimize:∑

(u,v)∈E

c(u,v)d(u, v)

3

subject to the constraints that for any u, v, w:

d(u, v) + d(v, w)− d(u, w) ≥ 0 (17.5.3)
d(u, v)− d(v, u) = 0 (17.5.4)

d(u, u) ≥ 0 (17.5.5)
d(s, t) ≥ 1 (17.5.6)

Notice that the first three of these constraints are perfectly encapsulates what it means for d to be
a metric! Also, notice that the metric induced by any feasible cut satisfies the constraints. If the
cut is optimal, then

∑
(u,v)∈E c(u,v)d(u, v) =

∑
e cexe since we can lower the value of x(u,v) down to

d(u, v) without violating any of the contraints. Thus, finding the solution to Min Cut is equivalent
to finding the best integral solution to the LP above.

As we will see in future lectures, phrasing some problems as a metric LP and using metric embed-
ding techniques can lead to good approximation factors.

References

[1] K. Jain, V. Vazarani. Primal-Dual Algorithms for Mteric Facility Location andk-Median Prob-
lems. In 40th annual Symposium on the Foundations of Computer Science, 1999.

4

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Metric multiway cut and multicut, integrality gap Date: 3/15/07

The lecture further explores the use of cut metrics, with applications to the multiway cut and
multicut problems. Also, the idea of an expander graph is introduced and applied to deriving the
integrality gap between an optimal LP solution and the optimal corresponding integral solution.

16.1 Metric multiway cut

16.1.1 Problem setup and LP

GIVEN: a graph G = (V,E) and a set T ⊂ V of terminals.
DO: find the minimum weight cut separating every pair of terminals ti, tj ∈ T from one another.

Just as in the previous lecture, we will formulate this cut problem as a metric LP. We enforce the
separation of all pairs of terminals by requiring that our metric assign them distance ≥ 1.

min
∑

(u,v)∈E

cuvd(u, v) obj fcn

d is a metric

d(ti, tj) ≥ 1 ∀ti, tj ∈ T

where cuv is the cost of the edge between vertices u and v.

16.1.2 Rounding

Once we’ve found an optimal solution to the metric LP above, we need to transform our metric to
a cut metric, which will yield a valid multiway cut. As usual, we use the fact that LP ∗ ≤ OPT .

To do this analysis, it will be useful to consider a set of interesting physical analogies for the
quantities in our problem.

• edges → pipes

• ce → cross-sectional area of pipe e

• de → = length of pipe e

• B(ti, r) → = ball of radius r, centered at ti

• f(ti, r, e) → = fraction of edge e covered by ball B(ti, r)

• V ol(B(ti, r)) → = total pipe volume enclosed by ball B(ti, r)

1

• Area′(B(ti, r)) → = the total pipe cross section area on the surface of ball B(ti, r)

• Area(B(ti, r)) → = the total cost (ce) of the edges crossing the ball B(ti, r)

Note that Area 6= Area′ in general, because the surface of the ball may not be perpendicular to
the pipe (Figure 16.1.1). In fact, Area′ ≥ Area. The expressions for f ,V ol and Area are as below.
For f , edge e = (u, v), and f is simply 1 or 0 if both or neither of (u, v) are contained in the ball,
with the expression below covering the more interesting case where u ∈ B and v /∈ B.

f(ti, r, e) =
r − d(ti, u)

d(ti, v) − d(ti, u)
(16.1.1)

V ol(B(ti, r)) =
∑

e∈E

f(ti, r, e)dece (16.1.2)

E′ = {(u, v) s.t. |B ∩ u, v| = 1} (16.1.3)

Area(B(ti, r)) =
∑

(u,v)∈E
′

cuv (16.1.4)

Area′(B(ti, r)) =
d

dr
V ol(B(ti, r)) =

∑

(u,v)∈E
′

cuv

d(u, v)

d(ti, v) − d(ti, u)
(16.1.5)

These quantities will provide an intuitive framework with which to analyze our rounding scheme.

Algorithm

• ∀i, pick ri = arg min
r∈[0,1/2] Area(B(ti, r))

• let Ci be the cut associated with that radius

• pick the k − 1 minimum weight cuts from C1, C2, ..., Ck

Since each pair of terminals (ti, tj) must satisfy d(ti, tj) ≥ 1 in the original LP solution, making our
cuts with at a radius r ≤ 1/2 around each terminal will clearly yield a valid set of separating cuts.

We now derive the approximation factor of our resulting scheme.

Lemma 16.1.1 Area(ti, ri) ≤ 2V ol(ti, 1/2) ∀i

Proof: As the radius of a ball increases, the volume enclosed by the ball will grow proportionally
to the surface areas of all pipes currently cut by the surface of the ball.

If all cut pipes were perpendicular to the surface of the expanding ball the volume growth would
be exactly equal to the current surface area, but since this is not neccessarily the case (see 16.1.1)
Area lower bounds the rate of volume growth (Area′).

Area(ti, r) ≤
d

dr
V ol(ti, r)

2

Recall that we have chosen ri to minimize Area(ti, r) on the interval r ∈ [0, 1/2]. We use this fact
to substitute the constant term Area(ti, ri) in for Area(ti, r) above, and then integrate both sides
with respect to r with bounds from r = 0 to r = 1/2. This yields our final result.

1/2Area(ti, ri) ≤ V ol(ti, 1/2)

ti

u v

Figure 16.1.1: An edge cut by a ball may not be perpendicular to the ball surface.

Lemma 16.1.2
∑

i
V ol(ti, 1/2) ≤ LP ∗

Proof: Using the fact that d(ti, tj) ≥ 1 for all terminal pairs, it is clear that all B(ti, 1/2) will be
disjoint. Since the cost of LP ∗ is equal to the volume of the entire graph, and the set of B(ti, 1/2)
form a disjoint subset of the graph, it must be true that the total ball volume is ≤ LP ∗.

The cut produced by our algorithm chooses all edges which are partially cut by the surface of each
ball B(ti, ri). Thus the total cost is equal to

∑

k−1

i
Area(ti, ri). Recall that we simply omit the

most expensive cut, since that terminal is already isolated by the other k − 1 cuts. Finally we
combine these lemmas to get an approximation factor of 2(1 − 1/k).

k−1
∑

i=1

Area(ti, ri) ≤ 2

k−1
∑

i=1

V ol(ti, 1/2) ≤ 2(1 − 1/k)LP ∗ ≤ 2(1 − 1/k)OPT

16.2 Metric multicut

16.2.1 Problem setup and LP

Multicut is very similar to multiway cut, except we now have k pairs of terminals (si, ti) and our
cut only needs to separate each si from its correpsonding ti for all i. The cut does not need to
separate different pairs from each other.

The metric LP formulation is identical, except our separation constraint is now d(si, ti) ≥ 1 ∀i.

(As an aside, it is intresting to note that this LP could be reformulated in the ’path-style’, where we
would require that the path distance xp between each terminal pair is ≥ 1, for all paths p between the

3

pair. As in previous lectures, this formulation would have the disadvantage of exponentially many
constraints, but could be approached using the ellipsoid method. The ellipsoid method requires an
efficient ’separation oracle’ to reveal which constraint is violated by any proposed solution. For this
problem we could use the results of the polytime all-pairs shortest path algorithm for this purpose.)

16.2.2 Rounding

Given an optimal LP solution, how can we round to a valid cut, and how can we analyze this
scheme? The method applied to the multiway cut problem is no longer directly applicable, because
the fact that we now only separate pairs of terminal nodes means that the B centered at each
terminal are no longer guaranteed to be disjoint.

The key idea to overcome this is to only charge the area to the sub-ball entirely enclosed by a given
cut. Once the edges are charged to that cut, they are then removed from the graph, potentially
changing area and volume calculations for subsequent steps. Crucially, these modifications ensure
that the volumes remain disjoint.

Our derivation will involve dividing by V ol(si, 0) at some point, which would be an undefined
divide-by-zero operation. We avoid this by redefining volume slightly. Call F the total volume of
the graph. Then redefine volume by assigning volume F/k to each terminal si.

V ol′(si, r) = F/k +
∑

e

fecede

Now the total volume of the graph has doubled, so all previous volume lemmas still hold, with
both sides multiplied by 2. The initial volume of a ball is then F/k, and its final volume must be
≤ F/k + F .

Algorithm

• for each i, pick minimum r such that Area(si, r) ≤ αV ol(si, r)

• make the cut Ci at that r, remove those edges from the graph

• repeat for next i

We pick the α value to be 2 ln (k + 1).

Lemma 16.2.1 ri ≤ 1/2 ∀i

Proof: As before, we know that Area(si, r) ≤ d

dr
V ol(si, r).

Now assume ri ≥ 1/2. Then we must have that

d

dr
V ol(si, r) > αV ol(si, r) ∀r < 1/2

because otherwise we would have picked one of those smaller r.

We then manipulate the equation, integrating from r = 0 to r = 1/2.

4

dV ol(si, r) > αV ol(si, r) dr

1

V ol(si, r)
dV ol(si, r) > α dr

∫

1/2

0

dV ol(si, r)

V ol(si, r)
>

∫

1/2

0

α dr

ln

(

V ol(si, 1/2)

V ol(si, 0)

)

> α/2

Recall that the maximum possible value of V ol is now F + F/k, and that V ol(si, 0) is now defined
to be F/k. Substitute these values in to get another inequality.

ln (1 + k) = ln

(

F + F/k

F/k

)

> ln

(

V ol(si, 1/2)

V ol(si, 0)

)

> α/2

This gives us α < 2 ln (1 + k). Since we have chosen α = 2 ln (1 + k), we have derived a contradic-
tion.

Lemma 16.2.2
∑

i
V ol(si, ri) ≤ 2LP ∗ = 2F

Proof: This is acheived by construction. Our modified disjoint volumes now sum to no more
than 2F . Since LP ∗ is equal to the volume of the full graph F , this is clearly true.

These lemmas will be used in our full derivation of the algoirthm approximation factor.

Theorem 16.2.3
∑

i
|Ci| =

∑

i
Area(si, ri) ≤ 2αLP ∗ ≤ 2αOPT

This theorem simply follows from the combination of the previous lemmas and definitions. Plugging
our chosen α = 2 ln (1 + k) in shows that this algorithm achieves an 4 log (1 + k)-approximation [4].

Multicut is known to be APX-hard [1], meaning that it cannot be approximated within every
constant factor.

Furthermore, if Unique Games Conjecture is true, it cannot even be approximated within any
constant factor. A stronger version the Unique Games Conjecture further implies that it cannot
be approximated with a factor Ω(log log n) either [3].

16.3 Integrality gap analysis

To derive an integrality gap for a given problem, we find a problem instance in which the optimal
integral solution is significantly worse than the optimal fractional solution. The factor by which
the integral solution is worse is known as the integrality gap. The existence such a gap bounds
the performance of approximation algorithms based on LP rounding, since we cannot approximate
LP ∗ at a factor better than the integrality gap. Our specific approach will be to use a special
mathematical stucture known as an expander graph to construct a problem instance with this
property.

5

Definition 16.3.1 An α-expander graph G = (V,E) is a graph with the special property that for
any subset S ⊂ V such that |S| ≤ |V |/2, we have |E(S, S̄)| ≥ α|S|.

The study of expander graphs constitutes a very active research area, and expander graphs have
been applied to many different problems in multiple fields [2]. For our purposes it is enough to
know the basic definition property, and that there exist explicit methods for constructing graphs
that have this, and other, properties.

We will now consider a multicut problem instance. Say that we have a degree 3 expander graph
with constant α. Let (si, ti) be the set of all pairs with distance ≥ β log n.

A feasible fractional solution is then given by

xe =
1

β log n
∀e

By our problem definition, this is a feasible solution. The total cost is then given the by number
of edges, divided by β log n, which is O(n

log n
).

To get an integral solution, we can break the graph into components, which each must have size
≤ n/2. The size of the components can be bounded in this way by the specification of the diameter
of the expander graph, and our definition of β in the problem.

This can be reasoned by observing that no 2 terminals can be in the same component, thus each
diameter must be ≤ β log n. Since every node has degree 3, this bounds the number of nodes in a
component by ≤ 3β log n ≤ n/2.

The expander property then shows that we must cut O(n) edges.

num edges in cut ≥
1

2

∑

i

α|Ci| =
α

2
n

Thus the optimal integral solution is O(n), while we have found a feasible fractional solution of
O(n

log n
). Therefore we have shown an integrality gap of log n.

References

[1] The Complexity of Multiterminal Cuts Elias Dahlhaus, David S. Johnson, Christos H. Pa-
padimitriou, P. D. Seymour, Mihalis Yannakakis. SIAM J. Comput. 23 (1994), 864-894.

[2] Expander graphs and their applications Shlomo Hoory; Nathan Linial; Avi Wigderson. Bull.
Amer. Math. Soc. 43 (2006), 439-561.

[3] On the Hardness of Approximating Multicut and Sparsest-Cut. Shuchi Chawla, Robert
Krauthgamer, Ravi Kumar, Yuval Rabani, D. Sivakumar. IEEE Conference on Computational
Complexity 2005: 144-153

[4] Approximate max-flow min-(multi)cut theorems and their applications. Naveen Garg, Vijay V.
Vazirani, Mihalis Yannakakis. STOC 1993: 698-707

6

CS880: Approximations Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: Sparsest Cut and Balanced Cut Date: 3/20/07

17.1 Multicut

First, consider the multicut problem. Given a graph G = (V,E), K pairs of terminal vertices
{si, ti}, and a cost function on the edges c : E → R, the multicut problem asks for a minimum-cost
cut of G that separates si and ti for all i. Last time, we gave a O(log k) approximation for this
problem.

The (relaxed) linear program for this problem is as follows; call it “Primal 1”.

minimize
∑

e∈E

cede

where d(si, ti) ≥ 1 ∀i

d is a metric

We can rewrite as follows:

minimize
∑

e∈E

cede

where Pi = {All paths from si to ti}
∑

e∈P

de ≥1 ∀i∀P ∈ Pi

de ≥ 0 ∀e

The dual of this LP, which we’ll call “Dual 1”, is as follows:

maximize
∑

i

∑

P∈Pi

fi,P

where Pi = {All paths from si to ti}
∑

i

∑

P∈Pi

P∋e

fi,P ≤ ce ∀e

fi,P ≥ 0

Dual 1 solves the max-sum multi-commodity flow problem: ce represents the capacity of an edge,
and fi,P is the amount of flow directed from si to ti along the path P . The LP tries to maximize
the total amount of commodity flow.

Lemma 17.1.1 Multicut is always larger than the corresponding max-sum multi-commodity flow.

Lemma 17.1.2 Multicut is at most O(log K) times the corresponding max-sum multi-commodity
flow.

Theorem 17.1.3 When k = 2, multicut equals max-sum multi-commodity flow.

1

17.2 Maximum Concurrent Multicommodity Flow

A solution to Dual 1 may starve some commodities while routing others. In contrast, max-
concurrent multicommodity flow routes equal fractions of all commodities while respecting ca-
pacities. Thus, we devise the following LP for max-concurrent multicommodity flow, which we call
Dual 2:

maximize t

where
∑

i

∑

P∈Pi
P∋e

fi,P ≤ ce ∀e

∑

P∈Pi

fi,P ≥ rit ∀i

fi,P ≥ 0 ∀i,∀P ∈ P

Intuitively, the difference between Dual 1 and Dual 2 is that Dual 1 seeks to maximize the total
flow across independent commodities, while Dual 2 seeks to maximize the minimum of a set of
weighted flows. This is the maximum concurrent multicommodity flow problem.

Primal 2, the dual of the maximum concurrent multicommodity flow problem, is as follows:

minimize
∑

e

dece

where
∑

e∈P

de ≥ yi ∀i,∀P ∈ Pi

∑

i

riyi ≥ 1

de ≥ 0 ∀e

yi ≥ 0 ∀i

The costs ce are constants of the problem instance, so Primal 2 will seek to minimize the values
for de. Thus, they will be no larger than they are constrained to be, so yi = d(si, ti), the shortest
distance from si to ti where each edge e has length de. So, we can devise the following linear
program, equivalent to Primal 2:

minimize
∑

e

cede

where
∑

i

rid(si, ti) ≥ 1

d is a metric

Up to scaling d, this is the same as the following program:

minimize

∑

e
cede

∑

i
rid(si, ti)

where d is a metric,

2

which will tie directly to the sparsest cut problem.

17.3 Sparsest Cut

Let G = (E,V) be some graph. Let T , the set of terminals, be a set of pairs of vertices. For any
cut S, a subset of V , let α(S) denote the sparsity of S, with

α(S) =

∣

∣E(S, S̄)
∣

∣

∣

∣(S × S̄) ∩ T
∣

∣

.

Thus, α(S) is the size of the cut S divided by the number of terminals that S separates. The
sparsest cut problem takes G and T , and finds the cut S that minimizes α(S). We can generalize
this further, by introducing a cost c on the edges and a weight ri for each terminal i. Then, our
more general α(S) looks like this:

α(S) =
c(E(S, S̄))

∑

{i|si∈S ⇔ ti /∈S} ri

.

Consider the uniform version of sparsest cut, where we let the set of terminals be all possible pairs.
That is, we let T = V × V and ru,v = 1 for all u 6= v. Then, the sparsity is

α(S) =
c(E(S, S̄))

|S||S̄|
,

which is quite similar to the expansion of a set, from the context of expander graphs. Here, we give
a O(log K log D)-approximation for this problem, where D =

∑

i
ri and K = |T |. Next time, we’ll

find a O(log K)-approximation. The best known efficient approximation is a O(
√

log K log log K)-
approximation.

Suppose we solve Primal 2, yielding the metric d. Let yi

def

= d(si, ti). We know that
∑

i
riyi ≥ 1

and that ∀e, de ≤ 1. We need to round d into a cut metric — a metric with only ones and zeroes
— without much increasing the sparsity.

Consider the special case where ∀i, yi ≥ 1

2
ymax. Let ymax

def

= maxi yi, d′
def

= d/ymin, and y′
i

def

= d′(si, ti)
for all i. Then, ∀i, y′ ≥ 1, and d′ is a feasible solution to the multicut LP. So, we can feed d′ to
the multicut approximation algorithm we saw last lecture. That algorithm will yield a cut of value
O(log K)

∑

e
ced

′
e
. We deduce:

O(log K)
∑

e

ced
′
e
≤ O(log K)

1

ymin

∑

e

cede

≤ O(log K)
1

ymax

∑

e

cede.

The demand this separates is thus
∑

i
ri ≥ (1/ymax)

∑

i
riyi. So, the sparsity of this algorithm, in

this special case, is at most

O(log K)

∑

cede

∑

riyi

.

3

So, now consider the general case, with an arbitrarily large ratio between ymax and ymin. Define
Ix, the set of all yi in a conveniently-defined interval, as:

Ix =
{

i|yi ∈
(ymax

2x+1
,
ymax

2x

]}

.

When x is constrained to the integers, it’s clear that every yi is contained in exactly one Ix. For
each Ix, our algorithm will construct a multicut instance as in the special case, but it will scale d

by 2x+1/ymax instead of 1/ymax. The sparsity for each of these instances is not too large:

α(Ix) ≤ O(log K)

∑

e
cede

∑

i∈Ix
riyi

.

If there exists a constant β and an x such that
∑

i∈Ix
riyi ≥ β−1

∑

i
riyi, then the sparsity of this

instance is at least O(log K)β
∑

cede/(
∑

riyi).

We claim that we can ignore all i such that yi < ymax/D
2. Again, D is the total demand

∑

ri.
Define the set W containing wee values of yi, W =

{

i|yi < ymax/D
2
}

. Ignoring W can result in
the loss of at most

∑

i∈W
riyi <

∑

i∈W
riymax/D

2 ≤ ymax/D ≤ 1/D from the denominator of our
algorithm’s sparsity. Assuming D ≥ 2, ignoring W has only a small constant approximation cost.
(If D < 2, this is an easy boundary case, which we can effeciently handle in an ad-hoc way.)

Thus, we need to consider only those Ix where 2x < D2. There are at most 2 log D such sets, so
β ≥ 1/(2 log D). This yields a O(log K log D)-approximation.

17.4 Balanced Cut

Given a graph G = (V,E), the balanced cut problem demands the min-cost cut such that each
side has at least αn nodes, for some constant value of α ≤ 1

2
. It is known that this problem is

inapproximable to n2−ǫ/OPT if P 6= NP. This is an absurdly poor approximation.

So, we consider instead a pseudo-approximation algorithm, in which we approximate both the
objective function of the optimal solution and the parameters of its instance. So, in this case, when
asked for a cut with a balance of α, we instead output a cut with a balance α′, such that α′ < α

and α′ ≤ 1/3. If the optimal cut of balance α has cost Cα, our cut will have cost no greater than
O(log n)Cα/(α − α′). Notice that, though we have a reasonable bound on the ratio between the
size of our cut and Cα, the ratio between the size of our cut and C ′

α
may be unbounded.

The algorithm employs a direct reduction to the sparsest cut problem, letting T = V × V and
ri = 1. Then, the sparsity of a cut S is, as before, c(E(S, S̄))/(|S||S̄ |). We discuss further details
next time.

Even though this algorithm is far from optimal, it is actually useful. This pseudo-approximation
has applications in divide-and-conquer algorithms on graphs. It ensures that we can always divide
a graph into two pieces, each with size roughly linear in the size of the original graph, such that the
cut between the pieces isn’t too large. This yields log-depth recursion, which divide-and-conquer
algorithms demand, while bounding the cost of recombining pieces.

4

CS880: Approximations Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Balanced Cut, Sparsest Cut, and Metric Embeddings Date: 3/21/2007

In the last lecture, we described an O(log k log D)-approximation algorithm for Sparsest Cut, where
k is the number of terminal pairs and D is the total requirement. Today we will describe an
application of Sparsest Cut to the Balanced Cut problem. We will then develop an O(log k)-
approximation algorithm for Sparsest Cut, due to Linial, London, and Rabinovich [4], using metric
embeddings techniques of Bourgain [3].

18.1 Balanced Cut

Recall the Sparsest Cut problem.

Definition 18.1.1 (Sparsest Cut) Given a graph G = (V,E), edge capacities ce, and require-
ments ru,v ≥ 0 for all (u, v) ∈ V × V , find a set S ⊆ V minimizing

sparsity(S) =
c(E(S, S))

∑

(u,v)∈(S×S)∪(S×S)
ru,v

.

The sparsity of a cut is just its capacity divided by the total requirement separated by it. We
denote by k the number of terminal pairs — pairs (u, v) such that ru,v > 0.

We give an application of Sparsest Cut to the following problem.

Definition 18.1.2 (Balanced Cut) Given a graph G = (V,E), edge capacities ce, and a balance
requirement β ≤ 1/2, find a minimum-capacity cut (S, S) subject to the constraint that (S, S) is
β-balanced, i.e. |S|, |S| ≥ βn where n = |V |.

In the following, we use C
β

to refer both to the minimum capacity of a β-balanced cut and to an
optimal cut itself.

The key link between the two problems is that given an instance of Balanced Cut, we can give
every pair of nodes a requirement of 1, and then for a given balance β, the capacity of a β-balanced
cut is Θ(n2) times its sparsity.

We use this link to obtain a pseudo-approximation algorithm for Balanced Cut. That is, for a given
β and β′ < β, we find a cut of balance β′ of capacity within some guaranteed factor of C

β
. (Note

that C
β

may be much higher than C
β
′ .) Specifically, we obtain the following result.

Theorem 18.1.3 If there exists a ρ-approximation algorithm for Sparsest Cut, then for all β ≤ 1/2
and all β′ < β, there exists an algorithm for Balanced Cut that finds β′-balanced cut of capacity at
most

ρ

(β − β′)(1 − β + β′)
C

β
,

provided β′ ≤ 1/3.

1

Proof: We would like to use our Sparsest Cut algorithm to get information about balanced cuts
in G, so we declare every pair of nodes to have requirement 1. Then the total requirement separated
by a β-balanced cut is at least β(1 − β)n2, and so

sparsity(C
β
) ≤

C
β

β(1 − β)n2
.

Thus if the hypothesized ρ-approximation algorithm for Sparsest Cut happens to return a β′-
balanced cut, then its sparsity is at most

ρ

β(1 − β)n2
C

β

and it separates less than n2 requirement, so it has capacity at most

ρ

β(1 − β)
C

β

and we can output this cut.

If the algorithm doesn’t return a β′-balanced cut, then we can repeat this process on the larger side
of the cut, taking the smaller side of the cut obtained and combining it with the smaller side of
our first cut. One key observation is that since the first cut isn’t β′-balanced, the larger side must
be a large fraction of the original graph G, and so its optimal sparsity can’t be too much larger
than that of G. This allows us to argue that the capacity of the final cut we obtain isn’t too much
larger than C

β
. The other key observation is that by iterating this process on the larger side, we

end up with a cut that is relatively balanced. These ideas motivate the following algorithm, which
we analyze formally next.

1) Set ru,v = 1 for all (u, v) ∈ V × V .

2) Set S0 = V , i = 0.
3) While |S1 ∪ · · · ∪ Si| < β′n,

4) Increment i.
5) Apply the hypothesized Sparsest Cut algorithm to the subgraph G

Si−1
induced on

Si−1 to obtain a cut (Si, Si) where |Si| ≤ |Si|.
6) Output S1 ∪ · · · ∪ S

`
, where ` is the final value of i.

We argue that the final cut has capacity at most

ρ

(β − β′)(1 − β + β′)
C

β
.

The intuition is that in each iteration, if |Si| is small, then the cut (Si, Si) does not separate much
requirement, but since it has low sparsity, it must have small capacity and so it is safe to cut those
edges. More formally, the amount of requirement separated by (Si, Si) is clearly at most |Si| · n,
so the capacity of (Si, Si) is at most ρ · |Si| · n times the optimal sparsity of a cut in G

Si−1
. What

is that optimal sparsity? It’s at most the sparsity of the cut C
β

restricted to G
Si−1

. Clearly, C
β

2

cannot have larger capacity in G
Si−1

than it does in G. Since each side of C
β

contains at most

(1 − β)n nodes of G, and |Si−1| > (1 − β′)n, it follows that each side contains at least

(1 − β′)n − (1 − β)n = (β − β′)n

nodes of G
Si−1

and thus C
β

separates at least

(β − β′)n(1 − β + β′)n

requirement in G
Si−1

. Thus the sparsity of C
β

in G
Si−1

is at most

C
β

(β − β′)(1 − β + β′)n2
.

We conclude that the capacity of (Si, Si) is at most

ρ · |Si| · n ·
C

β

(β − β′)(1 − β + β′)n2
=

ρ

(β − β′)(1 − β + β′)n
· C

β
· |Si|.

The capacity of the final cut (S1∪· · ·∪S
`
, S

`
) is at most the sum of the capacities of the cuts found

in all the iterations (it could be less since an edge crossing from Si to Si could have an endpoint
in e.g. Si+1 and thus not cross the final cut). Furthermore, |S1 ∪ · · · ∪ S

`
| = |S1| + · · · + |S

`
| < n

since the Si’s are disjoint, and so the capacity of the final cut is at most

`
∑

i=1

ρ

(β − β′)(1 − β + β′)n
· C

β
· |Si| <

ρ

(β − β′)(1 − β + β′)
· C

β
.

All that’s left to argue is that this algorithm gives a β′-balanced cut. We know that |S1∪· · ·∪S
`
| ≥

β′n since otherwise the algorithm wouldn’t have terminated. We also know that |S1 ∪ · · · ∪S
`−1| <

β′n and so |S
`−1| > (1 − β′)n, which implies that |S

`
| ≥ 1−β

′

2
n. In order for this side of the final

cut to meet the balance requirement, we just need 1−β
′

2
≥ β′, i.e. β′ ≤ 1/3.

18.2 Sparsest Cut

18.2.1 Results

In the last lecture, we used an LP relaxation of Sparsest Cut to obtain the following result.

Theorem 18.2.1 There is an O(log k log D)-approximation algorithm for Sparsest Cut, where D =
∑

u,v
ru,v.

Today, we embark on proving the following stronger result. Our algorithm uses metric embeddings
technology.

Theorem 18.2.2 There is an O(log k)-approximation algorithm for Sparsest Cut.

3

We only exhibit an O(log n)-approximation algorithm. With a little more work, it can be extended
to obtain an O(log k)-approximation.

The following result, due to Arora, Lee, and Naor [1], is the state-of-the-art for Sparsest Cut.

Theorem 18.2.3 There is an O(
√

log k log log k)-approximation algorithm for Sparsest Cut.

The oldest result on the Sparsest Cut problem is due Leighton and Rao [5]. They obtained an
O(log n)-approximation for the uniform version, where every requirement ru,v = 1 (as we used in
the reduction from Balanced Cut). The state-of-the-art for Uniform Sparsest Cut is the following
result of Arora, Rao, and Vazirani [2].

Theorem 18.2.4 There is an O(
√

log n)-approximation algorithm for Uniform Sparsest Cut.

We will not explore these results in depth in this course.

18.2.2 Relaxation of Sparsest Cut

We prove Theorem 18.2.2 in two steps. Today, we argue that the Sparsest Cut problem reduces to
the problem of finding a good embedding of a metric into Euclidean space under the `1 norm. In
the next lecture, we will show how to find such an embedding.

We start out by recalling the Maximum Concurrent Multicommodity Flow problem.

Definition 18.2.5 (Maximum Concurrent Multicommodity Flow) For a given graph G =
(V,E), edge capacities ce, and requirements ru,v ≥ 0 for all (u, v) ∈ V × V , simultaneously route
f · ru,v units of flow from u to v for all (u, v), for f as large as possible.

A separate commodity is defined for each (u, v) such that ru,v > 0, and all commodities must
be routed simultaneously while satisfying the capacity constraints. The Maximum Concurrent
Multicommodity Flow problem is similar to Maximum Sum Multicommodity Flow, except that
the flow values for different commodities must satisfy proportionality requirements. The Maximum
Concurrent Multicommodity Flow problem can be exactly captured by an LP, and the dual of this
LP turns out to be the following, where Pu,v is the set of all paths from u to v.

minimize
∑

e
cede

subject to
∑

e∈p
de ≥ yu,v ∀(u, v) ∈ V × V, ∀p ∈ Pu,v

∑

u,v
ru,vyu,v ≥ 1

de ≥ 0 ∀e ∈ E

yu,v ≥ 0 ∀(u, v) ∈ V × V

(18.2.1)

In what follows, we prove many equivalences of various programs. In these programs, we have a set
of variables du,v for (u, v) ∈ V × V constrained to form some sort of metric on V , and we use the
notation de to refer to the distance between the endpoints of edge e. When we refer to equivalences
(or relaxations), we do not necessarily refer to the feasible set of one program being equal to (or a
subset of) the feasible set of another program, but rather the ability to take a feasible solution to
one and generate a feasible solution to the other with at least as good of an objective value.

Lemma 18.2.6 Program (18.2.1) is equivalent to the following program.

4

minimize
∑

e
cede

subject to
∑

u,v
ru,vdu,v ≥ 1

d is a metric

(18.2.2)

Proof: A feasible solution to Program (18.2.2) immediately yields a feasible solution to Program
(18.2.1) with the same objective value by setting yu,v = du,v. Given a feasible solution to Program
(18.2.1), the yu,v’s might not form a metric, but for {u, v} 6∈ E we can change yu,v to be the shortest
path distance between u and v under edge lengths de, without changing the feasibility or objective
value. Setting du,v = yu,v then gives a feasible solution to Program (18.2.2) with no worse objective
value.

Lemma 18.2.7 Program (18.2.2) is a relaxation of the Sparsest Cut problem.

Proof: Given a cut S ⊆ V , let d′
u,v

= 1 if u and v are on opposite sides of the cut, and d′
u,v

= 0
otherwise (i.e. d′ is the cut metric associated with S). The total requirement separated by the cut
is

∑

u,v
ru,vd

′
u,v

and hence

sparsity(S) =

∑

e
ced

′
e

∑

u,v
ru,vd′u,v

.

It follows that if we set du,v = d′
u,v

/
∑

u,v
ru,vd

′
u,v

for all u, v, then we get a feasible solution to
Program (18.2.2) having objective value

∑

e

cede = sparsity(S).

Corollary 18.2.8 The optimum objective value for Program (18.2.2) is a lower bound on the
minimum sparsity of a cut in G.

Corollary 18.2.9 The sparsity of every cut in G upper bounds the value f of every concurrent
multicommodity flow in G.

Proof: This follows from Corollary 18.2.8, Lemma 18.2.6, and weak duality, but it is also easy
to see directly. For every cut and every concurrent multicommodity flow, all the flow for the
commodities separated by the cut must flow through the cut, and the total amount of such flow is
bounded by the capacity of the cut. Since this flow would have to be proportioned according to
the ru,v’s, the value f is bounded by the sparsity of the cut.

Our proof of Theorem 18.2.2 is an LP-rounding algorithm — we solve relaxation (18.2.2) via LP
(18.2.1) and round the solution to obtain a cut. We next describe some equivalent characterizations
of Sparsest Cut that help us accomplish this.

18.2.3 Characterizations of Sparsest Cut

Recall that a cut metric is one obtained by choosing a cut S ⊆ V and setting the distance between
two nodes to be 1 if they are on opposite sides of the cut and 0 otherwise. In the next result we
show that if in Program (18.2.2) we require d to be a scalar multiple of a cut metric (note that du,v

5

refers to the cut metric distance between u and v, not to the shortest path distance when the edge
lengths are de), then we actually get an exact characterization of the Sparsest Cut problem.

Lemma 18.2.10 Sparsest Cut is equivalent to the following program.

minimize
∑

e
cede

subject to
∑

u,v
ru,vdu,v ≥ 1

d is a nonnegative scalar multiple of a cut metric

(18.2.3)

Proof: We already argued in Lemma 18.2.7 that a cut gives a feasible solution with objective
value at most the sparsity of the cut. Conversely, a feasible solution can be assumed to satisfy
∑

u,v
ru,vdu,v ≥ 1 with equality, which implies that edges crossing the corresponding cut have

length 1/
∑

u,v
ru,vdu,v and thus the cut has sparsity equal to the objective value of the feasible

solution.

Lemma 18.2.11 Program (18.2.3) is equivalent to the following program.

minimize
∑

e
cede

subject to
∑

u,v
ru,vdu,v ≥ 1

d is linear combination of cut metrics, with nonnegative coefficients

(18.2.4)

Proof: A feasible solution to Program (18.2.3) is trivially a feasible solution to this program. Now
consider a feasible solution to Program (18.2.4), corresponding to some sets S and nonnegative real
coefficients βS , and let dS denote the cut metric corresponding to S. The solution can be assumed
to satisfy

∑

u,v

ru,vdu,v =
∑

S

βS

∑

u,v

ru,v(dS)u,v = 1,

and so the objective value is
∑

S
βS

∑

e
ce(dS)e

∑

S
βS

∑

u,v
ru,v(dS)u,v

.

We leave it as an exercise to show that the smallest ratio
∑

e
ce(dS)e

∑

u,v
ru,v(dS)u,v

is at most that objective value. Thus, selecting the sparsest cut S∗ among those used to define d

and rescaling so that
∑

u,v
ru,v(dS

∗)u,v = 1 gives a feasible solution to Program (18.2.3) with at
least as good of an objective value.

For our application, we are given the linear combination of cut metrics that comprises d.

Before giving our last characterization, we need to define some standard normed metrics.

Definition 18.2.12 For a positive integer p, the `p distance between (x1, . . . , xm) ∈ R
m and

(y1, . . . , ym) ∈ R
m is defined to be

(

|x1 − y1|p + · · · + |xm − ym|p
)

1/p

.

6

The `∞ distance is defined to be
max

i

|xi − yi|.

A metric is said to be an `p metric if its points can be mapped to R
m for some m in such a way

that the `p distance between each pair of points is the same as their distance in the original metric.

The `1 metric is also known as the Manhattan metric, and the `2 metric is also known as the
Euclidean metric. Interestingly, the `2 metric is the only one of the above metrics where the
distance between two points does not depend on the particular coordinate system used. While it is
possible to solve linear programs subject to the constraint that the variables specify a metric, it is
NP -hard to optimize over `p metrics for certain values of p, e.g. p = 1. Indeed, the following result
implies that being able to optimize over `1 metrics would allow us to solve Sparsest Cut exactly.

Lemma 18.2.13 Program (18.2.4) is equivalent to the following program.

minimize
∑

e
cede

subject to
∑

u,v
ru,vdu,v ≥ 1

d is an `1 metric

(18.2.5)

Proof: Left as a homework problem.

Our strategy for approximating Sparsest Cut is to solve LP (18.2.1), or equivalently Program
(18.2.2), and then “round” the solution to an `1 metric. Then the characterizations given by
Lemmas 18.2.10, 18.2.11, and 18.2.13 allow us to construct a sparse cut. The precise notion of
rounding is what we discuss next.

18.2.4 Metric Embeddings

Definition 18.2.14 Given metric spaces (V, µ) and (V ′, µ′) where µ and µ′ are metrics on V and
V ′ respectively, an embedding from (V, µ) to (V ′, µ′) is a mapping f : V → V ′. The embedding is
said to have expansion α if for all x, y ∈ V ,

µ′(f(x), f(y)) ≤ αµ(x, y).

The embedding is said to have contraction β if for all x, y ∈ V ,

µ′(f(x), f(y)) ≥
1

β
µ(x, y).

If the embedding has expansion α and contraction β, then it is said to have distortion α · β.

Observe that rescaling either of the metrics by a fixed factor changes the expansion and contraction
by that same factor, but the distortion remains constant.

We can now formalize the connection between Sparsest Cut and metric embeddings.

Theorem 18.2.15 If there exists an efficiently computable ρ-distortion embedding from arbitrary
metrics into `1, then there exists a ρ-approximation algorithm for Sparsest Cut.

Proof: Suppose we have a ρ-distortion `1 embedding algorithm. We can solve LP (18.2.1) and
obtain a metric d on V as in Lemma 18.2.6. We know from Lemma 18.2.7 that

∑

e
cede is a lower

7

bound on the optimal sparsity of a cut in G. We apply the ρ-distortion embedding algorithm to
obtain an `1 metric. By rescaling, we may assume this embedding has contraction 1 and distortion
ρ. Now we have a feasible solution to Program (18.2.5) with objective value at most a factor of ρ

higher than our lower bound on the optimal sparsity. Lemmas 18.2.13, 18.2.11, and 18.2.10 then
allow us to construct a cut of sparsity within a factor ρ of the optimum.

A partial converse to Theorem 18.2.15 is known. We omit the proof, which is involved.

Theorem 18.2.16 If the integrality gap of LP (18.2.1) is ρ, then for every metric there exists a
ρ-distortion embedding into `1.

We now just need to obtain a low-distortion `1 embedding algorithm. We will show the following
result in the next lecture.

Theorem 18.2.17 There exists an efficiently computable O(log n)-distortion embedding for arbi-
trary metrics into `1.

Corollary 18.2.18 There exists an O(log n)-approximation algorithm for Sparsest Cut.

As we mentioned before, with a little more work one can improve Corollary 18.2.18 to obtain
Theorem 18.2.2.

It can be shown using the expander graph example from a previous lecture that Theorem 18.2.17 is
tight (up to constant factors), i.e. there exist metrics such that no `1 embedding achieves distortion
o(log n).

Note that this Sparsest Cut algorithm uses an embedding where the distortion guarantee applies to
every distance, which is more than enough to prove the approximation guarantee. It is conceivable
that we can do better using an embedding that only has low distortion on average. It turns out that
for the uniform version, where every requirement is exactly 1, this approach works. The seminal
result of Leighton and Rao [5] uses a low-average-distortion embedding to achieve an O(log n)
approximation for Uniform Sparsest Cut. While their result is superceded by the present result
of Linial, London, and Rabinovich [4], the best known result for Uniform Sparsest Cut, due to
Arora, Rao, and Vazirani [2], uses low-average-distortion embeddings and achieves an O(

√
log n)

approximation, which is better than the best known approximation for Sparsest Cut, which is
O(

√
log n log log n). The O(

√
log n) result uses a different relaxation, optimizing over `2

2
metrics,

which can be done efficiently using semi-definite programming. It then uses a low-average-distortion
embedding of `2

2
metrics into `1 metrics. This embedding can be made to have low distortion for

every pair of points at the cost of an O(
√

log log n) factor loss in the approximation factor.

In the next lecture, we will describe how to obtain an O(log n)-distortion embedding of an arbitrary
metric on n points into `1. We will also start discussing the use of semi-definite programming in
approximation algorithm design.

References

[1] S. Arora, J. Lee, A. Naor. Euclidean Distortion and the Sparsest Cut. In STOC, 2005, pp. 553-
562.

8

[2] S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geometric Embeddings and Graph Parti-
tioning. In STOC, 2004, pp. 222-231.

[3] J. Bourgain. On Lipschitz Embedding of Finite Metric Spaces in Hilbert Spaces. In Israeli J.
Math., 52, 1985, pp. 46-52.

[4] N. Linial, E. London, and Y. Rabinovich. The Geometry of Graphs and Some of Its Algorithmic
Applications. In Combinatorica, 15, 1995, pp. 215-245.

[5] T. Leighton and S. Rao. Multicommodity Max-Flow Min-Cut Theorems and Their Use in
Designing Approximation Algorithms. In Journal of the ACM, 46, 1990, pp. 259-271.

9

CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Bourgain’s Embedding into ℓ1, Semi-Definite Programming Date: 3/22/2007

In the previous lecture, we saw how to approximate Sparsest Cut given a low distortion embedding
from arbitrary metrics into ℓ1. In the first part of this lecture, we present such an embedding with
O(log n) distortion [1], and hence a O(log n)-approximation for Sparsest Cut [2]. In the second
part of this lecture, we introduce a generalization of linear programming known as semi-definite
programming (SDP), and give an SDP relaxation for the Max-Cut problem [3].

19.1 Bourgain’s Embedding into ℓ1

Last time we showed that Sparsest Cut could be approximated by interpreting the problem as an LP
over ℓ1-metrics. In this section, we show how to embed an arbitrary metric over a set of n points into
an ℓ1 metric with O(log n) distortion [1]. An immediate result would be a O(log n)-approximation
for Sparsest Cut [2].

Let V be a set of n points and d be a metric over V . We want to find an embedding of d into R
k

for some k with distortion O(log n), i.e. we want to find an embedding f : V → R
k such that there

exists α, β > 1 with αβ = O(log n) and for all x, y ∈ V ,

ℓ1(f(x), f(y)) ≤ α · d(x, y) and

ℓ1(f(x), f(y)) ≥
1

β
· d(x, y).

19.1.1 The Algorithm

In our construction, we use Fréchet embeddings, which map general metric spaces to normed metric
spaces as follows. Let (V, d) be a metric space. Suppose that we want to embed this metric space
into ℓ1 over |V | points in Rk. Then, for the ith coordinate (1 ≤ i ≤ k), we pick a subset Ai ⊆ V ,
and set fi(x) = d(x, Ai) for all x ∈ V , where d(x, Ai) = miny∈Ai

d(x, y).

We are going to map V to n points in R
M1M2 , where M1 = ⌈log2 n⌉ and M2 is a constant multiple

of log n to be determined later. The algorithm is as follows.

(1) For i = 1, . . . , M1,

(2) For j = 1, . . . , M2,

(3) Form the set Aij by picking every x ∈ V with probability 2−i.

(4) For all x ∈ V , set f(x) = (f11(x), f12(x), . . . , fM1M2
(x)), where fij(x) = d(x, Aij).

We give an intuition for the above algorithm. Consider a particular coordinate. Arrange the points
in V on the real number line according to their coordinates. For any two points, we do not want

1

their distance on the number line to be too large, otherwise the expansion of the embedding would
be large. In fact, using the triangle inequality, we can conclude that the distance will never be too
large: |fij(x)− fij(y)| = |d(x, Aij)− d(y, Aij)| ≤ d(x, y). Likewise, we do not want them too close,
since we want to keep the contraction small. One way to achieve this is to ensure that d(x, Aij) is
quite large and d(y, Aij) is relatively small (or vice versa). That is, we want Aij to include at least
one point close to y, but no point close to x. If the set Aij is too large, it may include points close
to x, and if it is too small, it may not include any point close to y. This is why we use randomness
in our algorithm: we hope that the overall distortion will be small by randomly picking sets of
varying sizes (depending on the value of i).

19.2 Analysis

We need to show that our algorithm gives a O(log n)-distortion embedding with reasonbly high
probability. The following lemma bounds the expansion of f .

Lemma 19.2.1 The expansion of f is at most M1M2.

Proof: Pick any x, y ∈ V and look at one coordinate. By the definition of f and the triangle
inequality, we have

|fij(x) − fij(y)| = |d(x, Aij) − d(y, Aij)| ≤ d(x, y).

Thus, the ℓ1 distance between f(x) and f(y) is bounded by

M1
∑

i=1

M2
∑

j=1

|fij(x) − fij(y)| ≤ M1M2 · d(x, y).

The following lemma bounds the contraction of f . The proof of this lemma is deferred.

Lemma 19.2.2 The contraction of f is O(1

log n
), i.e. for all x, y ∈ V , ℓ1(f(x), f(y)) = Ω(log n) ·

d(x, y).

Our main theorem follows from Lemma 19.2.1 and Lemma 19.2.2 directly.

Theorem 19.2.3 There exists an efficiently computable O(log n)-distortion embedding from (V, d)
into (Rk, ℓ1), where k = O(log2 n).

Before we prove Lemma 19.2.2, we need a few definitions.

Definition 19.2.4 For any x ∈ V and r ≥ 0, we denote by B(x, r) the (closed) ball centered at x

with radius r, i.e. B(x, r) = {y ∈ V | d(x, y) ≤ r}. For any x ∈ V and non-negative integer i, let
ri(x) be the smallest r such that |B(x, r)| ≥ 2i.

We now proceed to the proof of Lemma 19.2.2.

Proof: [Proof of Lemma 19.2.2] Fix x, y ∈ V . For any i, let ρi = max{ri(x), ri(y)}. Note that
|B(x, ρi)| ≥ 2i and |B(y, ρi)| ≥ 2i. Let t be the smallest index such that ρt ≥ 1

2
d(x, y). Consider

ρ0, ρ1, . . . , ρt. If ρt + ρt−1 > d(x, y), we redefine ρt = d(x, y) − ρt−1. By doing this, we ensure that
B(x, ρi−1) and B(y, ρi) are disjoint (but they can touch) for i = 1, . . . , t. We want to show that

2

for any i and j, there is a good chance that Aij contains a point near x but no point near y. This
effectively bounds the contraction of f between x and y. This is formalized in the following claim.

Claim 19.2.5 Let 1 ≤ i ≤ t. Let Si = {j | |fij(x) − fij(y)| ≥ ρi − ρi−1}. Then there exists a
constant c > 0 such that Pr[|Si| ≥ c log n] ≥ 1 − n−3.

Proof: [Proof of Claim 19.2.5] Without loss of generality, suppose that ρi = ri(y). Let the ith good
ball Gi be B(x, ρi−1), and the ith bad ball Bi be the open ball centered at y with radius ρi, i.e.
Bi = {v ∈ V | d(y, v) < ρi}. Note that |Gi| ≥ 2i−1 and |Bi| ≤ 2i−1 (since Bi is open).

Aij

Gi

Bi

ρi−1 ρi

yx

Figure 19.2.1: The ith good ball Gi, the ith bad ball Bi, and the set Aij .

Fix j. We bound the probability that some point in Aij lies in Gi but none lies in Bi as follows.

Pr[Aij ∩ Gi 6= ∅ and Aij ∩ Bi = ∅]

= Pr[Aij ∩ Gi 6= ∅] · Pr[Aij ∩ Bi = ∅] (by independence, because
Gi and Bi are disjoint)

≥

(

1 −
(

1 −
1

2i

)2
i
/2
)

(

1 −
1

2i

)2
i

≥ (1 − e−1/2) ·
1

4
.

Thus, the above probability is at least some constant. Note that Aij ∩ Gi 6= ∅ implies that
fij(x) ≤ ρi−1, and Aij ∩ Bi = ∅ implies that fij(y) ≥ ρi. Hence, it follows from the above
that Pr[|fij(x) − fij(y)| ≥ ρi − ρi−1] is at least some constant.

For each j, let Zj be an indicator random variable taking the value 1 if and only if |fij(x)−fij(y)| ≥
ρi−ρi−1. Then by linearity of expectation, we have E

[

∑

M2

j=1
Zj

]

≥ c′ ·M2 for some constant c′ > 0.

By choosing M2 (recall that M2 is a constant times log n and we have not picked the constant yet)

3

and a suitable constant c′′ > 0 and applying the Chernoff bound1, we have

Pr





M2
∑

j=1

Zj < c · M2



 < e−
c′′·M2

3 =
1

n3
,

where c depends on c′, c′′ and M2. Recall that M2 = Θ(log n) and
∑

M2

j=1
Zj = |Si|. This proves our

claim.

Let c be the constant in Claim 19.2.5. For every i, we call it good if |Si| ≥ c · log n, and bad
otherwise. If all i’s are good, then

t
∑

i=1

M2
∑

j=1

|fij(x) − fij(y)| ≥
t
∑

i=1

Ω(log n)(ρi − ρi−1)

≥ Ω(log n)ρt

≥ Ω(log n)d(x, y).

Thus, the contraction of f is O(1

log n
). It remains to show the probability that all i’s are good is

not too small. By union bound, we have

Pr[there exists a bad i] ≤
1

n3
log n <

1

n2
.

Hence, for fixed x, y ∈ V , all i’s are good with probability at least 1 − n−2. We say that a pair
(x, y) fails if not all i’s are good. By union bound, we get

Pr[there exists a pair (x, y) which fails] ≤
1

2
.

We can repeat the algorithm until the contraction of f is O(1

log n
). The expected number of times

we need to run the algorithm is constant.

Note. It can be shown that f is a O(log n)-distortion embedding into ℓp for general p using a similar
analysis. Also, there are metrics which cannot be embedded into ℓ1 with distortion o(log n), e.g.
expander graph metrics.

19.3 Semi-Definite Programming

One downside of linear programming is that it cannot capture nonlinear constraints. In this section,
we introduce semi-definite programming, which is capable of capturing a specific form of nonlinear
constraints that turns out to be useful in some formulations.

19.3.1 Definitions

A semi-definite program (SDP) can be thought of as a linear program with an additional “semi-
definiteness” constraint. More specifically, an SDP is a mathematical program with the following
elements:

1The Chernoff bound we use here is Pr[
∑

Zj < (1 − ǫ)E[
∑

Zj]] < exp(−ǫ2E[
∑

Zj]/3).

4

• a set of variables;

• a linear objective function to be minimized or maximized;

• a set of linear constraints;

• a special constraint saying that some matrix of variables is positive semi-definite (see below).

The special constraint is the only thing that is not seen in linear programs. This constraint has
the form “A has to be positive semi-definite, where A is a square matrix whose entries are taken
from the variables in the program”. In the following, we define positive semi-definite matrices and
give some related results in linear algebra.

Definition 19.3.1 (Positive semi-definite matrix) An n×n matrix A is positive semi-definite
(denoted as A � 0) if and only if

1. A is real symmetric; and

2. for all x ∈ R
n, xT Ax =

∑

n

i=1

∑

n

j=1
Aijxixj ≥ 0.

The following proposition implies that convex combinations of feasible solutions to an SDP are still
feasible.

Proposition 19.3.2 Let A, B be positive semi-definite matrices of the same size. Then

1. A + B � 0;

2. λA � 0 for all real λ ≥ 0.

The following proposition gives different characterizations of positive semi-definite matrices.

Proposition 19.3.3 Let A be an n × n matrix. The following statements are equivalent:

1. A � 0.

2. All eigenvalues of A are real and non-negative.

3. There exists a matrix C ∈ R
m×n (m ≤ n) such that A = CT C.

Given a positive semi-definite matrix A, the matrix C in the third characterization can be computed
in polynomial time using an algorithm called Cholesky decomposition. Note that a positive semi-
definite matrix can be viewed as a matrix of dot products. If we think of C = [C1 · · ·Cn] as a
bunch of column vectors in R

m, the (i, j)th entry of A is the dot product Ci · Cj . This leads us
to viewing SDP as vector programming. A vector program is a mathematical program with the
following elements:

• a set of variables vi’s in R
n, for some n > 0;

• an objective function linear in all (vi · vj)’s, to be minimized or maximized;

• a set of linear constraints over all (vi · vj)’s

We will see some vector program formulations in later lectures.

5

19.3.2 Solving SDPs

Similar to an LP, the feasible region (polytope) of an SDP is convex, except that one of its faces
(the one corresponding to the nonlinear constraint) might not be “flat”. As a result, the optimal
solution to an SDP could be in the interior of a face of the feasible region and could be irrational.
Hence, having a polynomial-time algorithm for solving SDPs exactly is impossible. However, we can
achieve a (1+ǫ)-approximation in time poly(n, log 1

ǫ
), where n is the input size. Typical algorithms

for solving SDPs include interior point methods and the ellipsoid method. Recall that the ellipsoid
method starts by enclosing the whole feasible region in a large ellipsoid. It then checks if the center
of the ellipsoid lies in the feasible region. If not, it picks a violated constraint and computes the
intersection of the ellipsoid with the hyperplane corresponding to that constraint. A new, smaller
ellipsoid is then used to enclose the intersection. This process is repeated until we have found a
point lying in the feasible region, or the ellipsoid has become so small that we can conclude the
feasible region to be empty. One nice thing about the ellipsoid method is that even if the SDP has a
super-polynomial number of constraints, it still runs in polynomial time, provided that there exists
an efficient algorithm for testing feasibility of a given solution, and finding a violated constraint if
the solution is infeasible. Such an algorithm is known as a separation oracle for the SDP.

19.3.3 Example: Max-Cut

Recall the (Unweighted) Max-Cut problem.

Definition 19.3.4 (Max-Cut) Given an undirected graph G = (V, E), find a cut in G with max-
imum cut value, i.e. find a subset S ⊆ V that maximizes

c(S) =
∣

∣{(v, v′) | v ∈ S, v′ ∈ V \S, (v, v′) ∈ E}
∣

∣ .

We are going to formulate Max-Cut as an SDP. For each vertex v ∈ V , we have a variable xv that
takes a value in {1,−1} depending on the partition to which v is assigned. It is clear that the value

of the cut is
∑

(u,v)∈E

|xu−xv |
2

. We are going to maximize the value. Thus, we have the following
nonlinear program.

maximize
∑

(u,v)∈E

|xu−xv |
2

subject to xv ∈ {−1, 1} ∀v ∈ V

Note that the objective function in not linear in the xv’s. We can convert the above program to
the following equivalent quadratic integer program.

maximize
∑

(u,v)∈E

(xu−xv)
2

4

subject to x2
v

= 1 ∀v ∈ V

Solving quadratic programs is NP-hard in general. By introducing new variables, the objective
function can be converted to a linear one. Specifically, we have a new variable yuv for each pair
(u, v) ∈ V × V . We add (nonlinear) constraints to enforce the equality yuv = xuxv for every u and
v. By observing that (xu − xv)

2 = x2
u

+ x2
v
− 2xuxv = 2 − 2yuv, we obtain the following program.

maximize
∑

(u,v)∈E

1−yuv

2

subject to yuv = xuxv ∀(u, v) ∈ V × V

yvv = 1 ∀v ∈ V

6

Let Y = [yuv]u,v∈V be a matrix of variables. Then Y = XT X where X = [xv]v∈V is a row vector
containing the variables xv’s. We rewrite the above program in matrix form.

maximize
∑

(u,v)∈E

1−yuv

2

subject to yvv = 1 ∀v ∈ V

Y = XT X

X is a row vector

The above program can be relaxed into an SDP. By Proposition 19.3.3, Y � 0. The resulting SDP
relaxation is as follows. Note that xv’s no longer appear in the program.

maximize
∑

(u,v)∈E

1−yuv

2

subject to yvv = 1 ∀v ∈ V

Y � 0

Since the SDP is a relaxation of the original program, its optimal value must be at least the optimal
cut value. To get an approximation, we still need to show how to convert the SDP solution to a cut
whose value is not much smaller than the optimal value of the SDP. Let Y ∗ be an optimal solution
to the above SDP. Using Cholesky decomposition, we can find in polynomial time a matrix X∗ such
that Y ∗ = X∗T X∗. Suppose that X∗ has m rows, where m ≤ n. Then each vertex v is represented
by a vector in R

m. Note that these vectors are unit vectors because yvv = 1 for all v, and hence
they all lie on the unit sphere in R

m. In order to obtain a cut, we need separate these vectors into
two sets. Let (u, v) be an edge in G. Let X∗

u
and X∗

v
be a unit vectors corresponding to u and v. If

X∗
u

and X∗
v

are far apart, their dot product X∗
u
·X∗

v
= yuv is small, and so the value 1−yuv

2
is large.

Thus, to maximize
∑

(u,v)∈E

1−yuv

2
, our objective is to separate the vectors into two sets such that

“long” edges get cut. If we pick a random hyperplane through the origin, the probability that an
edge gets cut is roughly proportional to its length. This randomized approach seems to be a nice
and easy way to meet our objective. We will continue our discussion next time. The algorithm is
due to Goemans and Williamson [3].

References

[1] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math.,
52(1–2), pp. 46–52, 1985.

[2] N. Linial, E. London and Y .Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15, pp. 215–245, 1995.

[3] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6),
pp. 1115–1145, 1995.

7

CS880: Approximations Algorithms

Scribe: Siddharth Barman Lecturer: Shuchi Chawla
Topic: SDP: Max-cut, Max-2-SAT Date: 03/27/07

In this lecture we give SDP (semi definite programming) based algorithms for the Max-cut and
Max-2-SAT problem.

A semi definite program is a set of linear inequalities along with the constraint that the matrix of
variables is positive semi definite. The general form of a SDP is as follows:

min AC

subject to A · B
k
≥ b

k
∀k

A � 0

Where A � 0 indicates that the variable matrix A is positive semi definite. Also note that the first
constraint, A ·B

k
≥ b

k
, is a constraint over the linear combination of elements Aij of matrix A i.e.

∑

ij
Aij(Bk

)ij ≥ b
k
.

An important observation is that a semi definite program is equivalent to a vector program where
matrix A is composed of inner products of variable vectors. That is the above mentioned SDP is
equivalent to the following vector program

min linear funct. of 〈vi, vj〉
subject to linear constraints over〈vi, vj〉

vi ∈ <n and

Aij = vi · vj

We shall formulate vector programs for the Max-cut and Max-2-SAT problem, which essentially
are semi definite programs, the general strategy then is to solve the SDP to obtain vector solutions
for the variables. We then “extract” an integral solution from these vectors which preserve the
objective function value to a good extent.

20.1 Max-cut

Problem Statement: Given a graph G with weights ce on edges, find a cut C ⊆ E of maximum
weight which separates the vertices of G in two connected components. Here the weight of the cut
C is defined as

∑

e∈C
ce.

First we mention that the direct linear programming based approach that we have applied for other
cut problems does not go through for Max-cut. An LP relaxation for Max-cut is as follows:

max
∑

cede

subject to d is a metric

d(u, v) ≤ 1 ∀u, v

1

But this program can be maximized by setting d(u, v) = 1 ∀u 6= v (which is a legitimate metric);
resulting in objective function value equal to

∑

e∈E
ce. But this implies that all the edges are in

the cut and the requirement that the graph is separated into only two components S and V \ S is
not met.

The important insight here is to restrict the form of the metric d to ensure that a sound cut is
obtained. Specifically we wish to determine a metric which places the vertices of the graph either
at 1 or at −1. That is for all vertices v we must have x2

v
= 1. Thus de is either 0 or 2 and the

objective function becomes max
∑

cede

2
.

For the above mentioned metric we have d2
uv

= (xu − xv)
2 = x2

u
+ x2

v
− 2xuxv. But x2

u
and x2

v

are equal to 1 hence d2
uv

= 2(1 − xuxv). Also note that duv ∈ {0, 2} thus duv = d2
uv

/2. Hence the
Max-cut problem can be concisely stated as the following quadratic program:

max
∑

(u,v)∈E

ce

2
(1 − xuxv)

s.t. x2
u

= 1 ∀u

xu ∈ <

We relax this to a vector program. In particular,

max
∑

(u,v)∈E

ce

2
(1 − xu · xv) (20.1.1)

s.t. xu · xu = 1 ∀u

xu ∈ <n

unit ballu

x v

x
u
x v1−

x

Figure 20.1.1: Unit ball in <n

After solving this relaxed formulation we get vectors xu on the unit ball (see Figure 20.1.1) and
we wish to determine a cut in <n such that long edges are very likely in it. The idea is to consider
a random hyperplane in <n passing through the origin; long edges which contribute more to the
SDP solution have high probability of being cut by such a plane. Our cut is the set of edges that
cross this hyperplane. Next we prove that this in fact achieves an approximation factor of 0.878.

Formally the Max-cut algorithm is as follows

2

1. Solve SDP 20.1.1 to obtain vectors {xu}

2. Pick a random unit vector α in <n

3. Output {v | xT

v
α > 0}

 random cut crossing the chord

θ

θ

chord

Figure 20.1.2: Chord with random cut

First we consider vectors in <2 and then generalize to cuts in <n. Consider a chord in a unit circle
that subtends an angle of θ at the origin (see Figure 20.1.2). Note that in the present context
selecting an angle between 0 and 2π, uniformly at random is equivalent to selecting a cut uniformly
at random.

The probability that the chord (representing an edge) is cut is θ/π. As any angle selected in the
marked region of Figure 20.1.2 would define a cut that intersects the chord and the total angle
contained by the marked region is 2θ the probability is 2θ/2π = θ/π.

As vectors xu lie on the unit ball the square of the length of the chord/edge is 2(1 − cos θ). Hence
its contribution to SDP is 2ce(1 − cos θ). The expected contribution of the edge to our solution is
θ

π
ce. The maximal difference between the two could be γ = max

θ

π(1−cos θ)

2θ
= 1

0.878
≈ 1.12. That is

the contribution of any edge to the SDP can not be more than γ times its expected contribution
to our solution.

The following lemma ensures that the above mentioned Max-cut algorithm achieves a 0.878 ap-
proximation.

Lemma 20.1.1 For every edge e = (u, v) in the graph, let θe be the angle between xu and xv, then
the probability that we cut edge e is θe/π.

Proof: Consider the plane defined by vectors xu, xv and the origin. The intersection of the
hyperplane defined by random vector α and this plane is a line passing through the origin. Say
this line is α′. Note that α′ is picked from a spherically symmetric distribution hence as above the
probability that (u, v) is cut is θe/π.

3

Note that step 2 of the algorithm is equivalent to picking a point uniformly at random from the
surface of a unit sphere. This is accomplished by picking a point from an n dimensional Gaussian
and then renormalizing it to be of unit length.

Feige and Schechtman [2] have shown that the integrality gap of this SDP is in fact 1/0.878. Also
hardness of 0.878 for Max-cut has been shown under the unique games conjecture [3].

Integral solutions of the Max-cut problem satisfy an interesting property. In particular any integral
solution sets xu ∈ {−1, 1} hence it must satisfy d2

uv
= 2duv. This relation implies a triangle

inequality for distance squares, that is d2
uv

≤ d2
uw

+ d2
wv

. Such a relation is not necessary for all
metrics but it holds for integral solutions. With this constraint we can formulate another stronger
SDP for Max-cut:

max
∑

(u,v)∈E

ce

2
(1 − xuxv) (20.1.2)

s.t. xT

u
xu = 1 ∀u

xu ∈ <n

1 − xuxv ≤ 1 − xuxw + 1 − xwxv ∀u, v,w

The last constraint can be simplified to xuxw + xwxv ≤ 1 + xuxv. The solutions to such an SDP
are special metrics called l2

2
metrics:

Definition 20.1.2 Metrics for which not only the distances but the square root of distances satisfy
the triangle inequality are called squared euclidian metrics (negative type) and are denoted as
l2
2
.

Note that l2
2

metric embed with distortion O(
√

log n log log n) in l1 [1], which implies better approx-
imation factor for some problems with such metric requirement. Though for Max-cut formulation
20.1.2 does not reduce the integrality gap but it does for some other problems, in particular for
sparsest cut integrality gap is reduced to Õ(

√
log n) [1].

20.2 Max-2-SAT

Problem Statement: Given a 2-CNF boolean formula we need to determine an assignment which
maximizes the number of satisfied clauses. In the weighted version of the problem each clause is
associated with a weight vi and we need to determine an assignment which maximizes the sum of
the values vi for the satisfied clauses.

We formulate a SDP by considering vector vx for every variable x, also vx (for x) is set to −vx. For
reference a true vector vT is also defined, thus informally vxvT is the extent to which x is true.

Now, clause x ∨ y contributes a value of 1 to the objective function if either x or y is true else it
contributes a value of 0. For vx ∈ {−1, 1} this can be equivalently expressed as

3+vxvT +vyvT −vxvy

4
.

As the expression is set to one when either vxvT or vyvT is set to one, and it is set to zero when vx

and vT are of different signs. We relax vx to vectors in <n to obtain the SDP:

4

max
∑

clauses x∨y

3+vxvT +vyvT −vxvy

4
(20.2.3)

s.t. vxvx = 1 ∀x

vx ∈ <n

vT is the truth vector

The algorithm A, for Max-2-SAT is as follows:

1. Pick a random hyperplane

2. Set everything on the side of vT to true and rest to false

The analysis of Max-2-SAT follows closely from Max-cut. The objective function in this case can
be rewritten as 1

4

∑

((1 + vxvT) + (1 + vyvT) + (1 − vxvy)), thus the expression consists of terms
of the form 1 + vivj and 1 − vivj . Next we analyze the two terms separately.

As in the case of Max-cut the probability that the edge between i and j is cut is θ/π. The SDP
contribution of the term is directly 1 − vivj. As before with probability θ/π the plane separates
the two vectors in which case the contribution of the term is 2 else the contribution is 0. Hence
the expected contribution is 2θ

π
+ 0. As before the ratio of the expected contribution to the SDP

contribution is no less than γ = min 2θ

π(1−cos θ)
= 0.878.

Note that vivj = cos θ, where θ is the angle between vi and vj . Hence for the term 1+vivj the SDP
contribution is 1 + cos θ. The expected contribution to the integral solution on the other hand is
0× θ

π
+ 2

(

1 − θ

π

)

. Hence the ratio in this case is 2(π−θ)

π(1+cos θ)
. By setting θ′ = π − θ the ratio reduces

to 2θ
′

π(1−cos θ
′)
, as before this is no less than 0.878. Hence the total expected contribution is no less

than 0.878. So we have the following theorem:

Theorem 20.2.1 The above mentioned algorithm A achieves an approximation factor of 0.878 for
Max-2-SAT.

References

[1] S. Arora, J.R. Lee, A. Naor Euclidean distortion and the sparsest cut. In Proceedings on 37th
Annual ACM Symposium on Theory of Computing (STOC) (2005), pp: 553-562.

[2] U. Feige, G. Schechtman: On the integrality ratio of semidefinite relaxations of MAX CUT.
In Proceedings on 33rd Annual ACM Symposium on Theory of Computing (STOC) (2001),
pp: 433-442.

[3] S. Khot, G. Kindler, E. Mossel, R. O’Donnell Optimal Inapproximability Results for Max-Cut
and Other 2-Variable CSPs? In 45th Annual IEEE Symposium on Foundations of Computer
Science (FOCS) (2004), pp: 146-154.

5

CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Semi-Definite Programming: Graph Coloring Date: 3/29/2007

In the previous lecture , we saw how semi-definite programming (SDP) could be employed to
approximate Max-Cut and Max-2-SAT. In this lecture, we look at another problem which can be
approximated using SDP: Graph Coloring.

21.1 Graph Coloring: Overview

Let G = (V,E) be a graph. A k-coloring for G is a function f : V → [k] such that f(u) 6= f(v)
for all (u, v) ∈ E. In other words, a k-coloring is an assignment of vertices to k colors such that
no edge is monochromatic. We say that a graph G is k-colorable if there exists a k-coloring for G.
The chromatic number of G is the least k such that G is k-colorable. Given a k-colorable graph G,
finding a k-coloring for G is solvable in polynomial time for k = 2, but NP-hard for k ≥ 3.

In Homework 1, we showed how to find a O(
√

n)-coloring for any 3-colorable graph in polynomial
time, where n is the number of vertices in the graph. That algorithm is due to Wigderson [1]
and can be extended to find O(n2/3)-colorings for k = 4, and O(kn1−1/(k−1))-colorings for general
k. Blum [2] gave a combinatorial algorithm for coloring 3-colorable graphs using Õ(n3/8) colors1.
Karger, Motwani and Sudan [3] presented a semi-definite programming based Õ(n1/4)-coloring for
3-colorable graphs. Combining the techniques in [2] and [3], Blum and Karger [4] improved the
bound to Õ(n3/14). The best known approximation for 3-coloring uses O(n0.2111) colors. This
algorithm, due to Arora, Chlamtac and Charikar [5], is based on semi-definite programming and
the triangle inequality.

On the hardness of Graph Coloring, it is known that coloring a 3-colorable graph using only 4
colors is NP-hard. In fact, the Unique Games Conjecture implies that there is no constant factor
approximation for 3-coloring. It is also known that approximating k-coloring better than a factor
of n1−ε for arbitrary k is NP-hard.

21.2 SDP Formulation

We need to divide the vertices into k sets such that every edge gets cut. This is different from the
Max-Cut and Max-2-SAT problems for which only two sets are sufficient. Our strategy is to map
the vertices to unit vectors in Rn, and we want to maximize distances between the edges. Finally, a
randomized procedure is used to partition the vertices into k sets according to the optimal solution
vectors.

We introduce a vector variable vi ∈ Rn for each i ∈ V . Recall that the dot product between two
vectors increases as they get closer to each other. Therefore, to maximize distances between the
edges, we want to minimize the quantity max(i,j)∈E vi · vj . We formulate Graph Coloring as the

1The notation Õ is sometimes used to hide low-order multiplicative terms, such as log n.

1

following SDP (equivalently, vector program).

minimize t
subject to vi · vj ≤ t ∀(i, j) ∈ E

vi · vi = 1 ∀i ∈ V
vi ∈ Rn ∀i ∈ V

Unfortunately, the relation between an feasible solution to the SDP and a legal coloring for the
graph is not obvious — given a feasible solution to the SDP, how to construct a legal k-coloring?
Furthermore, how does k depend on t? The following two lemmas answer the latter question.

Lemma 21.2.1 Let t∗ be the optimal value of the SDP. If G is k-colorable, then t∗ ≤ −1
k−1 .

Lemma 21.2.2 Let t∗ be the optimal value of the SDP. If G contains a k-clique, then t∗ ≥ −1
k−1 .

Remark. We define θ(G) = 1 − 1
t∗ for any graph G. This function is known as the Lovász theta

function. Note that if t∗ = −1
k−1 , then θ(G) = k. In this case, the graph is called vector-k-colorable.

For a graph G, the clique number of G is the size of the largest clique in G. By Lemma 21.2.1,
θ(G) is at most the chromatic number of G. By Lemma 21.2.2, θ(G) is at least the clique number
of G. A graph with its chromatic number equal to its clique number is known as a perfect graph.
For example, complete graphs are perfect graphs. Note that for perfect graphs, their chromatic
numbers and clique numbers can be computed in polynomial time, namely by computing the Lovász
theta function.

Proof: [Proof of Lemma 21.2.1] Suppose that we have a partition of V into k subsets. We will
define explicitly k unit vectors v1, . . . , vk in Rk such that vi · vj ≤ −1

k−1 for any i 6= j. Assigning
vertices in different subsets to different vectors, we have found a feasible solution to the SDP with
value at most −1

k−1 , thus proving the lemma. We demonstrate how to find such vectors by induction
on k.

The base case (k = 2) is trivial. Assume that for some k ≥ 2 we have unit vectors v′1, . . . , v
′
k ∈ Rk

such that v′i · v′j ≤ −1
k−1 for i 6= j. We construct k + 1 unit vectors v1, . . . , vk+1 ∈ Rk+1 as follows.

• vk+1 = (0, . . . , 0, 1);

• for 1 ≤ i ≤ k, vi = (αv′i,−1/k), i.e. the k + 1-vector obtained by adding one coordinate
(−1/k) to the k-vector αv′i, where α =

√
1− 1/k2.

There are a few things to show. First, the vi’s are unit vectors:

vi · vi = α2(v′i · v′i) +
1
k2

= 1.

2

Second, vi · vj ≤ −1
k for 1 ≤ i, j ≤ k:

vi · vj = α2(v′i · v′j) +
1
k2

≤
(

1− 1
k2

) (
−1

k − 1

)
+

1
k2

= −k + 1
k2

+
1
k2

=
−1
k

.

Third, vi · vk+1 = −1
k for 1 ≤ i ≤ k, which is obvious.

Proof: [Proof of Lemma 21.2.2] Let v1, . . . , vk ∈ Rk be k unit vectors. Consider the dot product
of

∑k
i=1 vi with itself: 〈

k∑
i=1

vi ,
k∑

i=1

vi

〉
=

k∑
i=1

(vi · vi) +
∑
i6=j

1≤i,j≤k

(vi · vj)

= k + k(k − 1)r,

where r is the average dot product. Noticing that the above dot product is non-negative, we get

k + k(k − 1)r ≥ 0

r ≥ −1
k − 1

max
i6=j

1≤i,j≤k

(vi · vj) ≥ −1
k − 1

Suppose that G contains a k-clique. Consider the k unit vectors in the optimal solution correspond-
ing to the vertices in this clique. These vectors satisfy the above inequality. Since there is an edge
between every pair of these vertices, t∗ must be at least the maximum dot product among these
vectors, which is at least −1

k−1 .

In view of Lemma 21.2.1 and Lemma 21.2.2, we interpret our SDP as the following program.

minimize k
subject to vi · vj ≤ −1

k−1 ∀(i, j) ∈ E

vi · vi = 1 ∀i ∈ V
vi ∈ Rn ∀i ∈ V

21.3 Converting from SDP Solution to Coloring

Next we give a randomized algorithm for transforming a solution to the above SDP into a feasible
coloring. For simplicity, we restrict our attention to 3-colorings. The following 3-coloring algorithm
can be generalized to handle more colors with some more effort.

3

1. Pick t (whose value to be decided) “directions” (unit vectors) α1, . . . , αt uniformly at random.

2. Divide the graph into 2t parts according to sgn(αj · vi) for every j. Color each part with a
unique color.

3. Recurse on monochromatic edges.

If G is 3-colorable, then by Lemma 21.2.1 we get an optimal solution to the SDP with k ≤ 3 and
vi · vj ≤ −1/2 for all (i, j) ∈ E. This implies that for any (i, j) ∈ E, the angle between vi and vj is
at least 2π/3.

Let ∆ be the maximum degree of the graph. We pick t = log3 ∆ + 1.

Claim 21.3.1 Suppose that we use the above algorithm to color a 3-colorable graph G = (V,E).
Then, the expected number of monochromatic edges after any iteration is at most n/4, where n =
|V |.
Proof: Consider any (x, y) ∈ E. Fix a j (1 ≤ j ≤ t). Then, since the angle between vx and vy is
at least 2π/3 as discussed above, we have

Pr[sgn(αj , vx) = sgn(αj , vy)] ≤
1
3
.

Hence,

Pr[(x, y) is monochromatic] = Pr[∀j, sgn(αj , vx) = sgn(αj , vy)]

≤ 1
3t

=
1

3∆
.

Thus, the expected number of monochromatic edges is at most n∆
2 · 1

3∆ ≤ n/4.

We know from Claim 21.3.1 that the expected number of vertices need to be considered after any
iteration is at most n/2 (since there are n/4 monochromatic edges). Thus, we have the following
corollary.

Corollary 21.3.2 With high probability, the above algorithm terminates after O(log n) iterations.

We now analyze the number of colors used in the coloring. In each iteration, at most 2t new colors
are used. Supposing there are log n iterations, the total number of colors used is

2t log n ≈ 2log3 ∆ · log n

= ∆log3 2 · log n

= ∆0.63 log n

= O(n0.63 log n).

This is worse than the O(
√

n)-approximation we got in Homework 1. We can improve the approx-
imation factor by combining the above algorithm with the idea in Homework 1. Note that in the
above analysis we simply bound the value of ∆ by n. As in Homework 1, we can set a threshold
for the value of ∆, say ∆∗. The combined algorithm is as follows.

4

1. Pick a vertex v with degree greater than ∆∗. 3-color the neighbors of v (including v), and
remove them from the graph.

2. Repeat step 1 until all vertices in the graph have degree at most ∆∗.

3. Run the above 3-coloring algorithm on the pruned graph.

The number of colors used in the pruning phase (steps 1 and 2) is at most 3n
∆∗ . The (expected)

number of colors used in step 3 is (∆∗)0.63 log n. We can minimize their sum by setting ∆∗ = n1/1.63,
which leads to a Õ(n0.39)-coloring. A smarter preprocessing gives a Õ(n0.25)-coloring algorithm for
3-colorable graphs, but we will not discuss it in class.

References

[1] A. Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM, 30(4):729–735, October 1983.

[2] A. Blum. New approximation algorithms for graph coloring. Journal of the ACM, 31(3):470–516,
1994.

[3] D. Karger, R. Motwani and M. Sudan. Approximate graph coloring by semidefinite program-
ming. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
November 1994.

[4] A. Blum and D. Karger. An Õ(n3/14)-coloring algorithm for 3-colorable graphs. Information
Processing Letters, 61(1):49–53, 1997.

[5] S. Arora, E. Chlamtac and M. Charikar. New approximation guarantee for chromatic number.
In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006.

5

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Embedding metrics into trees Date: 3/30/07

This lecture introduces the idea of embedding a metric into a tree, and applies this technique to
the development of an approximation algorithm for the Multicommodity ”Buy at Bulk” Network
Design problem.

22.1 Multicommodity Buy-At-Bulk Network Design

22.1.1 Problem formulation

GIVEN:

• a graph G = (V,E)

• edge lengths `e

• pairs of demand vertices (si, ti)

• quantities qi to be sent si → ti

• a concave cost function f(ce) for ”buying” capacity ce on edge e

DO: find

• a set of paths Pi from si to ti such that
∑

p∈Pi
p ≥ qi for each i

• a set of edge capacity purchases ce such that
∑

{p|e∈p} p ≤ ce

such that the total cost
∑

e f(ce)`e is minimized.

The cost of purchasing capcity ce on edge e is defined as f(ce)`e. This means that the cost of
purchasing edge capacity is linearly related to the length of that edge, which will be important for
our analysis. Also note that the cost function f is concave, and shared by all edges. This makes
our formulation the ”uniform” case. If each edge were allowed to have a different cost function
fe, it would be the non-uniform case, which is much harder, and was not known to have any
sub-polynomial approximation until recently, when a poly-log approximation was discovered [1].

1

22.1.2 Algorithm design

Our first observation is that this problem would be greatly simplified for the special case where G
is a tree, because each si → ti path would be unique.

Furthermore, we recall that the total cost is linear in the edge lengths `e. This means that if we
can find a low-distortion embedding from our graph G to some tree T , it will be relatively simple
to analyze the impact of the distortion on our cost function.

22.1.3 Tree embeddings

To analyze potential embeddings, we must first ask which graph structures would be most difficult
to embed into a tree. A natural first thought is to consider a complete graph. However, note that
we could simply place any single node as the hub, and have all other nodes only be connected to
the root as spokes. In the simplified case of a a graph with uniform edge costs, this clearly achieves
an expansion factor of ρ = 2 (Figure 22.1.1).

The actual worst-case would be a graph which is simply a single large cycle of all n nodes (n-cycle).
In this case, we can create a tree by simply removing any single edge. However, the distance
between the 2 endpoints of that edge has now expanded by a factor of ρ = Ω(n) (Figure 22.1.1).
It can be shown, in fact, that no embedding of the n-cycle into trees has distortion o(n).

T

TG

G

Figure 22.1.1: Embedding example graphs into trees.

2

22.1.4 Probabilistic tree embeddings

To avoid this worst-case scenario, we note that while embedding into a single tree may suffer
large worst-case distortion, embedding into a distribution over trees can still achieve low expected
distortion.

For our n-cycle graph example, define α as the uniform distribution over τ , the set of all trees T
created by removing a single edge of the original graph. The expected distance between 2 vertices
in an embedding drawn from α is then given by

dα(x, y) = EαT
[dT (x, y)] =

∑

T∈τ

αT dT (x, y)

where αT is the probability of drawing tree T , and dT (x, y) is the distance between vertices x and
y in T .

Theorem 22.1.1 An n-cycle embeds into our distribution α with distortion ρ = 2.

Proof: Each edge of the n-cycle is included in n − 1 of the trees in τ . Therefore

Eα[dT (A,B)] =
n − 1

n
(1) +

1

n
(n − 1) ≤ 2

We now formalize the our probabilistic embedding idea with the following definition.

Definition 22.1.2 Given G, a β-probabilistic embedding into a distribution over trees is a distri-

bution β over τ such that

• V [Ti] ⊇ V [G] ∀Ti ∈ τ

• dTi
(x, y) ≥ dG(x, y) ∀x, y ∀Ti ∈ τ

• Eα[dT (x, y)] =
∑

T αT dT (x, y) ≤ βdG(x, y) ∀x, y

This definition sets up the main result from this lecture, which is that for all G there exists an
O(log n)-probabilistic embedding into trees.

22.1.5 Approximation of network design with a probabilistic embedding

Theorem 22.1.3 Given a β-probabilistic embedding of G into trees, there exists a β-approximation

for multicommodity uniform buy-at-bulk network design on G.

Proof: Consider the following algorithm:

1. Given a β-probabilistic distribution α, pick T ∼ α

3

2. Solve uniform buy-at-bulk network design on T

3. Foreach e = (u, v) ∈ T , find shortest (u, v) path p in G and install capacity cT
e on all edges in p

4. Map all pT
i to their corresponding paths in G

This procedure clearly recovers a feasible solution on G, since all paths and capacities in the valid
T solution are feasibly mapped to G.

What is the cost of our converted solution?

Claim 22.1.4 E[costT] ≤ βOPT

Proof: Translate OPTG to some solution in T by mapping each edge (u, v) in G to the unique
path between u and v in T . Then

E[OPTT] ≤ E[costT] ≤
∑

(u,v)∈Eg

f(cOPT
e)dT (u, v) (22.1.1)

=
∑

(u,v)∈Eg

f(cOPT
e)βdG(u, v) (22.1.2)

= β
∑

(u,v)∈Eg

f(cOPT
e)`e (22.1.3)

= βOPT (22.1.4)

Claim 22.1.5 Given a solution of cost X in T , our solution in G will have cost ≤ X.

Proof:

costG =
∑

(u,v)∈ET

f(cT
e)dG(u, v) ≤

∑

(u,v)∈ET

f(cT
e)dT (u, v) = X

These claims prove the theorem.

Note that this analysis relied on the fact that our objective function is linear in lengths `e = dG(u, v).

These strategies were originally developed by Bartal, who derived O(log2 n) and O(log n log log n)
probabilistic embeddings of graphs into distributions over trees [4] [5]. Fakcharoenphol, Rao, and
Talwar later improved these results to a O(log n) probabilistic embedding, which was also shown
to be tight [3].

22.1.6 O(logn)-probabilistic embedding

How can be get an O(log n)-probabilistic embedding of general graphs into trees? The basic idea
is to do a hierarchical clustering on all vertices in G (Figure 22.1.2).

4

Figure 22.1.2: Hierarchical clustering by partitioning.

Under this scheme, all vertices of the original graph G are leaf nodes in our tree T . Each cluster
in our hierarchical clustering then corresponds to a sub-tree in T . That is, all interior nodes of T
are artifacts of our clustering scheme and were not originally present in G.

Starting from a graph with diameter ∆, we want our probabilistic embedding to have the property
that dT (x, y) ≥ dG(x, y)∀x, y.

We can achieve this by building our clusters such that the diameter of the initial root cluster is ∆,
the diameter of each child cluster is ∆/2, and so on.

PSfrag replacements

∆/2

∆/4

Figure 22.1.3: Tree representation of our hierarchical clustering.

Next, we need a partitioning scheme in order to build each level of our hierarchical clustering.

Definition 22.1.6 A β low-diameter low-distortion partitioning with parameter δ is a partition of

V into {V1, V2, ..., Vk} such that

1. diam(Vi) ≤ δ ∀i

5

2. Pr[ecut] ≤ de

δ
β ∀e ∈ E

In this context, edge e = (u, v) being ”cut” by the partitioning means that u ∈ Vi and v ∈ Vj such
that i 6= j.

Lemma 22.1.7 Given a β low-diameter low-distortion partitioning scheme, there exists an 4β log ∆-

distortion probabilistic embedding of a graph into trees.

Proof: Begin with a ∆-diameter graph. Partition with δ = ∆/2. Recursively embed V1, V2, ..., Vk ↪→
T1, T2, ..., Tk.

Obviously, this approach satisfies properties 1 and 2 of Definition 22.1.6.

To see that it satisfies property 3, fix x, y and suppose that e = (x, y) is an edge in E. Then suppose
that they are separated at the top-level partitioning. Then dT (x, y) ≤ 2∆. If they are in the same
subtree, then by induction

Es[ds(x, y)] ≤ 4β log

(

∆

2

)

dG(x, y)

Since we must have 1 of these 2 cases (they are in the same subtree, or not), we can then calculate
the expected distance between them in T . (Remember that for this first partition, δ = ∆/2.)

E[dT (x, y)] = 2∆

(

de

δ
β

)

+ 4β log

(

∆

2

)

dG(x, y) (22.1.5)

= 4βdG(x, y) + 4β log

(

∆

2

)

dG(x, y) (22.1.6)

= 4βdG(x, y)[1 + log

(

∆

2

)

] (22.1.7)

= 4βdG(x, y) log ∆ (22.1.8)

= O(β log ∆)dG(x, y) (22.1.9)

Finally, it is easy to see that the worst distortion happens on edges present in the original graph
G, so this bound will also hold for other pairs x, y.

The resulting tree is k-hierarchically well-separated (k-HST), with k = 2. This means that the edge
weights between a parent and and all children are equal, and that the edge weights on any path
from root to leaf decrease by a factor of at least k on each edge [4].

Our tree is also ultrametric, meaning that the root to leaf distances are the same for all leaves.
Ultrametric trees have especially interesting applications in the construction of phylogenetic trees,
which model the evolutionary relationships between the genomic sequences of different organisms
[2].

The only missing component of our approach is now the β low-distortion low-diameter partition
scheme, which will be introduced in the next lecture.

6

References

[1] C. Chekuri, M. T. Hajiaghayi, G. Kortsarz, M. R. Salavatipour. Approximation Algorithms for
Non-Uniform Buy-at-Bulk Network Design. FOCS 2006, 677-686.

[2] Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Anal-
ysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[3] Jittat Fakcharoenphol, Satish Rao, Kunal Talwar. A Tight Bound on Approximating Arbitrary
Metrics by Tree Metrics. STOC 2003, 448-455.

[4] Yair Bartal. Probabilistic Approximations of Metric Spaces and Its Algorithmic Applications.
FOCS 1996, 184-193.

[5] Yair Bartal. On approximating arbitrary metrices by tree metrics. STOC 1998, 161-168.

[6] V. Vazirani. Approximation Algorithms. Springer, 2001.

7

CS880: Approximations Algorithms

Scribe: Matt Darnall Lecturer: Shuchi Chawla
Topic: Tree Embeddings Date: 4/10/07

23.1 Problem Statement and Results

REcall that in the previous lecture, we discussed the use of probabilistic tree embeddings for approx-
imations algorithms. We now present an algorithm for obtaining low distortion tree embeddings.

Let G be a graph and let T be a collection of trees on the same vertices as G. We say the T
is a γ distortion if, for any vertices x and y and any T ∈ T :

dG(x, y) ≤ dT (x, y)

and
E[dT (x, y)] ≤ γdG(x, y)

The expected value is taken over a distribution given to the elements in T . It has been shown in
[2] that for an arbitrary graph we can have γ = O(log n log log n). This result has been improved
to a O(log n) distortion in [1], which is essentially optimal.

23.2 Construction

Let G be a graph with n nodes and diameter ∆ = 2δ. The constructions for good tree embeddings
have the set T made of trees of the following form. They are calle Hierarchically well seperated
trees, which means the distance from each parent to its children is the same, and at each level the
distance decrease by a constant factor. A tree will have a root that corresponds to the entire graph.
Then, considering each node in the tree as a subset of the graph, the children nodes of each node,
v, will be a partition of the vertices of the graph in the subset corresponding to v. We shall make
it so that a node at a depth of i shall correspond to a subset of the graph with diameter less than
2δ−i. Notice that at depth δ we are left with the vertices of the original graph.

We set the cost of traveling on an edge of depth i to be 2δ−i. Thus, the cost of getting from
a vertex u to a vertex v in one of our trees is at least the cost of getting from u to v in the graph
since in a tree you have to travel up to a subset that contains both u and v and then back down.
This cost will be large enough from the cost put on edges of depth i. Thus, we have that a set of
trees with this property satisfies the first requirement to be a γ distotion embedding of G. The key
to the argument, is that if the graph is partitioned well then the expected distance between two
points won’t change much. As seen by Bartal, if a metric graph can be probabilistically partitioned
into pieces where the diameter has decreased by a constant factor and the chance an edge is cut
is about its length times λ over the diameter, then, by recursively using these partitions for our

1

tree, we get a final probabilistic embedding into trees with distortion O(λlog(∆). The existance of
a partition with λ = log(n) was given by Calinescu et al, see [3].

In [1] a method for partitioning the graph G randomly into a tree of the above form is given.
By a better analysis, they were able to achieve O(log(n)) as the final distortion, removing the
dependence on ∆. The basic idea is as follows. The vertices are ordered in an arbitrary manner.
Then, a random β ∈ [1, 2] is chosen. The set G is partitioned by moving through the vertices in
the order given and including all points at a radius of 2δ−1β from the current vertex. The points
in the ball are made into a cluster that form a node at the next level. We do this for each vertex,
only including a new vertex in a cluster if it hasn’t been assigned yet. We then treat each cluster
as a new graph and repeat, adjusting the radius by a factor of 2.

Now, we look at the expected distance between vertices u and v. As shown in [1], the expected
distance is raised by at most a factor of O(log(n)). Let e be the edge between u and v. The
expected distance between u and v is less than:∑

j

Pr[e is cut at time t]2t

.

Let B(e, r) be the balls of radius r around u and v. By proving that the probability that e is cut at
time t is less than 4d(u, v)log(|B(e,2δ−t)|

|B(e,2δ−t+1)|2
−t and noticing that this is a telescoping sum with first

term 4d(u, v)log(n), we get the O(log(n)) factor.

This result is tight because tree metrics are contained in L1 metrics, which we know have a distortion
of O(log(n)). For more details on the proof, please see the references below.

References

[1] Fakcharoenphal et. al., A Tight Bound on Approximating Arbitrary Metrics by Tree Metrics.
STOC 2003, San Diego, CA.

[2] Bartal, On Approximating Arbitrary Metrics by Tree Metrics.
http://www.cs.huji.ac.il/ yair/pubs/B-prob-approx2.ps

[3] Calinescu, et. al.,Approximation Algorithms for the 0-Extension Problem (2000). SODA 2001,
Washington D.C., USA

2

CS880: Approximations Algorithms

Scribe: Matt Darnall Lecturer: Shuchi Chawla
Topic: Apporximate Counting Date: 4/12/07

24.1 Definitions

We will attempt to approximate a function that counts something. Typically, we are interested in
finding the number of solutions to an NP-Complete problem, which is of course harder than solving
the NP-Complete problem itself. So many such problems are # P-complete. An example of this is
the number of ways to satisfy a statement in disjunctive normal form. A good algorithm for ap-
proximating a function will be an FPRAS or Fully Polynomial Randomized Approximation Scheme.

An algorithm A is a FPRAS for a function f if given an instance X of the problem, for any
ε,

Pr

[
|A(X)− f(X)|

f(X)
< ε

]
< 1/4

and the algorithm runs in time polynomial in the length of X and 1/ε. The algorithm is just a
PRAS if it runs in time polynomial in the length of X, but not in 1/ε.

What we are looking for is an algorithm A such that:

Pr [A(X) ∈ ((1− ε)f(X), (1 + ε)f(X))] < 1− δ

where the runtime is polynomial in the size of X, 1/ε, and log(1/δ). By iterating, an FPRAS will
give this to us.

24.2 Disjuntive Normal Form Counting

The problem we shall look at is counting the number of truth assignments to variables xi such that
the statement D is satisfied. D is forced to look like D1 ∨ · · · ∨Dm, where each Di is a conjunction
of variables xi1 ∧ · · · ∧ xik .

Let U be the set of all assigments, S be the set of satisfying assignments. We shall approxi-
mate |S| by randomizing selecting elements of U and testing for membership in S. Then, if we test
t samples from U and t′ are from S, we know that:

|S|
|U |

≈ t′

t

so our estimate is |S| = t′|U |/t. If p = |S|/|U | is our probability of pulling a member of S, we get
by Chernoff bounds that:

Pr
[
|t′ − pt| > εpt

]
< e

ε2pt
3

1

Thus, taking t = log(1− δ)/(ε2p) will get us within 1± ε of |S| with probability greater than 1− δ.
The only thing that can make this not polynomial time is if p is small. This means that |S| is small
relative to |U |.

If we use Chebyshev’s inequality instead of Chernoff, we get that:

Pr
[
|t′ − pt| > εpt

]
<

V ar(t′)
ε2p2t2

Since V ar(t′) = p(1−p)t, we need to take t = (1−p)/(ε2pδ). In order to reduce the dependence on
δ, we use the ”‘median of means”’ method. Now, if we let δ = 1/4, and we run the experiment with
t = 4(1− p)/(ε2p 2∆ + 1 times, we expect about (2∆ + 1)/4 of our trials to fall out of the (1± ε)
range of the actual solution. Specifically, the probability that the median of the 2∆ + 1 trials with
t = 4(1 − p)/(ε2p falls outside the (1 ± ε) range of the actual solution is less than the probability
that ∆ + 1 of the trials falls out of the (1 ± ε) range of the actual solution. This probability, by
Chernoff, is less than (3/4)s. Thus, by running t trials O(log(1/δ)) times, and taking the median
of these answers, we are within (1± ε) of the acutal solution with probability 1− δ.

24.3 Reducing U

It is evident when analyzing the value of t that making the ratio p = |S|/|U | small is crucial to
limiting the runtime. We shall look at a method for reducing the universe U for our example of
solutions to a DNF statement. Let the statement D be made up of m clauses Di that are con-
juntions of the literals or their negation. Let the solutions of Di be Si. Notice that S is just the
union of the Si and each Si has size 2n−ki , where there are ki literals in Di and n literals in total.
Although we can easily estimate |Si|, it is hard to get an estimate of their union because of repitition.

Our new universe, U ′ shall be the set of pairs (i, ai), i ≤ m where ai is an element of Si. No-
tice that sampling from U ′ at random is easy, we just pick a random i and then pick a random
assignment to the variables not in Di. In order for this to be uniform, we pick i with probability
proportional to |Si|, we we can do since cacluting |Si| is easy (just 2 to the power of the number
of literals in Si). The variables in Di are fixed. We need a way to imbed the set S inside our
new universe U ′ and a quick way to test membership in S. To do this, let every assignment, s, of
the variables that satisfies D be associated with the first Di that is satisfies. In other words, our
embedded S′ is the set of (i, s), where s ∈ S and i ≤ m is the first Di that s satisfies. Since it
satisfies at least one of the Di, we know that this assignment is counted exactly once in the set U ′,
so S′ is of the same size as S. Importantly, since there are only m clauses, and each element in S′

is associated with a clause, |S′|/|U ′| is greater than 1/m. Thus, we have made p larger than the
inverse of the size of the instance, and our number of trials t can be polynomial in the size of the
instance.

2

24.4 Counting = Sampling

In this section, we will give an overview of the proof that being able to approximately count the
elements in S is equivalent to being able to uniformly sample from S. Here S is the solution set of
a finite problem. The problem must be self reducible.

We define a problem Π to be self reducible if, given an instance P of size n:

1. The solutions that satisfy P can be written as binary strings in poly(n). Si is the set of
solutions with the first bit of the string i.
2. There is a problem P ′ ∈ Π of length less than n such that there is a bijection of the solutions in
P ′ to the solutions S0 (and so also S1.

Theorem 24.4.1 If Π is self reducible, then there is a near uniform way to sample solutions iff
there is an FPRAS for Π.

Near uniform way to sample solutions means the probability of selecting a particular solution is in
between (1− ε)/t and (1 + ε)/t, where there are t solutions total.

If you can sample near uniformly, then we can use the fact that:

|S| = |S|
|S0|

|S|0
|S00|

· · ·

to estimate |S| using our uniform sampling and self reducibility to estimate the ratios on the right
hand side. We will have a good estimate on |S| if we had a good way of sampling.

If we have an FPRAS for Π, then we estimate the size of S0 and S1 using our FPRAS. We
then select the first bit of our random solution to be 0 with probability |S0|

|S1| . We then recursively
pick the next bits of our random solution in the same way. The fact that our FPRAS is able to
approximate the number of solutions with a certain starting sequence of bits well means that we
get a close to uniformly picked solution.

24.5 Further Reading

A great set of lecture slides on this material can be found at:

http://www3.math.tu-berlin.de/ipco05/Pages/Download/IPCO05 Dyer LectureNotes.pdf

3

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Approx counting/sampling, MCMC methods Date: 4/24/07

The previous lecture showed that, for self-reducible problems, the problem of estimating the size of
the set of feasible solutions is equivalent to the problem of sampling nearly uniformly from that set.
This lecture explores the applications of that result by developing techniques for sampling from
a uniform distribution. Specifically, this lecture introduces the concept of Markov Chain Monte
Carlo (MCMC) sampling approaches.

25.1 Markov Chain Monte Carlo (MCMC)

25.1.1 Problem motivation

There are many situations where we wish to sample from a given distribution, but it is not im-
mediately clear how to do so. For example, we may have a function that gives the probability of
an event within a normalization factor, but no way to calculate that normalization factor. Or the
sample space of possible outcomes may be exponentially large, or even infinite.

25.1.2 Random walks and their properties

We approach this problem by considering our state space to be a graph, with individual events as
nodes on this graph. If we can define this graph in a way such that the stationary distribution of
a random walk over this graph is equal to our target distribution that we wish to draw samples
from, then samples from a random walk on this graph can be used to approximate samples from
the target distribution. We introduce the following definitions:

• Ω = the state space

• n = |Ω|

• P = the transition matrix, Pij = Pr[i → j]

• π = a distribution on the nodes in Ω

Then, if we start from a node chosen from the distribution π and take a single step according to our
transition matrix P , we get the distribution πP . Note that a random walk obeying these definitions
is memoryless. That is, the next step in the walk depends only on the current state, and not on
any history beyond that. This is also known as the Markov property, and our random walk is an
example of a Markov chain.

For our random walk, there are two quantities of particular interest. The first is the stationary
distribution π∗. This is a distribution over all states with the special property that π∗P = π∗. If
we follow a random walk on a Markov chain, after a while we expect our position to be distributed

1

according to π∗. This is the definition of a stationary distribution. It is the limit distribution of
the location of a random walk as the number of steps taken goes to infinity. There are special
properties of the chain which are required to guarantee the existence and uniqueness of π∗, and
these will be introduced shortly.

The second quantity of interest is the mixing time τǫ, which is a measure of how long a random
walk on the graph will take to converge to π∗. This will be defined more formally.

To illustrate these concepts, we will study the simple example of a d-regular undirected graph (all
vertices have degree d). We define the transition probabilities from vertex to be uniform over all
outgoing edges. That is, each edge is taken with probability 1/d. We then make the following
claims.

Claim 25.1.1 For a uniform random walk over our d-regular graph, π∗ is uniform.

Claim 25.1.2 For the directed version of our graph with d(in) = d(out) = d, π∗ is uniform.

Claim 25.1.3 If G is undirected, π∗(v) = d(v)

2m
.

To see this last claim, consider that we can also define our random walk as a distribution over all
edges. Let Q(u, v) be the probability of taking the edge (u, v). Then:

Q(u, v) = π∗(u)Puv (25.1.1)

=
d(u)

2m

1

d(u)
(25.1.2)

=
1

2m
(25.1.3)

Summing this over all d of v’s neighbors then shows us that this π∗ satisfies π∗P = π∗ for any all v

and is therefore a valid stationary distribution. The first two claims follow by a similar argument.

But when can we know that a unique π∗ exists? Consider the 2 example graphs shown in Figure
25.1.2. For the first graph, if we say that you start in the left node with probability 1, then your
probability of being in that node is 1 at the start of iteration 1,3,5,... and 0 at the start of iteration
2,4,6,... Although the uniform distribution satisfies πP = π, it is not guaranteed that all random
walks on the graph will converge to this distribution, as shown by this example. Therefore this
graph can not have a stationary distribution, because it is periodic. For the second graph, you
can reach 2 different stationary distributions starting from the center node, depending on which
direction is taken on the first step. In this case there is no unique stationary distribution. These
ideas are formalized in the following theorem:

Theorem 25.1.4 An aperiodic irreducible finite Markov chain is ergodic and has a unique station-
ary distribution.

A chain is aperiodic if for every state, there is no number > 1 which can divide the index of every
future step which has non-zero probability of returning to that state. That is, given that you are in
the state, there is no periodic pattern to when you can return (every second step, third step etc).
This can be a somewhat tricky notion to prove about a graph, but adding self-edges to all nodes

2

Figure 25.1.1: Two Markov chains which do not have unique stationary distributions.

automatically makes the chain aperiodic, so it is often easiest to simply define the graph in this
way.

A chain is irreducible if it is possible to get from any state to any other state. This notion of
’reachability’ can be considered an equivalence relation, with a chain being irreducible if all states
are in the same equivalence class.

Now we formally define the mixing time τǫ, first defining the mixing time of a random walk starting
from state x.

τǫ(x) = min{t s.t.|πxP t
′

− π∗|1 < ǫ ∀t′ ≥ t} (25.1.4)

Where πx = 1 for state x, and 0 for all other states. The mixing time for the chain itself is then:

τǫ = max
x

τǫ(x) (25.1.5)

Different chains can have widely varying mixing times. For example, a walk over a regular expander
can never get ’trapped’ in any subset of the graph, because of the expander property. In the ’lollipop’
graph (Figure 25.1.2) which consists of a clique with n/2 nodes and a long ’stem’ with n/2 nodes,
a random walk will take O(n3) steps to ever reach the end of the stem starting from a point inside
the clique.

25.1.3 Mixing time analysis

For a given chain then, we would like to bound τǫ by some polynomial in n. How can we do this?
There are 3 general analysis approaches.

1. Conductance

2. Canonical paths

3. Coupling

3

n / 2
n / 2

Figure 25.1.2: A graph with a slow mixing time.

The key property of the transition matrix which determines mixing time is the eigenvalue gap γ

between the principal and second eigenvalues. Assume that all eigenvalues λ are real (which is the
case for undirected graphs anyways). Then order the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn. Then call the
eigenvalue gap γ = λ1 − λ2.

We know that at least one of the λi’s is equal to 1, because by definition π∗ is an eigenvector or
P whenever a stationary distribution exists (π∗P = π∗). Since P is a stochastic matrix, it is also
easy to see that |λi| ≤ 1∀i, therefore λ1 = 1 and π∗ is the first eigenvector. It is also interesting
to note than if |λi| < 1, that means that vi must have mixed-sign components, and cannot be
normalized to sum to 1. Also, λ2 cannot be 1, unless the graph has a more than one strongly
connected component, and the stationary distribution is therefore non-unique.

Also, the eigenvectors of P are guaranteed to be orthogonal if P is real and symmetric, which
corresponds to a time-reversible Markov chain, where time-reversible means that π∗(u)Puv =
π∗(v)Pvu∀u, v.

Theorem 25.1.5 τǫ ≤ O(1

γ
log(n

ǫ
) for a time-reversible Markov chain.

Proof: Consider the representation of a distribution over states π in the basis of the eigenvectors
π =

∑

i
civi.

πP = (
∑

i

civi)P =
∑

i

ciλivi (25.1.6)

πP 2 =
∑

i

ciλ
2

i
vi (25.1.7)

πP t =
∑

i

ciλ
t

i
vi (25.1.8)

Observe that for |λi| < 1, λt

i
→ 0 as t → ∞. The lone exception if for i = 1, since |λ1| = 1. Thus we

can see that πP t → π∗ = c1v1 as t → ∞, where c1 = 1 as π∗ = v1. We can express the distribution
at time t in terms of the stationary distribution and an error term.

4

πP t = π∗ +
∑

i>1

ciλ
t

i
vi (25.1.9)

||πP t − π∗||2
2

= ||
∑

i

ciλ
t

i
vi||22 (25.1.10)

=
∑

i

c2

i
λ2t

i
||vi||22 (25.1.11)

(the previous step uses the orthogonality of the vi’s)

≤ λ2t

2

∑

i>1

c2

i
||vi||22 (25.1.12)

≤ λ2t

2 (25.1.13)

The final step can be seen by noting that
∑

i>1
c2

i
||vi||22 ≤

∑

i
c2

i
||vi||22 = ||π||2

2
≤ 1, because our

original π is a probability distribution.

Now we wish to use this ℓ2 bound to get an ℓ1 bound. It is a general result that, in n-dimensional
space ||x||1 ≤

√
n||x||2 (Figure 25.1.3). This result is essentially a restatement of the Cauchy-

Schwarz inequality. Plugging this result into our bound from above, we get:

Figure 25.1.3: Visual representation of bounding the ℓ1-norm in terms of the ℓ2-norm.

||πP t − π∗||1 ≤ λt

2

√
n (25.1.14)

We want to pick t such that λt

2

√
n ≤ ǫ.

(1 − γ)t
√

n ≤ ǫ (25.1.15)

e−tγ
√

n ≤ ǫ (25.1.16)
√

n

ǫ
≤ etγ (25.1.17)

t ≥
1

γ
log(

√
n

ǫ
) (25.1.18)

5

25.1.4 Conductance

Definition 25.1.6 The conductance φ(G) of a distribution π over graph G is defined as

φ(G) = min
S⊂V,π(S)≤1/2

[

∑

u∈S,v/∈S
π(u)Puv

π(S)

]

(25.1.19)

The quantity in the brackets can be roughly understood as the probability of ’escaping’ set S. The
conductance φ(G) then finds the ’stickiest’ set in G, and is closely related to the notion of graph
sparsity discussed earlier in the course. We can bound the conductance in terms of the eigenvalue
gap γ.

Theorem 25.1.7
φ2(G)

2
≤ γ ≤ 2φ(G) (25.1.20)

This inequality can be used to bound the sparsity, but since φ(G) can be small, φ2(G) can be
very small, giving a loose and unhelpful bound. If we can show that φ(G) is large however, this
bound will be relatively tight. A tight bound on the eigenvalue gap γ can then be plugged into the
previous theorem to bound τǫ. This is the basic approach of the conductance method.

Corollary 25.1.8

τǫ ≤ O(
1

φ2(G)
log(

n

ǫ
)) (25.1.21)

25.1.5 Canonical paths

The basic concept of the canonical paths technique is to find paths between all pairs of points
(canonical paths), and then argue that no edge is “overloaded” with respect to its probability,
which plays a role analogous to its capacity.

If the canonical paths can be shown to have low congestion, this can be shown to be equivalent to
saying the graph has high conductance.

Let Txy be the canonical path between x and y. Then the congestion ρ of a set of canonical paths
T be defined as:

ρ(T) = max
e

∑

e∈Txy,e=(u,v)

π∗(x)π∗(y)

Q(u, v)
(25.1.22)

The congestion ρ(T) can then be used to bound the mixing time τǫ.

Theorem 25.1.9
τǫ ≤ ρ(T) log(

n

ǫ
) (25.1.23)

6

25.1.6 Coupling

The coupling technique works by running two Markov chains X and Y in parallel. The chain
X is started from some initial distribution π, while the chain Y is started from the stationary
distribution π∗. The evolution of the chains im time is then coupled or linked. If it can be shown
that for some t we get Xt = Y t, then by the Markov property the chain X will have reached the
stationary distribution π∗.

Consider the example of the random walk on the graph shown in Figure 25.1.6. From our earlier
claims, we can immediately see the stationary distribution π∗ for this walk is uniform. So now
consider our two random walks X and Y , where their evolution is defined such that for each step:

• X chooses a neighbor uniformly

• Y go in the same ’direction’ as X

0 1 2 3 3 4

Figure 25.1.4: Coupling method example.

The key consequence of this scheme is that whenever one of the random walks is at an endpoint,
the distance between the two points will be reduced by 1 if that walk takes the self-loop edge of
that endpoint, which will happend with probability 1/2. This means that, no matter where the
two chains started, we can guarantee that X = Y after a self-loop edge has been taken n times.
The following lemma formalizes the relationship between mixing (small ||Xt − πt||1) and coupling
(Xt = Y t).

Lemma 25.1.10 ||Xt − π∗||1 ≤ 2Pr[Xt 6= Y t]

Proof:

Pr[Xt = Y t] ≤
∑

i

min{Xt

i
, Y t

i
} (25.1.24)

||Xt − Y t||1 =
∑

i

max{Xt

i
, Y t

i
} − min{Xt

i
, Y t

i
} (25.1.25)

=
∑

i

(max{Xt

i
, Y t

i
} + min{Xt

i
, Y t

i
}) − 2min{Xt

i
, Y t

i
} (25.1.26)

= 2 − 2
∑

i

min{Xt

i
, Y t

i
} (25.1.27)

≤ 2(1 − Pr[Xt = Y t]) (25.1.28)

≤ 2(Pr[Xt 6= Y t]) (25.1.29)

7

In order to complete the argument, we need to determine a t such that Pr[Xt 6= Y t] ≤ ǫ. The crux
of this method is determining the hitting time h(u, v) for each pair of points (u, v), where h(u, v)
is the expected time to reach v, starting from u. This will give us the time it takes to go to an end
point on the line starting from an arbitrary point in the middle.

For this example, the maximum h(u, v) occurs when u and v are the two endpoints on the opposite
sides of the graph, A and B. This can be shown to be n2 by solving the following set of equations.

h(i, 0) = 1 +
1

2
h(i − 1, 0) +

1

2
h(i + 1, 0) ∀1 < i < n (25.1.30)

h(1, 0) = 1 +
1

2
h(2, 0) (25.1.31)

This O(n2) hitting time in turn implies an O(1/ǫ, n3) mixing time for this random walk. We omit
the details of this step, which involves the use of Markov’s inequality.

The coupling analysis technique requires typically requires the underlying graph to have a nice,
known structure. It can be applied to a number of Markov chains, such as electrical networks, card
shuffling, and random graph colorings.

References

[1] V. Vazirani. Approximation Algorithms. Springer, 2001.

8

CS880: Approximations Algorithms

Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla
Topic: Metropolis method, volume estimation Date: 4/26/07

The previous lecture discussed they some of the key concepts of Markov Chain Monte Carlo
(MCMC) methods, including the stationary distribution π∗ and the mixing time τǫ. This lec-
ture introduces the Metropolis method for constructing Markov chains in order to sample from
some distribution. The use of sampling methods for volume estimation is also introduced.

26.1 Metropolis method

26.1.1 MCMC review

Recall from last time the key properties of a random walk Markov chain.

• Ω = the state space

• n = |Ω|

• P = the transition matrix, Pij = Pr[i → j]

• π∗ = the stationary distribution such that π∗P = π∗

• τǫ = the mixing time, after which the ℓ1-norm of the difference between the chain distribution
and the stationary distribution is guaranteed to be < ǫ.

Also recall this important theorem concerning the existence and uniqueness of the stationary dis-
tribution π∗.

Theorem 26.1.1 An aperiodic irreducible finite Markov chain is ergodic and has a unique station-
ary distribution.

We can easily guarantee the aperiodicity of our chain by simply adding self-loops to all vertices.
This will increase the mixing time by no more than a factor of 2.

26.1.2 Metropolis filter

But how do we actually construct a Markov chain with a stationary distribution equal to our
target distribution? Also, we want this method to have a good (that is, small) mixing time. The
Metropolis method allows us achieve these goals by defining our Markov chain as a random walk
over a suitably defined graph.

We define the approach as follows. Say we which to sample values i ∈ Ω from a distribution Q(i).
Then we define an undirected d-regular graph G on Ω, picking this graph in such a way that it has
high conductance. Then from node v, pick the next node u uniformly from the d neighbors. Then:

1

• If Q(u) ≥ Q(v), move to node u

• Else move to node u with probability Q(u)

Q(v)
, stay with probability (1 − Q(u)

Q(v)
).

First we examine the graph itself. Since it is fully connected and undirected, it is irreducible.
Since all nodes have self-edges, it is aperiodic. Therefore this random walk is guaranteed to have a
unique stationary distribution π∗. Now we must show that this stationary distribution is equal to
our target distribution Q.

Claim 26.1.2 π∗ = Q

Proof: Say that our initial π = Q, then take one step. Consider any node v, and calculate the
probability of arriving at node v after this one step. If it is equal to Q(v), then we have shown that
QP = Q, and therefore π∗ = Q.

We need to calculate the probability of starting at distribution Q, taking one step, and then ending
up in state v. This can be decomposed into three cases: we move from a neighbor u into v where
Q(u) ≥ Q(v), we move from a neighbor u into v where Q(u) < Q(v), or we are already in v and
we choose a neighbor u such that Q(u) < Q(v) but we end up staying at v. Let n be the number
of neighbors u such that Q(u) ≥ Q(v).

Q′(v) =
∑

u|(u,v)∈G,

Q(u)≥Q(v)

1

d
Q(u)

Q(v)

Q(u)
+

∑

u|(u,v)∈G,

Q(u)<Q(v)

1

d
Q(u) +

∑

u|(u,v)∈G,

Q(u)<Q(v)

1

d
Q(v)(1 −

Q(u)

Q(v)
) (26.1.1)

=
n

d
Q(v) +

d − n

d
Q(u) +

d − n

d
Q(v) −

d − n

d
Q(u) (26.1.2)

= Q(v) (26.1.3)

This shows that a random walk using the Metropolis method is guaranteed to converge to our target
distribution Q. It is worth noting that our scheme of uniformly choosing a neighbor is a special case
of the general Metropolis-Hastings sampler [3]. In the more general case, a proposal distribution is
used to select the next candidate state conditioned on the current state. This proposal distribution
need not be uniform over neighbors, and in fact need not even be symmetric.

26.1.3 Volume estimation

An interesting application of sampling techniques is the problem of estimating the volume of a
convex shape K ∈ R

n using an inclusion oracle which reveals whether a given point is contained
in the shape or not. We are also given two balls, one completely enclosing K and one completely
enclosed by K. Call these K ⊆ B(0, R) and K ⊇ B(0, r). This technique that we use has interesting
parallels to the concept of self-reducibility.

What is the probability that a uniformly chosen point in the larger ball will be in K? We can use
the smaller ball to bound this probability as ≥ vol(B(0,r))

vol(B(0,R))
. However, for large n we will suffer the

’curse of dimensionality’ [4], and this lower bound will be very small, in particular (r

R
)n.

2

The key insight of our approach is that we can use a sample from a series of regions Ki in order
to make the probability of finding a point in the region as large as possible.

K

r

R

K_i+1

Figure 26.1.1: An example of our volume estimation problem setup.

K = Ko ⊆ K1 ⊆ ... ⊆ K
ℓ
= B(0, R) (26.1.4)

These regions are constructed such that vol(Ki+1)

vol(Ki)
is small for all i. Furthermore we choose a small

ℓ ≈ n log(R

r
), so we do not need to iterate too many times. We can estimate the volume of K using

estimates of the ratios of adjacent Ki in the following way.

vol(K) =
vol(Ko)

vol(K1)

vol(K1)

vol(K2)
...

vol(K
ℓ−1)

vol(K
ℓ
)

vol(B(0, R)) (26.1.5)

So now we simply need to figure out how to sample from Ki. We define Ki as a re-scaling of K,
subject to containment by B(0, R).

Ki = (1 + 1/n)iK ∩ B(0, R) (26.1.6)

This gives us a nice bound on the volume ratio of adjacent Ki.

vol(Ki+1)

vol(Ki)
≤ (1 + 1/n)n = e (26.1.7)

3

Note that (1 + 1

n
)n log R/rK contains B(0, r), therefore e is indeed O(n log R/r).

To sample from Ki, we then simply sample uniformly from K and then re-scale. But how to sample
from K itself? To approach this problem, we employ the MCMC methods we have been discussing.

We define our random walk, known as the Ball-walk, as follows. From any point u ∈ K, sample a
point randomly from the ball centered at u with radius δ, B(u, δ), and move to the new point if it
is inside K. If the point is outside K, stay at u.

Note that the graph defined by this rule allows us to reach any point from any other point, and also
allows self-loops. Therefore it is irreducible and aperiodic, and must have a unique stationary dis-
tribution π∗. The resulting Markov chain is time-reversible. Therefore, the stationary distribution
is uniform.

For the practicality of this scheme, it is important to choose a good value for δ in order to get good
samples from K. Taken to the extreme, a huge δ value would result in constantly picking points
outside K, and therefore remaining at the current point. Likewise, a very small δ would result in
taking very small steps, making it very slow to explore all of K. Also, if something is known about
the geometry of K, it may be helpful to rescale the proposal ball to an ellipse, for example. This
is accomplished by putting the body in an “isotropic” position via an affice transformation, so as
to remove all sharp corners.

Figure 26.1.2: Rescaling the proposal ball to an ellipse based on the geometry of K.

The first approach based on this technique was polynomial in n, but with an unfortunate order
O(n23) [1]. Newer approaches, dubbed ’hit and run’, first choose a direction, and then sample
uniformly from the line segment along that direction contained in K. This approach drastically
improves mixing time, achieving Õ(n4) [2].

Figure 26.1.3: The ’hit and run’ technique.

4

The inapproximability result is that one cannot estimate volume within a constant factor in Ω(n2)
time.

References

[1] Martin Dyer, Alan Frieze, Ravi Kannan. A random polynomial-time algorithm for approximat-
ing the volume of convex bodies. JACM 1991.

[2] Laszlo Lovasz, Santosh Vempala. Simulated Annealing in Convex Bodies and an O(n4) Volume
Algorithm FOCS 2003.

[3] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University
Press, 2003.

[4] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

[5] V. Vazirani. Approximation Algorithms. Springer, 2001.

5

CS880: Approximation Algorithms

Scribe: Matt Elder Lecturer: Shuchi Chawla
Topic: Lagrangian Relaxation Date: 4/26 and 4/27, 2007

We have seen many examples of the utility of linear programming. In some cases, to round an LP
solution to an integer solution demands that we relax a constraint that we prefer to maintain. The
Lagrangian technique will yield a method to maintain such constraints. This technique is especially
useful for bicriteria optimization problems, that is, problems with two objectives where we have a
fixed bound on one objective and want to optimize the other.

For example, recall the k-median problem: We are given a set of customers, a set of facilities, and a
routing cost from each customer to each facility. We want to open no more than k facilities, while
minimizing the total routing cost. Using standard LP techniques, it is difficult to round a relaxed
LP solution to an integer LP solution without using more than k facilities. Lagrangian relaxation
provides a workaround for this problem, so that we can guarantee that the final, integer solution
obeys the k-facility constraint.

To demonstrate the technique of Lagrangian relaxation, we consider a solution to the k-minimum
spanning tree problem. An approximation to k-median can be obtained in a similar way.

26.1 k-Minimum Spanning Trees

In an instance of the k-minimum spanning tree problem, we have a graph G = (V,E), a cost ce > 0
for each edge in E, and a root vertex r ∈ V . We want to find a tree that connects at least k nodes
to the root while minimizing the total cost for the tree’s edges. We are free to choose the set of k

vertices that we will connect to the root r; call this set S.

Note that the relationship between the k-MST problem and the prize-collecting Steiner tree problem
is analogous to the relationship between the k-median problem and the facility location problem.
Both k-MST and k-median contain a constant-size-set restriction, which performs the task of an
extra cost parameter in prize-collecting Steiner tree and facility location. As we will see, this
relationship is central to the idea of the Lagrangian relaxation technique.

The integer LP for k-MST is as follows:

1

yv =

{

1, v is not in the tree.

0, otherwise.

xe =

{

1, e is in the tree.

0, otherwise.
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

∑

v∈V

yv ≤ n − k. (∗)

minimize
∑

e∈E

cexe.

To use LP techniques, we need to relax this integer LP to a real-valued LP, and somehow still
be able to respect Constraint ∗ when we round real values back to integers. We shall do this by
introducing a family of LPs, parameterized by the Lagrange multiplier λ. We can think of varying
λ as varying the cost of omitting vertices from our tree. It’s important to note that λ is not, itself,
a variable of the LP. It is a parameter of the LP, and is constant with respect to any routine that
produces LP solutions. So, define the linear program LR

λ
as follows:

yv ∈ [0, 1]

xe ∈ [0, 1]
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

minimize
∑

e∈E

cexe + λ

(

∑

v

yv − (n − k)

)

.

The term λ (
∑

v
yv − (n − k)), above, replaces Constraint ∗ in the original LP. For any λ, the LP

LR
λ

has the same optimal solution as the following prize-collecting Steiner tree LP, PCST
λ
:

yv ∈ [0, 1]

xe ∈ [0, 1]
∑

e∈δ(S)

xe ≥ 1 − yv, ∀S ⊆ V \ {r} ,∀v ∈ S.

minimize
∑

e∈E

cexe + λ

(

∑

v

yv

)

.

2

Allowing LP names to stand for the optimal values of their objective functions, it’s clear that
PCST

λ
− λ(n − k) = LR

λ
. Furthermore, any solution to the k-MST problem is a feasible solution

to LR
λ
; when Constraint ∗ is tight, as it is for all solutions to the k-MST problem, then the objective

value of this solution is the same in both problems. So, LR
λ
≤ OPT. (OPT is the optimal solution

to k-MST. Remember, that’s the problem that we’re (still) trying to approximate.)

Let PCST′
λ

be the integer solution to PCST
λ

yielded by the LP-dual algorithm. If we let λ = 0,
then PCST′

λ
is a tree containing only the root because there is no penalty for leaving unused

vertices. Similarly, if we let λ = maxe ce, then PCST′
λ

will contain all vertices because the penalty
for unused vertices dominates the cost of expanding the tree. So, it seems like there should be some
moderate value of λ for which PCST′

λ
contains nearly k vertices. This need not quite be the case,

but we can use binary search to find two values of lambda, λ1 ≈ λ2, for which we get two trees T1

and T2 such that |T1| < k < |T2|. From these trees, we can interpolate a solution using exactly k

vertices. However, with luck, this interpolation may not be necessary.

Theorem 26.1.1 If PCST′
λ

has k vertices, then it gives a 2-approximation to k-MST.

Proof: Let x, y
def

= PCST′
λ
. Since PCST′

λ
has k vertices, we know that

∑

v
yv = n − k. Then, by

our analysis of Problem 4 in Homework 3,

∑

e

cexe + 2λ
∑

v

yv ≤ 2PCST
λ
, so

∑

e

cexe ≤ 2

(

PCST
λ
− λ

∑

v

yv

)

= 2 (PCST
λ
− λ(n − k)) = 2LR

λ
≤ 2OPT.

If we are unable to find a λ such that PCST′
λ

has exactly k vertices, then we need to find a way
to combine T1 and T2 into a single tree, which does not cost much more than OPT. Let λ1 = λ2;
except that they generate two different trees, we assume that the difference between λ1 and λ2 is
negligible.

Let µ1 and µ2

def

= 1 − µ1 satisfy µ1k1 + µ2k2 = k, where k1 = |T1| and k2 = |T2|. Then:

µ1 =
k2 − k

k2 − k1

µ2 =
k − k1

k2 − k1

Now, letting c(T) denote the cost of tree T , we know the following

c(T1) + 2λ(n − k1) ≤ 2PCST
λ
, and

c(T2) + 2λ(n − k2) ≤ 2PCST
λ
, so

µ1c(T1) + µ2c(T2) + 2λ(n − µ1k1 − µ2k2) ≤ 2PCST
λ
, which yields

µ1c(T1) + µ2c(T2) ≤ 2 (PCST
λ
− λ(n − k)) ≤ 2OPT.

3

If µ2 ≥ 1

2
, then c(T2) ≤ 2µ2c(T2) ≤ 4OPT. Since |T2| > k, we can simply use T2 as our solution.

Otherwise, µ1 ≥ 1

2
. Let T ′

2

def

= T2 \ T1. The following subroutine, Find-Subtree, will find a subtree
of T2 of size at least (k − k1).

Find-Subtree:

1. Exchange each undirected edge of T2 for two directed edges of the same cost, one pointing
each way. These edges form an Euler tour containing all vertices of T ′

2
. Note that each vertex

appears twice in the tour.

2. From each vertex in T ′
2
, start following the Euler tour in a clockwise direction until 2(k − k1)

nodes of T ′
2

are encountered, including repeats. This gives us at least 2(k2 − k1) different
subpaths of the Euler tour, two for each vertex in T ′

2
.

3. Return the shortest such subtour.

Each edge of the Euler tour belongs to exactly 2(k − k1) subpaths and there are at least 2(k2 − k1)
subpaths in all. Therefore, since the cost of the entire Euler tour is 2c(T2), one of the subpaths has

length at most 2(k−k1)

2(k2−k1)
2c(T2).

So, suppose that Find-Subtree outputs the tree S. S contains at least (k − k1) distinct nodes of

T2, and costs at most 2(k−k1)

k2−k1
c(T2) = 2µ2c(T2).

We build the interpolated tree by starting with T1, adding S, and adding the shortest path from
T1 to S. The first piece has cost c(T1) and the second has cost c(S) ≤ 2µ2c(T2). If we have
preprocessed the graph to throw away all nodes whose distance to the root is greater than OPT,
we can ensure that this last path has cost no more than OPT. We don’t know what OPT is, so
we’ll need to run this entire algorithm n times; on run i we remove the i vertices farthest from the
root.

Thus:

total cost = c(T1) + c(S) + cost of shortest path (26.1.1)

≤ 2µ1c(T1) + 2µ2c(T2) + OPT (26.1.2)

≤ 4OPT + OPT (26.1.3)

= 5OPT. (26.1.4)

Thus, the technique of Lagrangian relaxation gives us this algorithm, a 5-approximation to the
k-minimum spanning tree problem.

4

CS880: Approximations Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Inapproximability Date: 4/27/2007

So far in this course, we have been proving upper bounds on the approximation factors achievable
for certain NP -hard problems by giving approximation algorithms for them. In this lecture, we
shift gears and prove lower bounds for some of these problems, under the assumption that P 6= NP .
For some problems, essentially matching upper and lower bounds are known, indicating that the
approximability properties of these problems are well-understood. We show that (nonmetric) TSP
cannot be approximated within any factor. We also show that the Edge Disjoint Paths problem is
NP -hard to approximate within a factor of O(m1/2−ε) for all ε > 0, essentially matching the O(

√
m)

algorithm obtained in a previous lecture. Finally, we give a bootstrapping argument showing that
if the Clique problem cannot be approximated within some constant factor, then it cannot be
approximated within any constant factor.

27.1 Framework

The study of approximation algorithms is mostly focused on NP -hard problems. These problems
cannot be solved in polynomial time, assuming P 6= NP . Our general goal is to show that under
the same assumption, not only can these problems not be solved exactly, but they cannot even be
approximated within certain factors in polynomial time. While the complexities of solving NP -
complete problems exactly are all polynomially related, we have already seen evidence that these
problems can exhibit wildly different approximability properties. For example, we have seen that
the Knapsack problem has an FPTAS, indicating that it has a loose grip on its intractability, in
some sense. We will shortly see that TSP cannot be approximated within any factor, indicating
that it has a very strong grip on its intractability.

We begin by recalling the standard method for showing that a language L is NP -hard. One begins
with another NP -hard language, say SAT, and exhibits a polynomial-time mapping reduction from
SAT to L. This reduction takes an instance x and produces an instance y such that x ∈ SAT iff
y ∈ L. This can be viewed pictorially as follows.

SAT

Yes

No

L

Yes

No

Thus if we had a polynomial-time (exact) algorithm for L then we could compose it with the

1

reduction to obtain a polynomial-time algorithm for SAT. For inapproximability results, L is an
optimization problem, say a maximization problem, rather than a language, and we would like it to
be the case that composing a polynomial-time approximation algorithm for L with the reduction
yields a polynomial time-algorithm for SAT. This goal is achieved with a gap-introducing reduction,
illustrated as follows.

SAT

Yes

No

L

OPT >

OPT <

α

β

This type of reduction maps the “yes” instances of SAT to instances of L with optimal objective
value greater than α, and it maps the “no” instances of SAT to instances of L with optimal objective
value less than β, for some parameters α and β. An α/β-approximation algorithm for L has the
property that on instances with OPT < β it produces a solution of value less than β (obviously)
and on instances with OPT > α it produces a solution of value greater than α

α/β
= β. Thus

an exact algorithm for SAT can be obtained by applying the mapping reduction followed by the
purported approximation algorithm, and testing whether the output has value greater than or less
than β. Thus exhibiting such a gap-introducing reduction shows that it is NP -hard to approximate
L within a factor of α/β.

With NP -hardness proofs, one doesn’t always reduce from SAT; after proving that a problem L is
NP -hard, it gets added to the arsenal of problems one can reduce from. Similarly, once we have
established an inapproximability result for L, we would like to be able to establish inapproximability
results for other problems by means of a reduction from L. However, in this case we don’t need to
do the work of introducing a gap with our reduction; we merely need to preserve the gap. This is
achieved with a gap-preserving reduction, illustrated as follows.

L

OPT >

OPT <

α

β

α

β

L’

OPT’>

OPT’<

’

’

It is clear from the picture that if there is a gap-introducing reduction from SAT to L as in
the previous figure then composing it with this gap-preserving reduction yields a gap-introducing

2

reduction from SAT to L′, proving that L′ is NP -hard to approximate with a factor of α′/β′. We
will see examples where L and L′ are the same problem but α′/β′ > α/β; these reductions can
appropriately be called gap-amplifying reductions.

We have been assuming that the problems we are dealing with are maximization problems, but the
same concepts apply to minimization problems. We now look at some concrete examples of how
this framework is employed to prove inapproximability results.

27.2 Traveling Salesperson Problem

Our first example is for the Traveling Salesperson Problem (TSP), in which we are given a set
of n nodes and a distance between each pair of nodes, and we seek a minimum-length tour that
visits every node exactly once. Recall that in a previous lecture, we obtained a 3/2-approximation
algorithm for Metric TSP. How much does the approximability deteriorate when we eliminate the
requirement that the distances form a metric? We show that TSP in its full generality is actually
inapproximable in a very strong sense.

Theorem 27.2.1 TSP cannot be approximated within any factor unless P = NP .

Proof: Recall the standard NP -hardness proof for TSP, which is a reduction from the Hamiltonian
Tour problem. Given an unweighted graph G, we construct a TSP instance on the same set of nodes,
where nodes adjacent in G are at distance 1 and nodes not adjacent in G are at distance ` for some
value ` > 1. Now if G has a Hamiltonian tour then the TSP instance has a tour of length n (the
number of nodes) and otherwise every tour in the TSP instance has length at least n− 1+ `. Thus
this reduction is, in fact, a gap-introducing reduction, proving that TSP is hard to approximate
within any factor less than (n−1+`)/n. Since we can choose ` to be as large as we like, this proves
the theorem.

Note that this result critically uses the fact that the distances are not required to form a metric. The
largest we can make ` and still be guaranteed that the distances form a metric is ` = 2. This implies
that Metric TSP is NP -hard to approximate within any factor less than (n − 1 + 2)/n = 1 + 1/n.
However, it is known that Metric TSP is NP -hard to approximate within a factor of 1+ ε for some
constant ε > 0.

27.3 Edge Disjoint Paths

Our second example is for the Edge Disjoint Paths (EDP) problem, in which we are given an
unweighted graph and k terminal pairs (si, ti) and seek to connect si to ti with edge disjoint paths
for as many i as possible. In a previous lecture, we gave an O(

√
m)-approximation algorithm for

this problem, where m is the number of edges. We now show that that result is essentially tight.

There is an NP -hardness proof for EDP where the hard EDP instances only have k = 2 terminal
pairs. Since for such instances, the optimum objective value is either 2 or at most 1, we immediately
get the following result.

Theorem 27.3.1 For k = 2, EDP is NP -hard to approximate within any factor less than 2.

We employ a bootstrapping argument to show that Theorem 27.3.1 implies the following result.

3

Theorem 27.3.2 EDP is NP -hard to approximate within a factor of O(m1/2−ε) for all ε > 0.

Proof: We give a gap-amplifying reduction from EDP with 2 source-sink pairs to EDP. Suppose
we are given a graph H with two terminal pairs (x1, y1) and (x2, y2). We construct an EDP instance
with k terminal pairs, for some k to be determined later, in a graph G having the following general
structure.

s s s s

t

t

t

t1

2

3

k

2 3 k1

If we expand each of the filled-in nodes into a single edge like this:

then the optimal objective value is always 1 since for every two (si, ti) pairs, the unique paths
connecting si to ti intersect at some filled-in node and would thus have to share the edge there. If
we expand each of the filled-in nodes into a pair of edges like this:

then the optimal objective value is always k, since each filled-in node can accomodate both of the
(si, ti) pairs whose paths intersect there.

4

Instead, we expand each filled-in node into a copy of H, as follows.

x1

1y

x2y2 H

It follows that if H has edge disjoint paths from x1 to y1 and from x2 to y2, then each of the
filled-in nodes can accommodate both (si, ti) pairs that would like to use it, implying that the
optimal objective value for G is k, and otherwise each filled-in node can accomodate at most one
(si, ti) pair, implying that the optimal objective value for G is 1. We have succeeded in amplifying
the trivial factor 2 gap for H into a factor k gap for G.

Let h denote the number of edges in H. For any given ε > 0, we can take k = h1/ε and the
reduction still runs in polynomial time. Since the number of edges in G is m = O(k2h) = O(k2+ε),
the inapproximability factor we achieve is k = Ω(m1/(2+ε)), which suffices to prove the theorem.

Interestingly, the above proof shows a large gap between the objective values in an EDP instance and
the same instance of the fractional version of EDP, which is just a multicommodity flow problem.
If H is connected but does not have edge disjoint paths connecting both terminal pairs, then the
optimal integral objective value in G is 1, but the optimal fractional objective value is k/2 since
we can route 1/2 unit of each commodity without sending more than 1 unit of flow along any edge
in G.

27.4 Clique

Our third example is for the Clique problem, in which we are given an unweighted graph and seek a
maximum size clique in it. The best known approximation algorithm for this problem achieves an
approximation guarantee of O(n/ log2 n), so even when there is a clique of size Ω(n), the algorithm
only guarantees that it will find a clique of size Ω(log2 n). Indeed, the known inapproximability
results come close to matching this bound; the best such result to date shows that for all ε > 0,
Clique cannot be approximated within a factor of n1−ε unless NP = ZPP [1].

We now prove the following result, which is another example of a bootstrapping argument.

5

Theorem 27.4.1 If Clique is NP -hard to approximate within a factor of α, then it is also NP -
hard to approximate with a factor of α2.

Proof: We give a gap-amplifying reduction from Clique to itself. Suppose we are given a graph
G = (V,E). We construct the graph G′ = (V ′, E′) as follows. We take V ′ = V × V , and let
{(u, v), (w, x)} ∈ E′ iff both of the following conditions hold:

1) {u,w} ∈ E or u = w

2) {v, x} ∈ E or v = x.

We claim that if the maximum clique size in G is k, then the maximum clique size in G′ is k2. We
first show that the maximum clique size in G′ is at least k2 by taking an arbitrary clique Q ⊆ V in
G and showing that Q × Q ⊆ V ′ is a clique in G′. Let (u, v) and (w, x) be nodes in Q × Q. Since
u,w ∈ Q, condition 1 follows immediately. Since v, x ∈ Q, condition 2 follows immediately. Thus
{(u, v), (w, x)} ∈ E′ and Q × Q is a clique of size k2 in G′.

Now we show that the maximum clique size in G′ is at most k2. Consider an arbitrary clique S ⊆
V ×V in G′, and let S

`
= {u : (u, v) ∈ S for some v ∈ V } and Sr = {v : (u, v) ∈ S for some u ∈ V }.

Now S
`

is a clique in G since if u 6= w are nodes in S
`

then there exist v, x ∈ V such that
(u, v), (w, x) ∈ S and thus {(u, v), (w, x)} ∈ E′, which implies that {u,w} ∈ E by condition 1.
Similarly, Sr is a clique in G. We have |S

`
| · |Sr| ≥ |S|, and since |S

`
| ≤ k and |Sr| ≤ k, we get that

|S| ≤ k2, as desired. This finishes the proof of our claim.

It follows that if the maximum clique size in G is either at least s or less than s/α, for some value
s, then the maximum clique size in G′ is either at least s2 or less than (s/α)2 = s2/α2. Thus we
have succeeded in amplifying a gap of α to a gap of α2.

In the next lecture, we will see inapproximability results based the PCP Theorem, a deep result in
complexity theory.

References

[1] J. Hastad. Clique is Hard to Approximate within n to the power 1-epsilon. In Acta Mathematica,
182, 1999, pp. 105-142.

6

CS880: Approximation Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Inapproximability Date: 5/1/2007

In this lecture we continue our discussion of inapproximability by discussing results based on prob-
abilistically checkable proofs (PCPs). In particular, we show how the PCP Theorem, a deep result
in computational complexity, is essentially equivalent to the inapproximability of MAX-3SAT. We
also show how a strengthening of the PCP Theorem leads to a tight inapproximability result for
MAX-3SAT, and we discuss other issues related to PCPs.

28.1 Probabilistically Checkable Proofs

Recall the template developed in the last lecture for proving inapproximability results. One exhibits
a reduction from an NP -complete problem such as SAT to an optimization (say, maximization)
problem L in such a way that Yes instances are mapped to instances with optimal objective value at
least some α and No instances are mapped to instances with optimal objective value at most some
β. The existence of such a reduction proves that L is NP -hard to approximate within any factor
better than α/β. In the last lecture we saw examples where standard NP -hardness reductions
were used to obtain weak inapproximability results in the above way, and self-reductions were used
to magnify the hardness factor achieved. These reductions primarily exploited properties of the
problem for which an inapproximability result was desired, i.e. the problem being reduced to. In
this lecture, we instead focus on properties of the problem being reduced from.

The problem being reduced from is an NP -complete problem, or more generally an arbitrary
problem in NP . We now revisit the definition of NP and see how different characterizations of
NP can afford additional structure that we can exploit in our gap-introducing reductions. Ideally,
we would like the Yes instances to look very different from the No instances in some sense, so that
it’s easier to introduce a gap in the reduction.

Definition 28.1.1 A language L is in NP if there exists a polynomial-time verifier V and a
constant c such that for an input x of length n, the following two properties are satisfied.

1) (Completeness) If x ∈ L then there exists a witness y of length O(nc) such that V accepts the
pair 〈x, y〉.

2) (Soundness) If x 6∈ L then for all witnesses y of length O(nc), V rejects 〈x, y〉.

The terminology completenss and soundness is a carry-over from logic, where completenss refers
to the property that all true statements are provable in a given proof system, and soundness refers
to the property that no false statements are provable.

Intuitively, there isn’t much of a gap between Yes instances and No instances according to this
definition, since out of the exponentially many candidate witnesses, a single witness can make
or break the membership of x to L. We now alter our notion of proof verification from that of

1

explicitly verifying the correctness of a proof to that of just randomly spot-checking a few locations
of the proof. This is the notion of probabilistically checkable proofs, or PCPs for short. This notion
leads to a surprising and robust characterization of NP , and the restricted structure of this new
type of verifier for NP languages can be exploited in our reductions to prove a wide variety of
inapproximability results.

Definition 28.1.2 A language L is in PCPc,s(r, q) if there exists a polynomial-time verifier V
that, given an input x of length n and a purported proof y, runs in time poly(n), uses r(n) bits of
randomness, makes q(n) queries to y, and satisfies the following two properties.

1) (Completeness) If x ∈ L then there exists a y such that V accepts the pair 〈x, y〉 with proba-
bility at least c.

2) (Soundness) If x 6∈ L then for all y, V accepts 〈x, y〉 with probability at most s.

Note that in principle there is no limit on the size of y. Of course, y should be at most exponentially
long, since otherwise the verifier would not have time to write down an index into y. However, we
will soon see that for NP , y only needs to be polynomially long. Also note that the size of the
alphabet that y is presented in is not specified. Frequently, we assume the binary alphabet is used,
but sometimes it is more convenient to work with larger alphabets.

Let us see how PCPs relate to the standard definition of NP presented above. Clearly, a standard
NP verifier can be thought of as a PCP verifier that uses no randomness, queries polynomially
many bits of the proof, and accepts with probability 1 or 0. Thus, the standard definition of NP
can be viewed as follows.

Observation 28.1.3 NP = PCP1,0(0, poly(n)).

This characterization has excellent completeness and soundness parameters, but it uses many
queries. At the other extreme, we have the following characterization.

Observation 28.1.4 NP = PCP
1/2O(n)

,0
(poly(n), 0).

Proof: An NP statement can be verified by randomly guessing a witness and checking that
it causes the standard verifier to accept. Conversely, a PCP

1/2O(n)
,0
(poly(n), 0) language can be

solved in NP by interpreting the witness as a random string that causes the PCP verifier to accept.

This characterization is not terribly useful either since the completeness parameter is terrible. Is
there some way to interpolate between these two characterizations? As a step in this direction, we
can obtain the following characterization, which exploits the NP -completeness property of 3SAT.

Observation 28.1.5 NP = PCP
1,1−1/n

O(1)(O(log n), 3).

Proof: The inclusion from right to left follows from Lemma 28.1.7, which we argue below. For
the inclusion from left to right, it suffices to demonstrate a PCP1,1−1/m

(O(logm), 3) verifier for
3SAT, where m is the number of clauses in the given formula ϕ. The verifier can interpret the
proof as an assignment the variables of ϕ. It can select one clause uniformly at random, query the
three bits of the proof containing the values of the variables in that clause, and accept if and only
if the clause is satisfied by the assignment. If ϕ is satisfiable then a satisfying assignment causes

2

the verifier to accept with probability 1. If ϕ is not satisfiable then all purported proofs encode
a non-satisfying assignment, and so with probability at least 1/m, the three queried bits will not
satisfy that clause.

The 3SAT verifier described above has very nice r and q parameters, but its soundness is rather high.
This is because an unsatisfiable formula may be very close to being satisfiable, in the sense that some
assignment satisfies all but one of its clauses. Indeed, recalling the standard mapping reduction
from an arbitrary NP language to 3SAT, one can see that the formulas produced are encodings of
nondeterministic computations, and there is a single clause expressing that the computation must
be accepting. It is always possible to satisfy all clauses except this last one simply by encoding a
valid nonaccepting computation.

Driving the soundness down to a constant value without spoiling the r and q parameters requires
working with encodings that are robust in the sense that any error in the proof must be “spread
out” so that it is caught with constant probability. In fact, this can be achieved; this is the content
of the famous PCP Theorem, due to [1] and [2]. The proof of this celebrated result is very involved,
so we omit it.

Theorem 28.1.6 (The PCP Theorem) NP = PCP1,1/2(O(log n), O(1)).

The difficult direction of the PCP Theorem is the inclusion from left right. The other inclusion
follows from the following lemma. This lemma also finishes the proof of Observation 28.1.5. Finally,
this lemma justifies the claim we made earlier that restricting our attention to polynomial-size proofs
for NP is no loss of generality.

Lemma 28.1.7 PCPc,s(r(n), q(n)) ⊆ NTIME(2O(r(n)+q(n))nO(1)).

Proof: Consider a PCP where the verifier uses r(n) random bits and makes q(n) queries. For
each random string, the number of locations of the proof that could ever get queried is at most 2q(n)

(due to the possibly adaptive nature of the verifier). Thus over all proofs and all random strings,
there are at most 2r(n)+q(n) locations that ever get queried (for a given input). A nondeterministic
machine can guess the addresses and answers to these queries in time 2r(n)+q(n)nO(1). It can then
run over all random strings, simulate the verifier for each one (looking up the answers to queries
in the guessed table), and explicitly compute the probability of acceptance of the verifier for the
guessed proof. This takes time 2r(n)nO(1). If the probability of acceptance is at least c then the
machine should accept, and otherwise it should reject.

28.2 Inapproximability of MAX-3SAT

While the PCP Theorem is quite interesting and profound in its own right, some of its major
customers are inapproximability results. We now show that the PCP Theorem is actually equivalent
in some sense to the inapproximability of MAX-3SAT.

Theorem 28.2.1 The following are equivalent.

1) NP ⊆ PCP1,1/2(O(log n), O(1)).

2) There is a mapping reduction from 3SAT to 3SAT that maps satisfiable formulas to satisfiable

3

formulas and maps unsatisfiable formulas to formulas for which no assignment satisfies more
than a 1 − ε fraction of the clauses, for some constant ε > 0.

Proof: We first prove that statement 2 implies statement 1. Suppose the reduction specified
in statement 2 exists. We can design a PCP1,1/2(O(log n), O(1)) verifier for 3SAT by having the
verifier perform the reduction on its input formula ϕ to obtain a formula ψ and assume the proof
is an assignment to ψ. The verifier can randomly pick a clause of ψ and query the 3 bits of the
proof specifying the values of the variables in that clause, as in Observation 28.1.5.

If ϕ is satisfiable then so is ψ and thus the verifier’s test passes with probability 1 in this case. If
ϕ is not satisfiable then every assignment to the variables of ψ, and in particular the assignment
given by any proof, violates at least an ε fraction of the clauses. Thus the verifier’s test passes with
probability at most 1− ε. The soundness is not yet 1/2, but we can pick another clause uniformly
at random, independently of the first clause, and it will be satisfied by the proof’s assignment with
probability at most 1 − ε, and so if the verifier only accepts if both tests pass, then the soundness
is driven down to at most (1− ε)2. Repeating this a constant number of times drives the soundness
down to 1/2. The reason this soundness reduction strategy doesn’t work in Observation 28.1.5 is
that there, the soundness is 1 − o(1) to begin with and so a super-constant number of repetitions
would be needed to drive it down to 1/2, and this would result in a super-logarithmic amount of
randomness and a super-constant number of queries to the proof.

We now prove that statement 1 implies statement 2. Suppose that NP ⊆ PCP1,1/2(O(log n), O(1));
then in particular, there is a PCP1,1/2(r, q) verifier V for 3SAT where r = O(log n) and q is a
constant. We assume that this verifier chooses its query locations nonadaptively; this is no loss
of generality since an adaptive verifier that queries q bits of the proof can query at most 2q − 1
different locations for a given choice of random string, over all possible answers to those queries,
and can thus be simulated by a nonadaptive verifier that makes at most 2q − 1 queries, which is
still a constant number.

We design a mapping reduction from 3SAT to 3SAT satisfying the property of statement 2. Given
a formula ϕ, we generate a formula ψ with a variable for each of the polynomially many bits of the
proof V could ever query on input ϕ. We run over all random strings R of length r (of which there
are only polynomially many), determine which q bits of the proof (variables of ψ) V queries for
that choice of R, and determine which of the 2q settings of those variables cause V to accept. This
function on q variables can be expressed in CNF using at most 2q clauses of size q. The conjunction
of these clauses over all choices of R is a CNF formula with at most 2q2r clauses. Now a clause
(`1 ∨ · · · ∨ `q) where the `i’s are literals can be expressed as

(`1 ∨ `2 ∨ z2) ∧ (z2 ∨ `3 ∨ z3) ∧ (z3 ∨ `4 ∨ z4) ∧ · · · ∧ (zq−3 ∨ `q−2 ∨ zq−2) ∧ (zq−2 ∨ `q−1 ∨ `q),

where z2, . . . , zq−2 are new variables unique to that clause. It can be easily verified that a satisfying
assignment to this conjunction yields a satisfying assignment to (`1 ∨ · · · ∨ `q) and vice versa.
Expanding each clause in our CNF formula in this manner yields a 3CNF formula with at most
q2q2r = poly(n) clauses. If ϕ is satisfiable then ψ is satisfiable by setting the variables according
to a proof that makes V accept with probability 1. If ϕ is not satisfiable, then each assignment
to the variables of ψ yields a proof that causes V to accept for at most half of the random strings

4

R. Since the block of clauses corresponding to R can only satisfied by the assignment if V accepts
this proof for that choice of R, it follows that at least half of these blocks must have at least one
unsatisfied clause under this arbitrary assignment. Therefore the fraction of unsatisfied clauses is
always at least 1/2q2q. We can take ε to be this value, and the theorem is proved.

Corollary 28.2.2 There is no PTAS for MAX-3SAT unless P = NP .

Proof: Statement 1 in Theorem 28.2.1 holds by the PCP Theorem and thus the mapping reduction
and constant ε > 0 given by statement 2 exists. A (1 − ε′)-approximation algorithm for MAX-
3SAT for any ε′ < ε could be combined with the reduction in the standard way to arrive at
a polynomial-time (exact) algorithm for 3SAT. Given a satisfiable formula, the reduction would
produce a satisfiable formula, and then the MAX-3SAT algorithm would find an assignment that
satisfies at least a 1−ε′ > 1−ε fraction of the clauses. Given an unsatisfiable formula, the reduction
would produce a formula for which no assignment satisfies more than a 1− ε fraction of the clauses.
Thus testing whether the assignment produced by the MAX-3SAT algorithm satisfies more than
a 1 − ε fraction of the clauses would allow us to distinguish between the Yes and No instances of
3SAT.

28.3 Other PCP Theorems

The inapproximability factor 1 − ε given in Theorem 28.2.1 is very close to 1 and is thus not very
strong. In this section we consider other results related to PCPs that can be used to prove stronger
inapproximability results.

28.3.1 Repetition of PCPs

We begin by considering the soundness parameter. Typically, the lower the soundness and the lower
the number of queries, the stronger the inapproximability results one can prove. Having the prover
provide k separate copies of the proof and running the verifier independently on each proof drives
the soundness down to sk, since if the input is not in the language, then each of the k sections
of the proof defines some proof that makes the original verifier accept with probability at most s.
This is called sequential repetition. While it has the desired effect on the soundness parameter, it
increases the number of queries by a factor of k.

Another approach for reducing the soundness is called parallel repetition. In this approach the new
verifier runs k copies (repetitions) of the old verifier simultaneously, using k independent random
strings, but it waits for each repetition to formulate its first query and then sends all the queries
to the prover at once. The prover responds to these k queries at once (and thus requires a larger
alphabet), and the simulation of the k repetitions continues until they form their second queries,
all of which are sent to the prover at once, and so on. If the original verifier makes q queries and
the proof is written in the alphabet R, then the verifier for k parallel repetitions makes q queries
and the proof is writen in the alphabet R(k) = R× · · · ×R. Often, the increase in alphabet size is
an acceptable tradeoff for keeping the number of queries at its original value.

But what happens to the soundness parameter? Unfortunately, it does not decrease to sk in general.
The basic reason for this can be intuited by considering the case k = 2. The first repetition assumes

5

it is being run with some proof y1 written in alphabet R and the second repetition assumes it is
being run with some proof y2 written in alphabet R. The actual proof y has of an entry for each
pair consisting of an entry in y1 and an entry in y2. That is, if the ith entry of y1 is supposed to
be some symbol a ∈ R and the jth entry of y2 is supposed to be b ∈ R, then the (i, j) entry of
y is supposed to be the symbol (a, b) ∈ R × R. However, the entries of y might not be consistent
with each other, in the sense that the (i, j) entry of y may contain (a, b) but the (i, j′) entry for
some j′ 6= j may contain (c, d) where c 6= a. Thus no unique proof y1 can be extracted from the
proof y in this case; the proof as seen by the first repetition can “adapt” depending on what the
second repetition is doing. The proof can exploit this to get an overall probability of acceptance
greater than s2. We give a concrete example of this in the next subsection, in a slightly different
PCP setting.

28.3.2 2-Prover 1-Round Games

In the 2-Prover 1-Round Game model, the verifier interacts with two provers who may agree on
any strategy before the protocol begins but may not communicate during the protocol. The verifier
flips some coins, asks one question (that depends on the outcome of the coin flips) to each prover,
and decides whether to accept based on their responses. Each prover’s response is a function only
of its query and the common input, and not the other prover’s query. Equivalently, we can think
of this model as a PCP where the proof is divided into two parts — the first part is written in
some alphabet R1 and corresponds to the first prover’s responses to the different queries the verifier
could ask it, and the second part is written in some alphabet R2 and corresponds to the second
prover’s responses to the different queries the verifier could ask it.

Definition 28.3.1 A language L is in 2P1Rc,s(r) if there exists a polynomial-time verifier V that,
given an input x of length n and access to two noncommunicating provers, runs in time poly(n),
uses r(n) bits of randomness, makes one query to each prover, and satisfies the following two
properties.

1) (Completeness) If x ∈ L then there exist provers such that V accepts x with probability at
least c.

2) (Soundness) If x 6∈ L then for all provers, V accepts x with probability at most s.

Although this model may seem quite restricted since the verifier may only ask one question of each
prover, it turns out that the verifier’s ability to cross-check the noncommunicating provers’ answers
restricts their ability to cheat and allows this model to capture all of NP . This is illustrated in the
following result.

Theorem 28.3.2 NP = 2P1R1,1−ε
′(O(log n)) for some constant ε′ > 0.

Proof: The inclusion from right to left is similar to Lemma 28.1.7 and is left as an exercise. For
the other inclusion, by NP -completeness it suffices to show that 3SAT ∈ 2P1R1,1−ε

′(O(log n)). Let
the input formula be ϕ. By the PCP Theorem and Theorem 28.2.1, there is reduction that maps
ϕ to a 3CNF formula ψ such that if ϕ is satisfiable then so is ψ, and if ϕ is unsatisfiable then no
assignment satisfies more than a 1 − ε fraction of the clauses of ψ, for some constant ε > 0. The
verifier expects prover 1 to have an assignment to the variables of ψ, and we expect prover 2 to have

6

for each clause a satisfying assignment to the variables in that clause. Thus if ψ has ` variables and
m clauses then the first proof is written in the binary alphabet and is of length `, and the second
proof is written in an alphabet of size 7 and is of length m. The verifier selects a clause of ψ and
one of the variables in that clause uniformly at random, queries that variable and that clause to
provers 1 and 2 respectively, and accepts if and only if the two responses agree on the value of the
chosen variable.

Now if ϕ is satisfiable then so is ψ, and the provers can give answers consistent with some satisfying
assignment to ψ, and the verifier will accept with probability 1. If ϕ is not satisfiable then with
probability at least ε, the verifier will choose a clause of ψ that is not satisfied by the assignment
that prover 1 has written down. Since prover 2’s response for this clause satisfies it, there must be at
least one variable on which prover 2’s response disagrees with prover 1’s assignment. Conditioned on
picking a clause that is not satisfied by prover 1’s assignment, the verifier catches the inconsistency
with probability at least 1/3. It follows that the soundness of this 2P1R system is at most 1− ε/3.

The characterization given by Theorem 28.3.2 is frequently used in inapproximability results.

We now return to the question of parallel repetition. In the 2P1R setting, we can perform k parallel

repetitions in the same way as with PCPs. This increases prover 1’s alphabet from R1 to R
(k)

1
and

prover 2’s alphabet from R2 to R
(k)

2
but does not increase the number of queries. In this setting, we

can give a simple concrete example to show that k parallel repetitions does not drive the soundness
down to sk in general.

Consider the (silly) protocol where the verifier selects two bits r1, r2 uniformly at random and sends
r1 to prover 1 and r2 to prover 2. Each prover is supposed to respond with a pair (i, r) indicating
that prover i was sent bit r. The verifier accepts if and only if the two responses agree and are both
correct. Then for any outcome that causes the verifier to accept, say both provers respond with
(1, r1), since flipping r1 cannot change prover 2’s response, the latter outcome leads to rejectance.
Thus at most half of the outcomes lead to acceptance and the soundness of this protocol is at most
1/2. (It is also straightforward to see that the soundness is at least 1/2.)

However, when we take k = 2 parallel repetitions, the soundness stays at 1/2. In this case, the
verifier picks four bits r1, r2, s1, s2 uniformly at random and sends (r1, s1) to prover 1 and (r2, s2)
to prover 2. Each prover responds with a tuple (i1, r, i2, s) and the verifier accepts if and only if
the two responses agree and ri1 = r and si2

= s. However, the provers can get the verifier to
accept with probability 1/2 in the following way. Prover 1 responds with (1, r1, 2, r1) and prover 2
responds with (1, s2, 2, s2). They agree and are both correct if and only if r1 = s2, which happens
with probability 1/2. In this case we can see that prover 1 is using information about repetition 1
in its response to repetition 2, and prover 2 is using information about repetition 2 in its response
to prover 1. In this way, they are able to cheat the verifier.

Despite this difficulty, [4] showed that the soundness does go down exponentially with k. The proof
of this result is involved, so we omit it.

Theorem 28.3.3 For every 2P1R system with soundness s, k parallel repetitions have soundness
at most (s′)k where s′ is a constant depending only on s and the sizes of the alphabets used by the
provers.

7

28.3.3 Hastad’s 3-Bit PCP

We now move from the issue of reducing the soundness parameter of a PCP to that of reducing
the number of queries it makes. The following result is due to [3]. Again, we omit the proof.

Theorem 28.3.4 (Hastad’s 3-Bit PCP) NP = PCP1−ε,1/2+ε
(O(log n), 3) for all constants ε >

0. Moreover, the PCP verifier for NP operates by choosing three positions i1, i2, i3 of the proof and
a bit b according to some distribution, reading the three bit values yi1

, yi2
, yi3

, and accepting if and
only if yi1

⊕ yi2
⊕ yi3

= b.

Recall that we obtained a 3-bit PCP characterization of NP in Observation 28.1.5. However,
the present result has a soundness parameter that is close to 1/2, which is much better than the
1 − 1/nO(1) soundness parameter in that simple protocol.

The linear nature of the tests run by Hastad’s 3-bit PCP intimately connect it to the following
constraint satisfaction problem.

Definition 28.3.5 (MAX-3LIN) Given a system of linear equality constraints over GF (2) where
each constraint involves exactly three variables, find a solution that maximizes the number of satis-
fied constraints.

Theorem 28.3.6 The following are equivalent.

1) Theorem 28.3.4.

2) For all constants ε > 0 there is a reduction from 3SAT (or any NP -complete problem) to
MAX-3LIN that maps satisfiable formulas to MAX-3LIN instances where a 1 − ε fraction of
the constraints can be satisfied simultaneously, and maps unsatisfiable formulas to MAX-3LIN
instances where no assignment satisfies more than a 1/2 + ε fraction of the constraints.

Proof: The proof is similar to Theorem 28.2.1. We first prove that statement 2 implies state-
ment 1. Fix ε > 0, and suppose the reduction specified in statement 2 exists. We can design
a PCP1−ε,1/2+ε

(O(log n), 3) verifier for 3SAT by having the verifier perform the reduction on its
input formula ϕ to obtain a system of equations over GF (2). The proof is assumed to contain an
assignment to the variables of this system. The verifier picks one of the constraints uniformly at
random, queries the 3 bits of the proof specifying the values of the variables in that constraint, and
accepts if and only if the constraint is satisfied.

If ϕ is satisfiable then there is an assignment for the system of equations that satisfies at least a
1 − ε fraction of them. The prover can provide this assignment, and the verifier will accept with
probability at least 1 − ε. If ϕ is not satisfiable then every assignment to the variables of the
system, and in particular the assignment given by any proof, violates at least a 1/2 − ε fraction of
the constraints. Thus the verifier’s test passes with probability at most 1/2 + ε.

We now prove that statement 1 implies statement 2. Fix ε > 0, and suppose that the characteriza-
tion of NP given in Theorem 28.3.4 holds. Then in particular, there is a PCP1−ε,1/2+ε

(O(log n), 3)
verifier V for 3SAT. This verifier chooses its three query locations nonadaptively.

We design a reduction from 3SAT to MAX-3LIN satisfying the property of statement 2. Given
a formula ϕ, we generate a system of linear equations over GF (2) with a variable for each of the

8

polynomially many bits of the proof that V could ever query on input ϕ. We run over all random
strings R of length O(log n), determine which three bits of the proof V queries for that choice
of R, and determine which of the eight settings of those variables cause V to accept. Since V ’s
test is linear, this function can be expressed as a MAX-3LIN constraint. The collection of these
constraints over all random strings R forms our MAX-3LIN instance.

If ϕ is satisfiable then there is a proof such that at least a 1 − ε fraction of the choices of R lead
to acceptance. Thus setting the variables of our system according to this proof satisfies at least a
1− ε fraction of the constraints. If ϕ is not satisfiable, then each assignment to the variables of the
system yields a proof that causes V to accept for at most a 1/2 + ε fraction of the random strings
R. Thus no assignment to the variables of the system satisfies more than a 1/2 + ε fraction of the
constraints.

Theorem 28.3.6 reveals why Hastad’s 3-bit PCP does not have a completeness parameter of 1 —
if it did, then we could reduce all of NP to the problem of determining whether a system of linear
equations over GF (2) is consistent. This can be solved in polynomial time by Gaussian elimination,
so we would have P = NP .

With Hastad’s 3-bit PCP and Theorem 28.3.6 in hand, we can now obtain a strong inapproxima-
bility result for MAX-3SAT. Since there exists a 7/8-approximation algorithm for MAX-3SAT, the
following result essentially closes the case on the approximability of MAX-3SAT.

Corollary 28.3.7 For all constants ε′ > 0, MAX-3SAT is NP -hard to approximate within a factor
of 7/8 + ε′.

Proof: By Hastad’s 3-bit PCP and Theorem 28.3.6, a reduction of the type given by statement 2
exists for all ε > 0. We give a gap-preserving reduction from MAX-3LIN to MAX-3SAT. A linear
constraint on three variables over GF (2) is a function that happens to evaluate to 1 for exactly four
of the eight settings of its variables, so the CNF representation of this function is a collection of
four clauses with three variables each. The conjunction of all these clauses over all the constraints
of the given MAX-3LIN instance forms our MAX-3SAT instance. Note that the two instances have
the same set of variables.

Assignments that satisfy at least a 1 − ε fraction of the linear constraints satisfy at least a 1 − ε

fraction of the clauses of our 3CNF formula, since they satisfy all the clauses in blocks corresponding
to satisfied constraints. Assignments that violate at least a 1/2− ε fraction of the linear constraints
violate at least a (1/2 − ε)/4 = 1/8 − ε/4 fraction of the clauses of our 3CNF formula, since they
violate at least one of the four clauses in each of the blocks corresponding to violated constraints.
Given a 3CNF formula in which at least a 1− ε fraction of the clauses can be satisfied, a (7/8+ ε′)-
approximation algorithm for MAX-3SAT would find an assignment satisfying at least a (1−ε)(7/8+
ε′) = 7/8 + (ε′ − ε(7/8 + ε′)) fraction of the clauses. This fraction is greater than 1 − (1/8 −
ε/4) provided we choose ε small enough. Thus a (7/8 + ε′)-approximation algorithm for MAX-
3SAT would allow us to distinguish between instances of MAX-3LIN where a 1 − ε fraction of the
constraints can be satisfied and those where at most a 1/2 + ε fraction can be satisfied, for some
constant ε > 0.

In the next lecture, we will see how to use Hastad’s 3-bit PCP to show that it is NP -hard to
approximate Vertex Cover within any constant factor less than 7/6. We will also see that Set

9

Cover cannot be approximated within a factor of b · log n for some constant b, under an assumption
slightly stronger than P 6= NP .

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. Proof Verification and the Hardness of
Approximation Problems. In Journal of the ACM, 45(2), pp. 501-555, 1998.

[2] A. Arora, S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP. In Journal
of the ACM, 45(1), pp. 70-122, 1998.

[3] J. Hastad. Some Optimal Inapproximability Results. In Journal of the ACM, 48(4), pp. 798-859,
2001.

[4] R. Raz. A Parallel Repetition Theorem. In SIAM Journal on Computing, 27(3), pp. 763-803,
1998.

10

CS880: Approximations Algorithms

Scribe: Chi Man Liu Lecturer: Shuchi Chawla
Topic: Inapproximability: Vertex Cover and Set Cover Date: 5/3/2007

In the previous lecture we introduced probabilistically checkable proofs (PCPs) and saw how they
could be used to obtain a tight inapproximability result for MAX-3SAT. We also introduced Has-
tad’s 3-bit PCP, a very useful tool for proving inapproximability results. In this lecture we apply
Hastad’s 3-bit PCP to show that approximating Vertex Cover within any constant factor less than
7/6 is NP-hard. We also show that Set Cover cannot be approximated within a factor of β · log n

for some constant β, unless NP ⊆ DTIME(nlog log n).

29.1 Vertex Cover

Last time we introduced Hastad’s 3-bit PCP and out of it we obtained the following result.

Theorem 29.1.1 For all constants ε > 0 there is a reduction from 3SAT (or any NP-complete
problem) to MAX-3LIN that maps satisfiable formulas to MAX-3LIN instances where a 1−ε fraction
of the constraints can be satisfied simultaneously, and maps unsatisfiable formulas to MAX-3LIN
instances where no assignment satisfies more than a 1/2 + ε fraction of the constraints.

We used Theorem 29.1.1 to show that it is NP-hard to approximate MAX-3SAT within any constant
factor greater than 7/8. In the following, we show that approximating Vertex Cover within any
constant factor less than 7/6 is NP-hard using a similar technique.

Theorem 29.1.2 For all constants ε > 0, Vertex Cover is NP-hard to approximate within a factor
of 7/6 − ε.

Proof: Our goal is to construct a gap-preserving reduction from MAX-3LIN to Vertex Cover.
Given a MAX-3LIN instance with m constraints, we want to construct a graph G. For each linear
constraint xp ⊕ xq ⊕ xr = b, we add to G a clique with 4 vertices, where each vertex represents a
setting of (xp, xq, xr) satisfying the constraint. Then, for any two vertices, if their corresponding
settings of variables conflict with each other, we add an edge between them. We now show that
this polynomial-time reduction is gap-preserving. Suppose that the MAX-3LIN instance has an
assignment satisfying at least a 1− ε fraction of the constraints. For each satisfied constraint, pick
the vertex in G that corresponds to its setting of variables in this assignment. These vertices form
an independent set since they all come from different cliques, and all settings of variables agree.
This independent set has size at least (1 − ε)m. There are 4m vertices in G, hence G has a vertex
cover of size at most (3 + ε)m. Now suppose that no assignment satisfies more than a 1/2 + ε

fraction of constraints. We claim that any independent set of G has at most (1/2 + ε)m vertices.
From this it follows that G has minimum vertex cover of size at least (7/2 − ε)m, and we have
achieved a gap of 7/6−ε. It still remains to prove the claim. Let S be an independent set of G with
k vertices. The vertices in S correspond to distinct linear constraints as they must lie in different
cliques. Moreover, these vertices represent settings of variables that have no conflict. Thus, we
can augment the settings to a total assignment that satisfies those k constraints. We finish the

1

argument by setting k = (1/2 + ε)m.

29.2 Set Cover

In this section, we show that Set Cover is unlikely to have a sublogarithmic approximation. For-
mally, we have the following theorem.

Theorem 29.2.1 For some constant β, approximating Set Cover within a factor of β · log n is
NP-hard unless NP ⊆ DTIME(nlog log n).

To prove this theorem, we consider the 2-Prover 1-Round system for 3SAT in the previous lecture.
Given a 3CNF with m clauses, the verifier selects a clause and one of the variables in that clause
uniformly at random, queries that clause and that variable to provers 1 and 2 respectively, and
accepts if and only if the two responses agree on the value of the chosen variable. This system
uses O(log m) random bits, has completeness 1 and soundness 1 − ε′ for some cosntant ε′ > 0. We
take k parallel repetitions to reduce the soundness to αk for some constant α < 1, while increasing
the amount of randomness to O(k log m). We will determine the value of k later. Now, a query to
prover 1 is a k-tuple of clauses, while a query to prover 2 is a k-tuple of variables. The numbers of
different queries to provers 1 and 2 are mk and nk respectively.

We introduce the Label Cover problem in the next section. It will soon be clear that finding optimal
provers (ones that maximize the accepting probability) in 2P1R systems can be reduced to solving
Label Cover instances.

29.2.1 Label Cover

Consider a bipartite graph G = (Q1, Q2;E) with |Q1| = mk and |Q2| = nk. Each vertex in Q1 (resp.
Q2) represents a possible query to prover 1 (resp. prover 2). There is an edge between u ∈ Q1 and
v ∈ Q2 if and only if the verifier can ask prover 1 query u and prover 2 query v simultaneously for
some sequence of random bits. To each vertex w ∈ Q1 ∪ Q2 we associate a label set Lw containing
all correct answers to the query w. For every edge e = (u, v), let Re be the relation containing all
pairs (a, b) (a ∈ Lu, b ∈ Lv) such that (a, b) is an accepting answer pair to query pair (u, v). Our
goal is to pick an answer from each label set so that the probability of acceptance is maximized. In
other words, we want to assign to each vertex w a label aw ∈ Lw such that the following quantity
is maximized:

|{e | e = (u, v) ∈ E, (au, av) ∈ Re}|
|E|

.

We can generalize the above problem in the following way. Let L be a set of labels. For each vertex
w, the label set Lw is a nonempty subset of L. For each edge e, the relation Re is a subset of L×L.
This generalized problem is known as Label Cover.

The 2P1R system for 3SAT discussed above has completeness 1 and soundness αk. Hence, G either
has an assignment satisfying all edges, or has no assignment satisfying more than an αk fraction of
the edges. Note that |L| = 2O(k) and G has O(nk) vertices, where n is the number of literals in the
formula. Moreover, we can assume that G satisfies certain properties that we will make use of in
the reduction to Set Cover. This is formalized in the following lemma.

2

Lemma 29.2.2 There exists a constant α < 1, such that for every integer k > 0, there exists an
infinite family of instances of the Label Cover problem indexed by n, such that the following holds:

1. The bipartite Label Cover graph is regular and has an equal number of vertices on both sides.
Moreover, each side has O(nk) vertices.

2. For each edge e = (u, v), the relation Re is a projection from Lu to Lv. That is, for any
a ∈ Lu, there exists a unique b ∈ Lv satisfying (a, b) ∈ Re.

3. Either there is an assignment satisfying all the edges (YES instances), or no assignment
satisfies more than an αk fraction of the edges (NO instances).

4. It is not possible to distinguish between YES and NO instances in polynomial time, unless
NP ⊆ DTIME(nk).

Proof: We form a Label Cover instance based on 3SAT(5) instead of a MAX-3SAT instance.
(3SAT(5) is a special case of 3SAT where each variable in the formula occurs in exactly 5 clauses.)
We use the fact that 3SAT(d) has gap instances just like 3SAT, for any d ≥ 5. Following the above
construction, we can reduce any 3SAT(5) instance with n variables to a Label Cover instance G

satisfying property (3). For property (1), observe that |Q1| = (5n/3)k and |Q2| = nk. Moreover,
every vertex in Q1 has degree 3k while every vertex in Q2 has degree 5k. We create 3k copies of Q1

and 5k copies of Q2, and add edges appropriately. This gives us a (15k)-regular graph with (5n)k

vertices on each side which is essentially equivalent to G. Finally, property (2) follows from that
any correct answer given by prover 1 induces a unique accepting answer for prover 2, namely the
setting of variables that agrees with prover 1’s answer.

Suppose that this problem can be solved in time poly(nk). Then, by our reduction, 3SAT(5) can
also be solved in time poly(nk). Since 3SAT(5) is NP-hard, we have NP ⊆ DTIME(nk).

29.2.2 Reduction from Label Cover to Set Cover

Given a 3SAT(5) instance with n variables, we can reduce it to a regular Label Cover gap instance
G with O(nk) vertices. We are going to show how to reduce regular Label Cover instances with
edge relations being projections to Set Cover instances. Our strategy is to associate each edge
e = (u, v) in G with a Set Cover instance Ie such that picking an accepting pair (a, b) ∈ Lu × Lv

would correspond to covering Ie with just a few sets, and vice versa. In other words, we would
like to have a Set Cover instance in which the “coordinated” solutions have very few sets, whereas
“uncoordinated” solutions use a much larger number of sets. For our purpose, we want this gap to
be at least logarithmic.

Let U be the universe of elements and t be some integer parameter. For i = 1, . . . , t, we construct
a set Si by picking each element of U independently with probability 1/2. The collection of sets in
the instance is C = {S1, . . . , St, S̄1, . . . , S̄t}, where S̄ denotes the complement of S, i.e. S̄ = U\S.
We claim that the instance I = (U, C) has the property we want. Let S ⊆ C be a set cover. It
is clear that if we pick both Si and S̄i for some i, we get a set cover with size 2. Otherwise, the
(expected) size of S would be at least logarithmic in |U |: The expected number of elements covered
by the first set in S is |U |/2. The second set covers |U |/4 of the uncovered elements on average

3

since the sets are constructed by picking elements independently and uniformly at random. This
rough argument suggests that covering all elements in U would require Θ(log |U |) sets.

We can now use I as a building block to transform our Label Cover instance G to a Set Cover
instance Ĩ. For each edge e = (u, v), we construct an instance Ie = (Ue, Ce) equivalent to I with
|Ue| = nk. We take t = |Lv| = 2k, so that each label b ∈ Lv gets mapped to a unique set S

e,b
∈ Ce.

Then, Ce = {S
e,b

| b ∈ Lv} ∪ {S̄
e,b

| b ∈ Lv} has size 2k+1. Next, we merge all the “edge” instances
to get a large instance Ĩ = (Ũ , C̃) for the whole graph. Let Ũ =

⋃

e∈E
Ue. For each v ∈ Q2 and

b ∈ Lv, let

S̃
v,b

=
⋃

e incident on v

S
e,b

.

For each u ∈ Q1 and a ∈ Lu, let

S̃u,a =
⋃

e incident on u

S̄
e,Re(a),

where Re(a) denotes the unique b ∈ Lv satisfying (a, b) ∈ Re. Let C̃ be the collection of all these
sets. We have |Ũ | = nO(k) and |C̃| = nO(k). Suppose that uncoordinated solutions to ”edge”
instance Ie have size at least ` = Θ(log |Ue|) = Θ(k · log n). We will see that our reduction works
if we pick k = O(log log n). Then, intuitively, if we had a “good” approximation algorithm for Set
Cover, we could use it to solve our Label Cover problem (and thus 3SAT(5)) exactly in nO(log log n)

time. Hence, Theorem 29.2.1 follows. In the following, we give a formal proof for the correctness
of our reduction.

Suppose that G has an assignment satisfying all edges. By picking the sets in C̃ corresponding to
this assignment, we are able to cover Ũ with only |Q1| + |Q2| = O(nk) sets. It remains to show
that if G does not have any good solution, covering Ũ would require Ω(`nk) sets.

Claim 29.2.3 If every assignment to G satisfies at most an αk fraction of edges, then every set
cover of Ũ has size at least Ω(`nk).

Proof: We start with a minimum set cover C∗. Let G1 (resp. G2) be the set of vertices in Q1

(resp. Q2) that have less than `/2 sets in C∗. Let B1 = Q1\G1 and B2 = Q2\G2. Let e = (u, v)
be an edge such that u ∈ G1 and v ∈ G2. We pick an assignment to G in the following way.
For every u ∈ Q1, let Au denote the set of labels a in Lu such that S̃u,a ∈ C∗. Pick an answer
uniformly at random from Au. Likewise, for every v ∈ Q2, pick an answer uniformly at random
from Av. Consider some edge e = (u, v) with u ∈ G1 and v ∈ G2. Then, |Au| + |Av| < `, so C∗

induces a coordinated solution to Ie, and so Au and Av contain a pair of “corresponding” answers,
i.e. there exist a ∈ Au such that Re(a) ∈ Av. Thus, the probability of this assignment satisfying
e is at least 1

`/2
· 1

`/2
= 4/`2. The expected number of edges satisfied by the assignment is at least

#e(G1, G2) · 4/`2, where #e(G1, G2) = |E ∩ (G1 × G2)|. Using the fact that the expectation never
exceeds the maximum achievable value, we have #e(G1, G2) · 4/`2 ≤ αk · |E|. Therefore,

#e(G1, G2)

|E|
≤ αk ·

`2

4
.

Since `2 = O(k2 log2 n) and α < 1, it suffices to pick k = O(log log n) to make αk`2/4 < 1/2. Recall
that G is a d-regular bipartite graph for some d depending on k. If |B1| < |Q1|/4 and |B2| < |Q2|/4,

4

the number of edges with at least one endpoint in B1 ∪ B2 would be less than d(|Q1| + |Q2|)/4,
implying that #e(G1, G2)/|E| > 1/2 since |E| = d(|Q1| + |Q2|)/2. Hence, either |B1| ≥ |Q1|/4 or

|B2| ≥ |Q2|/4. Since |Q1|, |Q2| > nk, the number of sets in C∗ is at least `

2
· n

k

4
= Θ(`nk).

Let N = O(nlog log n) denote the size of the Set Cover instance. If Set Cover could be approximated
to within a factor of β · log N for every β > 0, we could easily tell whether our Label Cover instance
has an assignment satisfying all edges in time poly(N). By Lemma 29.2.2, NP ⊆ DTIME(N). This
proves Theorem 29.2.1.

5

	lecture01.pdf
	lecture02.pdf
	lecture03.pdf
	lecture04.pdf
	lecture05.pdf
	uned-lecture06.pdf
	lecture07.pdf
	lecture08.pdf
	lecture09.pdf
	lecture11.pdf
	lecture12.pdf
	lecture13.pdf
	lecture14.pdf
	lecture15.pdf
	lecture16.pdf
	lecture17.pdf
	lecture18.pdf
	lecture19.pdf
	lecture20.pdf
	lecture21.pdf
	lecture22.pdf
	lecture23.pdf
	lecture24.pdf
	lecture25.pdf
	lecture26-1.pdf
	lecture26-2.pdf
	lecture27.pdf
	lecture28.pdf
	lecture29.pdf

