
Bayesian Optimal No-Deficit Mechanism Design�

Shuchi Chawla1, Jason D. Hartline2, Uday Rajan3, and R. Ravi4

1 Microsoft Research, Silicon Valley Campus, Mountain View, CA
shuchi@cs.wisc.edu

2 Microsoft Research, Silicon Valley Campus, Mountain View, CA
hartline@microsoft.com

3 Ross School of Business, University of Michigan, Ann Arbor, MI
urajan@bus.umich.edu

4 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
ravi@cmu.edu

Abstract. One of the most fundamental problems in mechanism design
is that of designing the auction that gives the optimal profit to the auc-
tioneer. For the case that the probability distributions on the valuations
of the bidders are known and independent, Myerson [15] reduces the
problem to that of maximizing the common welfare by considering the
virtual valuations in place of the bidders’ actual valuations. The Myer-
son auction maximizes the seller’s profit over the class of all mechanisms
that are truthful and individually rational for all the bidders; however,
the mechanism does not satisfy ex post individual rationality for the
seller. In other words, there are examples in which for certain sets of
bidder valuations, the mechanism incurs a loss.

We consider the problem of merging the worst case no-deficit (or
ex post seller individual rationality) condition with this average case
Bayesian expected profit maximization problem. When restricting our
attention to ex post incentive compatible mechanisms for this problem,
we find that the Myerson mechanism is the optimal no-deficit mechanism
for supermodular costs, that Myerson merged with a simple thresholding
mechanism is optimal for all-or-nothing costs, and that neither mech-
anism is optimal for general submodular costs. Addressing the compu-
tational side of the problem, we note that for supermodular costs the
Myerson mechanism is NP-hard to compute. Furthermore, we show that
for all-or-nothing costs the optimal thresholding mechanism is NP-hard
to compute. Finally, we consider relaxing the ex post incentive compati-
bility constraint and show that there is a Bayesian incentive compatible
mechanism that achieves the same expected profit as Myerson, but never
incurs a loss.

1 Introduction

Suppose a seller is able to provide a service at total cost C to any number of
users. Suppose further that the seller has done market research to determine the
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probability distribution from which the user valuations for receiving the service
are drawn. What selling mechanism should the seller then run to obtain the
highest possible profit? In a seminal paper [15], Myerson essentially answers this
question: If the seller aims to maximize their expected profit, they must first
compute each user’s virtual valuation, and then sell the item to all users with
non-negative virtual valuation if the sum of their virtual valuations is above the
cost C. The Myerson mechanism is optimal for expected revenue, in the class of
all mechanisms that induce the users to participate and reveal their preferences
truthfully. However, it turns out that in many natural scenarios, this mechanism
has a deficit on some possible instances of the users’ values. A seller that is averse
to such a loss might prefer a different mechanism.

We consider the general problem of Bayesian optimal mechanism design for
arbitrary single-parameter agent problems (see e.g., [12,2,1]) when the seller
requires the mechanism to never produce a deficit. Here, the seller must pay a
cost that is a function of the outcome that the seller chooses. A deficit would
arise if the total payments of the agents does not cover the cost of the outcome
produced. In a single-parameter agent problem each agent has a publicly known
partitioning of possible outcomes into two sets, the reject set and the accept
set. It is assumed that agent i has valuation zero for any outcome in the reject
set and private valuation vi for any outcome in the accept set. For auction-like
problems, agent i’s accept set is simply the set of allocations where agent i is
allocated their desired good (or service) and the reject set is the set of allocations
where i is not allocated their desired good. The truthtelling strategy for agent i
would be to report to the mechanism their true private valuation, vi.

We follow the standard economics approach to profit maximization and as-
sume that the agents’ private valuations come from a known probability distri-
bution. Our goal then is to design the seller optimal mechanism given knowledge
of this distribution. We assume that the agents valuations are independent but
not necessarily identically distributed.1

Motivating Problems
This paper considers a number of motivating problems, all of which fit in this
single-parameter agent framework. Consider the following examples:

Fixed cost excludible good. The seller must pay a fixed cost C if any items are
sold and zero otherwise. A motivating example of such a good is a digital good
with production cost C and zero marginal cost. This is a special case of the
general multicast pricing problem considered in [5,6,13].

Fixed cost non-excludible good. There is a fixed cost, C, for providing the good
or service to all users and no cost for serving nobody. However, the mechanism is
not allowed to serve some users and not others (i.e., the cost for such allocations
is infinite). We will sometimes refer to this as the all-or-none case. The classic
example of a fixed cost non-excludible good is the bridge building problem where
if the bridge is built then anyone can use it.

1 It is NP-hard to compute the optimal auction when valuations are correlated [16].



138 S. Chawla et al.

Submodular costs. The additional (marginal) cost in providing the good to any
users is a decreasing function of the set of users already being provided. The ex-
cludible and non-excludible fixed cost problem and the multicast pricing problem
are special cases of the general submodular cost problem. Goods with concave
production costs or increasing returns to scale fall in this category.

Combinatorial auction (single-parameter). Each agent desires a subset of a set of
items. The cost function is such that allocations to agents with disjoint subsets
have cost zero and all other allocations have infinite cost. See e.g., [12,1].

Supermodular costs. The additional cost in providing the good to any users is
an increasing function of the set of users already being provided. The single-
parameter combinatorial auction problem is a special case of a supermodular
cost function.

Mechanism Design Solution Concepts
The fundamental difference between mechanism design and algorithm design is
that the inputs to a mechanism are the private values of selfish agents that will
attempt to submit bids that result in outcomes that maximize their own utility.
We adopt the following solution concepts.

Ex post incentive compatibility. Otherwise known as truthful or strategyproof
mechanisms, ex post incentive compatible mechanisms (via the revelation prin-
ciple) are such that each agent, independent of the acts of any other agent, has
a dominant strategy of stating their true valuation as their bid.

Bayesian incentive compatibility. Bayesian incentive compatible mechanisms are
those where each agent has an optimal strategy of bidding their true valuation
given that the other agents values come from a prior distribution and that all
other agents bid their true values. Note that such a truthtelling strategy may
not be optimal ex post, i.e., once the bids of other agents are known.

Overview of Results
The major focus of this paper, besides describing the Bayesian optimal no-deficit
mechanism, is to study the complexity of computing it. Myerson’s optimal mech-
anism solves the single-parameter agent optimal mechanism design problem for
any cost function given that the seller only wants to maximize their expected
profit and spurious deficits are acceptable. For submodular costs, via a general
algorithm due to Iwata et al. [10], it is possible to compute this optimal mecha-
nism. However, for the single parameter combinatorial auction (and, thus general
supermodular costs) this computational problem is NP-hard [12]. Of course the
usual questions arise here as to whether it is possible to approximate the op-
timal mechanism via a polynomial time computation. For this problem, it is
relatively easy to see that Myerson’s reduction from the efficient mechanism to
the optimal mechanism via virtual valuations respects approximations. Given
an incentive compatible mechanism that approximates efficiency, the Myerson
approach can be used to obtain an incentive compatible mechanism that gives
the same approximation factor against the optimal mechanism.



Bayesian Optimal No-Deficit Mechanism Design 139

For the problem of designing the ex post incentive compatible optimal no-
deficit mechanism we consider both the form that the optimal mechanism takes
as well as the problem of computing it. Like above, the answer to these ques-
tions depends on types of cost functions we are considering. We show that for
supermodular costs functions, the Myerson mechanism is indeed no-deficit. Of
course, by the above discussion such a mechanism is hard to compute. For the
submodular case, and even the special case of a fixed cost excludible good, we
show that Myerson is not no-deficit (Section 4). We then consider the most nat-
ural way to try to obtain a no-deficit mechanism that achieves good expected
profit: merging the Myerson mechanism which has optimal expected profit with
a thresholding mechanism, e.g. Moulin and Shenker’s [14] cost sharing mech-
anism, which has no-deficit. We show that even for the fixed cost excludible
good problem when bidders are independent and identically distributed, such a
mechanism is not optimal (Section 5). We further show the somewhat surpris-
ing result that even though in this case the problem is completely symmetrical,
the optimal deterministic no-deficit mechanism is not. None-the-less, as these
thresholding mechanisms are intuitively easy to understand, we ask two ques-
tions, first, when are thresholding mechanisms optimal, and second can we com-
pute them. We show that these mechanisms are indeed optimal for all-or-nothing
costs; yet computing the optimal thresholding mechanism on this special case is
NP-hard.

We then consider relaxing our solution concept from ex post incentive com-
patibility to Bayesian incentive compatibility. We show that while the ex post
incentive compatible payment rule of Myerson is not no-deficit on some realiza-
tions of the agents’ valuations, there is a Bayesian incentive compatible payment
rule for Myerson’s mechanism that obtains the same expected profit as the orig-
inal Myerson payment rule and guarantees that there is never a deficit. We leave
the problem of computing this payment rule as an open question.

Related Work

This work is based heavily on results of Myerson [15] on optimal mechanism de-
sign and generalizations observed by Bulow and Roberts [3]. Cornelli re-derives
these results for the special case of a fixed cost excludible good and considers the
related problem of designing optimal non-direct revelation mechanisms (where
the set of allowable bids is a subset of possible valuations of the bidders) [4].
Mehta and Vazirani [13] consider the related computational question of how to
compute the optimal “take it or leave it” offers for each agent prior to seeing
any bids, for the aforementioned multicast pricing special case of submodular
costs.

Another branch of related work is that of worst-case profit maximizing mech-
anism design. There is much work in this area. (See, for example, [9].) As an
example, for the trivial cost function, Goldberg et al. give an approximately op-
timal worst case auction [8,7]. Fiat et al. consider the fixed cost excludible good
problem and more general multicast pricing problem. They give approximately
optimal mechanisms under certain assumptions [6].
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2 Notation and Preliminaries

Let S = {1, . . . , n} denote a set of n agents. We represent the outcome of the
mechanism as an allocation A ⊂ S of accepted agents. We assume there is a
general cost function c(A) over allocations. As noted in the introduction, this
allows us to represent any (binary) single parameter agent problem.

A cost function is said to be submodular if for all allocations A1 and A2,
c(A1)+ c(A2) ≥ c(A1∪A2)+ c(A1∩A2). Likewise, it is said to be supermodular,
if for all allocations A1 and A2, c(A1) + c(A2) ≤ c(A1 ∪ A2) + c(A1 ∩ A2).

Each agent i has a valuation vi for being accepted. We assume that vi is drawn
independently from distribution Fi and corresponding density function fi. The
joint distribution, F, is the product F1 × · · · × Fn. Without loss of generality,
we assume that vi is in the range [0, h] for all i. We define the virtual valuation
of agent i to be φi(vi) = vi − 1−Fi(vi)

fi(vi)
. Where vi is implicit, we will refer to φi

as agent i’s virtual valuation. We restrict our attention to distributions Fi for
which φi is an increasing function of vi. This is implied by the monotone hazard
rate assumption which is standard in mechanism design.

Assume for mechanism M that the agents submit bids b = (b1, . . . , bn). We
denote the allocation served by M(b). When M is a randomized mechanism,
M(b) is a random variable. For valuations v and allocation A, we define the
surplus of this allocation to be Sv(A) =

∑
i∈A vi − c(A). The virtual surplus we

denote by Ŝv(A) = Sφ(v)(A) =
∑

i∈A φi(vi)− c(A). For ex post IC mechanisms,
we have b = v, so we sometimes use Ŝb to denote the virtual surplus.

Let pi(bi) denote the payment charged by mechanism M to agent i when he
bids bi. Define qi(bi) as the probability that agent i is allocated when bidding bi.
Notice that this payment and probability are dependent on the randomization in
the other bids, b−i, and the randomization in the mechanism, M. A mechanism
is incentive compatible if this agent’s utility is maximized when bidding their
true valuation. I.e., vi ∈ argmaxb[viqi(b−i, b) − pi(b−i, b)]. A mechanism is (ex
post) incentive compatible (IC) if this holds for all values of the other agents
bids, b−i, and Bayesian incentive compatible (BIC) if it holds when the other
agents bid their true values, so that b−i is drawn from the prior distribution
F−i = F1 × · · ·×Fi−1 ×Fi+1 × · · ·×Fn. It is well known [11] that the allocation
rule and the expected payment of each agent satisfies the following conditions2.

Lemma 1. For any ex post incentive compatible mechanism M, for b−i fixed,
qi(bi) is non-decreasing in bi, and pi(bi) = biqi(b) − ∫ b=bi

b=0 qi(b−i, b)db.

Lemma 2. For any Bayesian incentive compatible mechanism M, when b−i are
drawn from F−i then qi(bi) = Eb−iqi(b) is non-decreasing in bi, and pi(bi) =
biqi(bi) −

∫ b=bi

b=0 qi(b)db.

The above lemmas imply that for describing an incentive compatible mechanism,
it is sufficient to specify an allocation rule that is monotone in the bids of each
2 In general, the expressions for pi may contain a constant pi(0) term, but because we

are interested in profit maximization, we assume that this term is zero.
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agent. Notice that for a deterministic ex post IC mechanism, the price pi(bi) is
the minimum bid that i must bid in order to be served.

In addition to incentive compatibility, we also require our mechanisms to
satisfy the no-deficit condition defined below.

No-Deficit Condition. A mechanism M is said to satisfy the no-deficit condition
if and only if for all bid vectors b, the profit of the mechanism is non-negative:∑

i pi(b) − c(M(b)) ≥ 0.

3 The Myerson Mechanism

Notice that the Vickrey-Clarke-Groves (VCG) mechanism applied to our single
parameter setting is the mechanism that chooses the allocation that maximizes
the surplus (defined above). It is easy to see that this allocation rule is mono-
tone and thus there exist prices that incentivize agents to bid their true values.
Myerson reduced the problem of Bayesian profit maximization to that of maxi-
mizing surplus via the concept of virtual valuations. He shows that the Bayesian
optimal mechanism is the one that maximizes the virtual surplus. His theorem
generalizes directly to our single parameter agent setting as follows.

Lemma 3. [15] The expected profit of any truthful mechanism is exactly equal
to its expected virtual surplus.

Theorem 1. [15] Given agents with valuations drawn from distribution F =
F1 × · · · × Fn with each Fi satisfying the monotone hazard rate condition, the
ex post IC mechanism with the maximum expected profit selects the outcome to
maximize the virtual surplus, i.e., M(b) = argmaxA Ŝb(A). The expected profit
of this mechanism is given by EbŜb(M(b)).

One view of this theorem is that to maximize profit, first compute virtual val-
uations assuming that the agents bid their valuations, and then run the VCG
mechanism on these virtual valuations. Payments can be determined by the pay-
ments of VCG in this setting by applying each agent’s inverse virtual valuation
function to their VCG payment. We refer to the mechanism that maximizes the
virtual surplus as the Myerson mechanism.

3.1 The Discrete-Valued Case

Although all the definitions given above assume that the buyers’ bids are
continuous variables, it is easy to formulate similar expressions when bids are
discrete-valued. We give analogs for the discrete case below. These descriptions
are standard and we leave the proofs to the reader.

For the ith bidder, let xi,j denote the jth value that vi can take. Let the
corresponding probability be given by fi,j , and let Fi,j =

∑k=j
k=0 fi,k denote

the cumulative probability. The jth virtual valuation of bidder i is given by
φi,j = xi,j − 1−Fi,j

fi,j
(xi,j+1 − xi,j).
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The price pi(b) charged by an incentive compatible mechanism M, when bid-
der i reports bi = xi,j , is given by pi(b) = biqi(b)−∑k=j−1

k=0 qi(xi,k,b−i)(xi,k+1−
xi,k). The virtual surplus and the Myerson mechanism are defined as before.

3.2 Some Examples and the No-Deficit Constraint

Consider the following example. There are three bidders, each having a value
drawn uniformly from the interval [0, 1]. The cost of serving any non-empty
subset of them is C = 2. Then, the virtual valuation function of the ith bidder
is given by φi(vi) = 2vi − 1. Consider the case when all the three valuations
are 1. Then the total virtual valuation is 3. Therefore, the Myerson mechanism
serves all three of the bidders. The payment of bidder i is given by the minimum
virtual valuation at which bidder i gets served. This is C−∑

j �=i φj(vj) = 2−2 =
0. Therefore, the payment of bidder i is φi

−1(0) = 0.5. The revenue of the
mechanism at the bid vector (1, 1, 1) is therefore 1.5, whereas the cost of serving
the three bidders is 2. The mechanism incurs a loss.

A slightly different example shows that the ratio between the worst-case loss
of the Myerson mechanism and its expected profit can be unbounded. Consider
an example with n identically distributed bidders, each with bid distribution
uniform over [1, 2]. The cost of serving any subset of the bidders is C = 2n− 2.
The reader is encouraged to verify that the worst-case loss of the Extended
Myerson mechanism in this case is n− 2 (for the bid vector (2, · · · , 2)), whereas
the expected profit of the mechanism is less than 2.

4 The No-Deficit Constraint for Supermodular Functions

In this section we prove that the Myerson mechanism always satisfies the no-
deficit constraint if the cost function is supermodular. We start with a few prop-
erties of the Myerson mechanism that will be useful in our analysis.

4.1 Strong Monotonicity of Allocations in the Myerson Mechanism

We show that if any bidder served by Myerson unilaterally increases her bid,
then the allocation of the mechanism stays the same. Note that if a bidder being
served by the mechanism raises her bid, truthfulness (and thus, monotonicity)
implies that the bidder continues being served. The next lemma however says
something stronger—when the bidder raises her bid, no other bidder gets added
or removed from the set being served.

Lemma 4. Given any two bid vectors b and b′ with bj = bj
′ for all j �= i, and

bi < bi
′, if i ∈ Myerson(b), then Myerson(b′) = Myerson(b).

Proof. For an allocation A, let Δ(A) = Ŝb′(A) − Ŝb(A). Then, for any alloca-
tion A containing i, Δ(A) = bi

′ − bi > 0, whereas, for any other allocation,
Δ(A) = 0. If i ∈ Myerson(b), then Δ(Myerson(b)) ≥ Δ(A) for any allocation
A. Also, we have Ŝb(Myerson(b)) ≥ Ŝb(A) for all A, by definition. Therefore,
Ŝb′(Myerson(b′)) ≥ Ŝb′(A) for all A, and Myerson(b′) = Myerson(b). 	
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Corollary 1. The payment for bidder i given allocation A with i ∈ A and other
bids b−i is the minimum bid bi such that Myerson(b) = A.

Proof. Note that the payment for bidder i is less than the minimum bid bi with
Myerson(b) = A, because i ∈ A. Suppose the payment is pi(bi) = bi

′ with
bi

′ < bi. Then the allocation A2 = Myerson(bi
′,b−i) contains i. This contradicts

the lemma above, because when i increases her bid from bi
′ to bi, the allocation

changes from A2 to A �= A2. 	


4.2 Myerson Satisfies No-Deficit

Now we are ready to prove the main theorem of this section:

Theorem 2. Myerson satisfies no-deficit for supermodular costs.

Proof. Note that for all bid vectors b with Myerson(b) = A, and for all i ∈ A,
we have Ŝb(A) ≥ Ŝb(A \ {i}). Then by the definition of Ŝb(A) and using the
monotone hazard rate condition, we have bi ≥ φi(bi) ≥ c(A) − c(A \ {i}).

Now let mini(A) be the minimum bid bi of bidder i, with i ∈ A, such that for
some bid vector b−i, A is served, that is,

min
i

(A) = min{bi : ∃b−i with Myerson(bi,b−i) = A}.

Then Corollary 1 implies that the payment of bidder i at any vector b with
Myerson(b) = A is given by pi(b) ≥ mini(A), which is larger than c(A) − c(A \
{i}) by our observation above.

Now, taking a sum over all i, we get that the total payment collected is at
least

∑
i mini(A) ≥ ∑

i[c(A) − c(A \ {i})]. The net profit obtained is at least∑
i[c(A)−c(A\{i})]−c(A). Note that supermodularity implies c(A)−c(A\{i}) ≥

c(B) − c(B \ {i}), for any set B ⊂ A with i ∈ B. Without loss of generality, let
|A| = k and A = {1, . . . , k}. Then, the net profit is at least

∑

i
[c(A) − c(A \ {i})] − c(A) ≥

∑

i
[c({1, . . . , i}) − c({1, . . . , i − 1})] − c(A)

= c(A) − c(∅) − c(A) = 0.

	

4.3 Computation of the Optimal Mechanism

Next we consider the problem of computing the Myerson mechanism for super-
modular costs. In particular, we consider the problem of determining the winning
allocation, given the bid vector, bid distributions and the cost function. Super-
modularity of the cost function implies that in general the optimal allocation
is NP-hard to approximate better than an Ω(n1−ε) factor. However, in special
cases, given an approximate truthful mechanism for welfare mechanism for the
same cost function, we can design an approximate truthful mechanism for profit
maximization in the Bayesian setting. We obtain the following results.
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Theorem 3. Given a polynomial-time truthful deterministic mechanism M that
α-approximates the social optimum in a worst-case setting, there exists a
polynomial-time truthful mechanism M′ that α-approximates the expected profit
in a Bayesian setting.

Theorem 4. There exists a polynomial time mechanism that is truthful in ex-
pectation and obtains a (1 + ε)-approximation to the single-parameter combina-
torial auction in a Bayesian setting.3

We note that Theorem 4 is a non-trivial extension of Theorem 3 to auctions
satisfying truthfulness in expectation, as the inverse virtual valuation function
is not generally linear and thus it affects the expected utility of the agents. See
the full paper for details.

5 Submodular Costs, Threshold Mechanisms and
All-or-None Costs

In this section we consider submodular cost functions. As shown in Section 3.2,
in this case, the Myerson mechanism does not always satisfy the no-deficit con-
straint. Intuitively, when the Myerson mechanism serves a large set A of bidders,
the marginal cost of serving a bidder i ∈ A, and therefore the price charged to
i, is very small. A simple way of dealing with these low costs is to supplement
the Myerson mechanism with reserve prices or thresholds for each bidder, below
which the bidder is not served. Precisely, let τ denote a budget-balanced cost-
sharing method, and τi(A) denote the cost-share assigned to bidder i in coalition
A. Then, if a mechanism serves the set A only if the bids of all bidders in A
are above their respective thresholds, then the mechanism obtains prices at least
τi(A) from each bidder i ∈ A, and therefore, meets the cost of serving the set.
Furthermore, if the mechanism picks a set A with the maximum virtual surplus
over all sets satisfying the thresholds, then it also achieves good expected profit.
We call such a mechanism a threshold mechanism. Note that the price charged
to a bidder still depends on other bidders’ bids and not just the threshold (and
can therefore change as others’ bids change, even when the allocation stays the
same); the threshold only ensures that this price is never too low.

A natural question to ask is whether threshold mechanisms are optimal in the
class of all truthful mechanisms satisfying no-deficit. Unfortunately, this is not
the case, even when the cost function is symmetric and submodular, and all the
bids are identically distributed. See an example in the full paper for details.

Although threshold mechanisms are not optimal for arbitrary submodular
cost functions, we now show that they are indeed optimal for a special class
of cost functions, that we call all-or-none costs. An all-or-none cost function is
one in which the only allocations served are the empty allocation or the one
containing all bidders. That is, for all allocations A with A �= ∅ and A �= B, we
have c(A) = ∞.
3 This mechanism is based on a social welfare maximizing mechanism due to Archer

et al. [1] and assumes that multiple units of each item are available.
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Lemma 5. Let M be any truthful mechanism for an all-or-none cost function
c. Then, pi(b) is non-increasing in bids bj with j �= i.

Proof. Suppose that there are bidders i and j such that pi(b) not non-increasing
in bj . That is, there are bid vectors b and bids′ with bk

′ = bk for all k �= j and
bj

′ > bj, such that pi(b′) > pi(b). Note that M is truthful, and so pi does not
depend on bi. So we choose bi = bi

′ = pi(b
′)+pi(b)

2 . Now, i is served at b but
not at b′. However, since c is an all-or-none cost function, we have M(b) = S
(all bidders) and M(b′) = ∅. This means that the allocation given by M is not
a non-increasing function of bj. Lemma 1 then implies a contradiction to the
truthfulness of M. 	

Theorem 5. For any all-or-none cost function, there exists a threshold mecha-
nism that is optimal among the class of all truthful no-deficit mechanisms.

Proof. Let M be any optimal truthful mechanism satisfying no-deficit. We will
define a threshold mechanism M′ with profit at least as large as the profit of
M, thereby proving the theorem.

Let b̄ be the bid vector with b̄i = h, the highest bid, for every i. Let τi(S) =
pi(b̄) for all i. Then,

∑
i τi(S) =

∑
i pi(b̄) ≥ c(S), because M satisfies no-deficit.

Consider the threshold mechanism M′ given by thresholds τi.
For any bid vector b with M(b) = S, we must have Ŝb(S) > 0. Otherwise,

the mechanism M′′ given by M′′(b) = B if M(b) = S and Ŝb(S) > 0 achieves
a higher profit than M and also satisfies the no-deficit condition. Note also, that
for all b with M(b) = S and all i, we have bi ≥ pi(b) ≥ pi(b̄) = τi(S). Here the
second inequality follows from Lemma 5. These two conditions along with the
definition of M′ imply that M′(b) = S.

This means that for all b with M(b) = S, we have M′(b) = S. Furthermore,
for all b with M(b) = ∅, we have Ŝb(M′(b)) ≥ 0 = Ŝb(M(b)). Therefore, we
get Ŝb(M(b)) ≤ Ŝb(M′(b)), for all vectors b. Lemma 3 now implies that M′

has a larger expected profit than M. 	


5.1 The Hardness of Computing the Optimal Mechanism

Although threshold mechanisms are not always optimal, their simplicity is ap-
pealing and may make them practically useful. In this section we investigate
the complexity of computing the optimal threshold mechanism. In particular,
given bid distributions, and a cost function, we consider the decision problem of
determining whether there is a threshold mechanism with total expected profit
greater than some given value. Via a reduction from the knapsack problem, we
show that even for a very simple input, in which every bidder has only two
possible bids, and the cost function is an all-or-none function, it is NP-hard to
compute the optimal threshold mechanism (which is also the optimal mechanism
satisfying no-deficit in this case). See the full paper for details.

Theorem 6. Computing the optimal no-deficit mechanism is NP-hard.
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6 Bayesian Incentive Compatible Mechanisms

We now consider relaxing ex post incentive compatibility to consider Bayesian
incentive compatible (BIC) mechanisms. See the full paper for proofs of the
following results.

Theorem 7. The optimal BIC no-deficit mechanism gets the same expected
profit as Myerson.

The allocation procedure of this optimal BIC mechanism is precisely the allo-
cation procedure of Myerson; the payment rule, however, is different. A BIC
no-deficit payment rule can be derived by shifting payment from inputs where
there is a deficit to ones where their is a surplus. These shifts can be done based
on the joint density function, F, so as to keep the expected payment of an agent,
given their valuation, the same.

Although the proof of this theorem is constructive, it does not give a poly-
nomial time procedure for computing the prices in general. Interestingly, when
there are only two agents, there is a much simpler way of achieving optimality.

Lemma 6. The optimal BIC no-deficit mechanism for two agents is to charge
each agent the expected payment they must make conditioned on being allocated.

Unfortunately, as the next lemma shows, this simple technique does not extend
to more than two bidders.

Lemma 7. The BIC mechanism for three or more agents that charges each
agent the expected payment they must make conditioned on being allocated does
not always satisfy the no-deficit constraint.

Proof. Consider the following counter-example: there are three identical agents;
each (independently) has a value of 2 with probability 0.9 and 11 with probability
0.1. The corresponding virtual valuations are 1 and 11 respectively. The costs
of serving any one, any two, or all three of the agents are 10.99, 20 and 20
respectively. When all three bidders bid 11, Myerson serves all of them at a
price of 2 each, incurring a deficit of 14. When two of the bidders bid 11, they
are all served and each is charged a price equal to her bid. When only one bidder
bids 11, the bidder is served at a price of 11. The expected payment of a bidder
when bidding 11 can be computed to be 10.91. So when all the bidders bid 11,
their combined expected payments are sufficient to cover the total cost of 20.
On the other hand, the expected payment of a bidder on bidding 2 and losing is
0. Therefore, when the three bidders bid 11, 2, and 2, the sum of their expected
payments is 10.91 < 10.99, which is insufficient to cover the cost of serving the
highest bidder. 	


The counter-example in the above proof shows that other natural approaches
fail as well and implies that the proof of Theorem 7 is necessarily not simple.
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7 Conclusions

In this work we have explored the issue of merging the worst case no-deficit
condition with the average case Bayesian optimality objective. We have found
that for many interesting classes of problems it is not easy to describe the optimal
solution nor is there a known algorithm for computing it. Particular questions
of interest are:

1. Is there a concise description of the Bayesian optimal no-deficit ex post
incentive compatible mechanism? In particular this question is interesting
for submodular and general cost functions.

2. Is there a concise description of the payment rule of the Bayesian optimal no-
deficit Bayesian incentive compatible mechanism? (Recall that the allocation
rule is the same as Myerson’s.)

3. Is there an algorithm that computes the Bayesian optimal no-deficit Bayesian
incentive compatible mechanism for submodular costs? It is possible to com-
pute the allocation so the open question is to compute the payments.

4. The BIC no-deficit mechanism constructed in our proof of Theorem 7 is only
ex interim individually rational for the agents (i.e., they may have negative
utility). This is standard for no-deficit mechanism design in economics. It is
an open question as to whether there is a no-deficit mechanism that is also
ex post individually rational.
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