
An Adaptive Generalized Interpolation Material Point Method for
Simulating Elastoplastic Materials

MING GAO, University of Wisconsin Madison
ANDRE PRADHANA TAMPUBOLON, University of Pennsylvania
CHENFANFU JIANG, University of Pennsylvania
EFTYCHIOS SIFAKIS, University of Wisconsin Madison

Fig. 1. Le�: An elastoplastic model is dropped into a plane with a thin perforation pa�ern; our adaptive discretization allows the material to drip through.
Right: Adaptive sand simulation with a visualization of the underlying grid refinement. We color refined particles with blue and coarse ones with green.

We present an adaptive Generalized Interpolation Material Point (GIMP)
method for simulating elastoplastic materials. Our approach allows adaptive
re�ning and coarsening of di�erent regions of the material, leading to an
e�cient MPM solver that concentrates most of the computation resources
in speci�c regions of interest. We propose a C1 continuous adaptive basis
function that satis�es the partition of unity property and remains non-
negative throughout the computational domain. We develop a practical
strategy for particle-grid transfers that leverages the recently introduced
SPGrid data structure for storing sparse multi-layered grids. We demonstrate
the robustness and e�ciency of our method on the simulation of various
elastic and plastic materials. We also compare key kernel components to
uniform grid MPM solvers to highlight performance bene�ts of our method.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Material Point Method (MPM), General-
ized Interpolation Material Point (GIMP), Adaptive grids, Elastoplasticity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 ACM. 0730-0301/2017/11-ART223 $15.00
DOI: 10.1145/3130800.3130879

ACM Reference format:
Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios
Sifakis. 2017. An Adaptive Generalized Interpolation Material Point Method
for Simulating Elastoplastic Materials. ACM Trans. Graph. 36, 6, Article 223
(November 2017), 12 pages.
DOI: 10.1145/3130800.3130879

1 INTRODUCTION
The Material Point Method (MPM) has been attracting considerable
interest since it was introduced to the �eld of computer graphics
by Stomakhin et al. [2013]. Combining advantages from both La-
grangian particle representation and Eulerian grid representation,
MPM proves to be especially e�ective for animating elastoplastic ma-
terials undergoing large deformation or topology change [Jiang et al.
2016]. Despite its physical realism and geometrical convenience, a
traditional MPM solver has several disadvantages. First, it is more
computationally expensive than mesh-based Lagrangian approaches
such as those based on Finite Element Methods (FEM) [Sifakis and
Barbic 2012]. The bottleneck of MPM is usually the costly transfer
operations between the particles and the grid. The cost of such trans-
fer operations is particularly evident when we realize that MPM has
to maintain the same grid resolution and a su�cient particle count
throughout the simulation domain. The overhead of this process
is highlighted in scenarios such as the example of drawing in a

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:2 • Gao, M. et al.

Fig. 2. Dragon goo. An elastoplastic dragon model is placed on a table carved with intricate thin slits. Our adaptive simulation (center) refines the background
grid in the vicinity of the collision object, allowing the dragon to seep through, while a simulation on a uniform grid (right) cannot resolve the contact.

sandbox from Klár et al. [2016], where the majority of sand grains
do not move at all.

Another disadvantage of traditional MPM is related to its abil-
ity to resolve (self-) collision events. MPM automatically enforces
non-slip contact. However it treats two particles as being in con-
tact whenever they a�ect some common grid nodes. As a result,
the separation distance is inherently proportional to the grid cell
spacing ∆x . High resolution is required in order to prevent visually
noticeable collision gaps even for the simulation with very simple
dynamics. Furthermore, MPM cannot resolve a boundary condition
that is �ner than the grid resolution. This implies that materials
cannot pass through holes smaller than ∆x . Similarly, a blade that
is thinner than ∆x can not cut through materials.

We propose an adaptive variant of the Generalized Interpolation
Material Point (GIMP) method [Bardenhagen and Kober 2004] to
alleviate these limitations. By only re�ning regions of particular
interest, we can resolve �ne-grained self contact and object collision
features with signi�cantly reduced computational cost. We demon-
strate the e�cacy of our method on the simulation of various elastic
and plastic materials. We summarize our main contributions as:

• The introduction of the GIMP paradigm to MPM simulation
for computer graphics applications.

• An adaptive GIMP discretization framework with signi�-
cantly improved shape functions to enforce important prop-
erties such as C1 continuity and non-negativity.

• A memory e�cient and highly regular parallel particle-grid
transfer scheme that achieves attractive performance on
both uniform and arbitrary non-graded adaptive grids. We
show how all the necessary operations in our adaptive grids
can be naturally paired with the SPGrid data structure, and
implemented using e�cient, uniform grid operations as
building blocks.

• A highly optimized (threaded and vectorized) particle-grid
transfer approach with a number of aggressive vectoriza-
tion optimizations that were speci�cally enabled by our
proposed perspective on implementing grid adaptivity via
the multi-level SPGrid representation.

Our method is competitive with a uniform gird on a per-cell or per-
particle basis. We also note that as opposed to the approach proposed
by Lian et al.[2015] that assumes a graded adaptive Cartesian grid
where neighboring cells do not di�er by more than one re�nement
level, our approach in constructing an adaptive grid is relatively
straightforward and simple to implement. Our grid adaptivity also
remains e�cient regardless of the complexity of re�nement levels.
Additionally, our transfer operators achieve a very rigorous standard

of optimality, matching or exceeding the bandwidth of state-of-the-
art parallel uniform MPM codes with the same grid cell and/or
particle count.

Scope. The principal objective of this work is to propose an adap-
tive MPM scheme, equipping the weights with all desired properties,
which also has the potential to realize competitive performance, and
can facilitate and catalyze follow-up work on this topic. We admit,
however, that our current framework does not prove that adaptive
MPM will always deliver performance superior to uniform MPM,
due to the fact that explicit time integration is arguably the least fa-
vorable for reaching aggressive end-to-end performance advantages
over uniform schemes.

2 RELATED WORK
Adaptive simulation of deformable solids. The use of spatial adap-

tivity to mitigate the cost of simulating detailed elastic and elasto-
plastic bodies has been widely documented in the computer graphics
literature. Debunne et al. [1999] proposed one of the early continuum-
based adaptive volumetric simulation techniques using �nite di�er-
ences, departing from prior schemes based on mass-spring systems.
Similar ideas were soon combined with Finite Element (FEM) Meth-
ods [Capell et al. 2002] where a hierarchical deformation basis would
be constructed via subdivision, with individual bases activated or
disabled based on deformation. Similarly, Grinspun et al. [2002]
cater to adaptive FEM simulation of volumetric solids and shells by
re�ning the deformation basis, rather than the elements themselves,
providing a natural handling of T-junctions at resolution transitions.
Topology change, instigated by cutting operations and material frac-
ture provided a compelling context for adaptive simulation, with a
number of authors exploring octree-based discretizations of elastic
solids [Seiler et al. 2011] which also allowed the use of e�cient
multi-resolution solvers [Dick et al. 2011], while others combined
octrees with shape matching techniques in modeling cutting opera-
tions [Steinemann et al. 2008]. Localized adaptation in response to
high deformation provided one of the most natural motivations for
Discontinuous Galerkin methods [Kaufmann et al. 2009].

Although several of the aforementioned techniques are based on
octrees, a number of researchers focused on adaptive tetrahedral dis-
cretizations readily produced by robust meshing algorithms [Labelle
and Shewchuk 2007] which have been very popular in modeling
elastoplastic deformation [Wicke et al. 2010]. Speci�cally, adaptive
tetrahedralizations based on BCC lattices have been used to model
viscoelastic [Wojtan and Turk 2008] as well as hyperelastic materials
[Sifakis et al. 2007]. Although contact and collision handling is often
designed independently of adaptive re�nement, in certain instances

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials • 223:3

Fig. 3. Armadillo wire cut. A gooey armadillo is dropped through two thin intersecting wires. Le�: the model just prior to collision; Center: grid refined to
4× the base resolution in the vicinity of the wires, per our method; Right: A uniform grid with comparable particle count largely misses the collision event.

as in the work of Otaduy et al. [2007] the two behaviors are tightly
integrated as to concurrently accelerate elastic simulation and colli-
sion detection. Finally, for a deeper survey of adaptive techniques
for deformable models, we refer to the excellent recent report by
Manteaux et al. [2016].

Adaptive �uids. Adaptive �uid simulation has been studied exten-
sively by previous approaches since the work of Losasso et al. [2004]
on octree-based water and smoke. Tetrahedral based adaptive �uid
simulation was combined with embedded boundary methods by
Batty et al. [2010]. Ando et al. [2012] adopted particle splitting and
merging for liquid sheets. Ando et al. [2013] simulated highly de-
tailed splashes on a novel FLIP scheme discretized on an adaptive
tetrahedral mesh. Ferstl et al. [2016] proposed a narrow band FLIP
that couples with an Eulerian solver. Adaptive sampling methods
were also developed for SPH [Adams et al. 2007; Solenthaler and
Gross 2011].

Sparse and adaptive grid structures. Although pointer-based tree
structures [Losasso et al. 2004] are the most straightforward choice
for storing adaptive grids, the under-utilization of memory band-
width associated with indirect access and suboptimal prefetching
that is intrinsic to pointer-based trees has led researchers to explore
alternative storage structures. RLE-based techniques [Chentanez
and Müller 2011; Houston et al. 2006; Irving et al. 2006] combine
the regularity of a 2D uniform grid with the compression of a 1D
run-length encoding. Adaptive Mesh Re�nement (AMR) techniques
and variants thereof [Cohen et al. 2010; English et al. 2013; Patel
et al. 2005] combine adaptivity and regularity by patching together
uniform grids of di�erent resolutions. One of the most e�cient and
broadly used adaptive data structures, OpenVDB [Museth 2013], is
based on a tree with a high branching factor that yields large uni-
form grids at leaf nodes. Our present work is based on the recently
developed Sparse Paged Grid (SPGrid) data structure [Setaluri et al.
2014], which targets in-core processing and exploits the hardware
accelerated mechanisms that support the Virtual Memory subsys-
tem of modern CPUs. Apart from a sparse grid structure, Setaluri et
al. [2014] paired SPGrid with a di�erent perspective of octrees, treat-
ing them as stacks of sparsely populated uniform grids, across which
the cells of a geometric octree are scattered. This concept has been
subsequently applied to simulation of high-resolution �uids [Liu
et al. 2016] and hybridized with second-order accurate techniques
for incompressible �ow [Aanjaneya et al. 2017].

Material Point Methods. MPM [Sulsky et al. 1995] is a generaliza-
tion of the hybrid Fluid Implicit Particle (FLIP) method [Brackbill
et al. 1988; Bridson 2008; Zhu and Bridson 2005] to solid mechanics.
It has proven to be a promising discretization choice for animat-
ing many solid materials including snow [Stomakhin et al. 2013],
foam [Ram et al. 2015; Yue et al. 2015], sand [Daviet and Bertails-
Descoubes 2016; Klár et al. 2016], cloth [Jiang et al. 2017] and solid-
�uid mixture [Stomakhin et al. 2014]. The original GIMP concept
[Bardenhagen and Kober 2004] was described in the context of uni-
form grids. There is some engineering literature exploring adaptive
MPM. Early work of Tan et al. [2002] mainly focused on particle
splitting. Some initial ventures into coupling GIMP and adaptiv-
ity [Daphalapurkar et al. 2007; Ma et al. 2006, 2005] managed to
enforce both partition of unity and C1 continuity, but their appli-
cations were restricted to nested grids (not a general octree). Lian
et al. [2014] employed the concept of embedding �ne T-junctions
in coarse parents, but only along the surfaces separating resolution
levels. More recently, Lian et al. [2015] developed the mesh-grading
MPM (MGMPM) that modi�ed the shape functions while maintain-
ing the partition of unity. However their method, as we will see
later, is prone to generating negative interpolation weights in cer-
tain scenarios, risking potential instability. The shape functions in
both [Lian et al. 2014] and [Lian et al. 2015] are not based on GIMP
and only C0 continuous. Our method, on the other hand, guaran-
tees all desired properties: partition of unity, non-negativity and C1

continuity for the weights.

3 GENERALIZED INTERPOLATION MATERIAL POINT
METHOD

The Generalized Interpolation Material Point (GIMP) method, pro-
posed by Bardenhagen and Kober [2004], is a generalization of the
original MPM to allow a wider range of interpolation functions
between the particles and the grid.

3.1 Governing equations
Before discussing GIMP, we �rst brie�y review the original MPM.
We refer to [Stomakhin et al. 2013] for more details. The simulated
material is perceived as a continuum body which is a subset of Rd .
Here d denotes the spatial dimension, which can be 2 or 3. At any
give time t , there is a deformation mapping φ (·, t) : Rd → Rd ,
which maps points in the undeformed con�guration to a deformed
con�guration. More precisely, a pointX ∈ Ω0 is mapped to x(X, t) =

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:4 • Gao, M. et al.

φ (X, t) ∈ Ωt . The deformation gradient F = ∂φ/∂X describes the
material deformation and acts as a common strain measure [Bonet
and Wood 2008]. We denote the determinant of the deformation
gradient by J := det(F).

The governing equations we need to solve are the conservation
of mass and conservation of momentum. They are written as

Dρ

Dt
+ ρ∇ · v = 0 and ρ

Dv
Dt
= ∇ · σ + ρg (1)

respectively, where D/Dt is the material derivative (DfDt := ∂f
∂t + v ·

∇f for a generic scalar function f), ρ is the density, v is the velocity,
g is gravity, σ is the Cauchy stress. We assume that there exists an
elastic energy density function Ψ(F), so that the Cauchy stress can
be written as σ = 1

J
∂Ψ
∂F F

T (see Section 4 for more discussion on the
physical model).

3.2 Discretization
First, we explain the notation used in this paper. Subscript i is an
index that enumerates grid nodes, while p is an index that enumer-
ates discrete particles. Certain quantities relating grid nodes and
particles will carry a double subscript (ip), as will be the case with
interpolation functions and weights. Superscript n identi�es the
discrete time step associated with a time-varying quantity.

In MPM, particles carry attributes such as mass (mp), position
(xp), velocity (vp), deformation gradient (Fp), and other material
parameters. A background grid is used as a scratch pad to discretize
and solve the governing equations. The communication between
particles and grid information is handled through an interpolation
function. We denote the weight and the corresponding gradient
between particle p and grid node i with wip (a scalar) and ∇wip (a
vector), respectively.

Here we provide an overview of MPM stages in a time step, as-
suming an explicit symplectic-Euler time integration. GIMP follows
exactly the same procedure.

(1) Particle to grid. Assuming we are at time n, particle mass
and momentum are transferred from particles to grid nodes
with mn

i =
∑
pmpw

n
ip and (mv)ni =

∑
pmpvnpw

n
ip . The

velocity of node i is computed as vni = (mv)ni /m
n
i when

mn
i , 0. It is set to 0 otherwise.

(2) Compute grid forces. This comes from discretizing the
conservation of momentum. For node i , the force is given by
fni =m

n
i g−

∑
p V

0
p J

n
p σ

n
p∇w

n
ip , whereV 0

p is the undeformed
particle volume.

(3) Grid velocity update. Denoting the updated grid node
velocities with v̂i , symplectic Euler computes it as v̂i =
vni + ∆tf

n
i /m

n
i .

(4) Collision treatment. v̂i for each grid node is further pro-
cessed for nodes inside collision objects. The relative veloc-
ity is set to 0 inside “sticky” collision objects. The normal
component is set to 0 in “slip” collision objects.

(5) Strain evolution. The particle deformation gradient Fp
evolves as Fn+1p =

(
I + ∆t

∑
i v̂i (∇wn

ip)
T
)
Fnp .

(6) Grid to particle. Particle velocities and positions are up-
dated from grid velocities with vn+1p = α (vnp +

∑
i (v̂i −

vni)w
n
ip) + (1 − α)∑i v̂iwn

ip and xn+1p = xnp + ∆t
∑
i v̂iwn

ip ,
where α = 0.95 [Stomakhin et al. 2013].

3.3 From MPM to GIMP
Traditional MPM [Sulsky et al. 1995] de�nes the weightwip between
particle p and grid node i to be exactly the interpolation function
Ni (x) of node i evaluated at xp :

wip = Ni (xp). (2)
Accordingly the weight gradient is ∇wip = ∇

xNi (xp). Here Ni (x)
is the standard �nite element trilinear basis function in 3D (bilinear
in 2D) de�ned for node i .

While this choice of particle-grid weights works �ne for problems
with small deformation, Ste�en et al. [2008] observes that it su�ers
from the “cell crossing instability” for practical problems. This is
because piecewise linear basis functions are only C0 continuous
at cell boundaries. The corresponding gradient ∇wip is therefore
discontinuous. Two apparent problems are associated with this prop-
erty. First of all, it is possible that a huge force is exerted on a node
with tiny mass, causing numerical issues. Secondly, discontinuity
of the gradient implies discontinuity of the force (cf. Step 2 in the
the MPM/GIMP stages). Noise and instability may thus occur as
a particle travels across cells. These reasons render this choice of
basis function to be ine�ective for traditional MPM. We note that
this is not a problem for other hybrid particle-grid methods such as
a FLIP �uid solver because the weight gradient is not needed.

One convenient solution to remedy the cell crossing instability is
to use higher orderC1 or evenC2 continuous interpolation functions
such as quadratic or cubic B-splines as in Stomakhin et al. [2013].
Unfortunately there are not many other choices of the interpolation
function, given the following constraints:

• Partition of unity:
∑
i wip = 1,∀xp . This is required for

mass and momentum conservation [Jiang et al. 2015].
• Non-negativity:wip ≥ 0.
• Interpolation: xp =

∑
i wipxi .

• C1 continuity:wip needs to be at least C1 continuous.
• Local support:wip is only non-zero for xp near xi .

The last requirement is primarily due to practical considerations.
The non-negativity constraint rules out the possibility of high order
FEM basis functions such as 9-node quadratic quadrilateral elements
or 8-node serendipity quadrilateral elements in 2D (and their corre-
sponding shape functions for hexahedral meshes in 3D) [Hughes
2012]. As we will discuss more in detail in Section 5.1, allowing
negative weights may cause serious issues when mass on a grid
node becomes negative [Andersen and Andersen 2007].

GIMP is another alternative to eliminating the cell crossing insta-
bility. Instead of choosing Ni (x) to be C1, GIMP constructs weights
with C1 continuity, using as building blocks bases Ni (x) with just
C0 continuity, often chosen to be the standard multilinear basis.

The full simulation domain is denoted by Ω. Associated to a
particle p is the notion of particle domain Ωp surrounding it (as yet
of unspeci�ed shape; will be chosen to be an axis aligned box in our
implementation). Thus, the volume of a particle can be computed as

V̂p =

∫
Ω∩Ωp

dx. (3)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials • 223:5

Fig. 4. Colliding 2D jello squares. Two hyperelastic jello squares are driven to collide with each other. Le�: A uniformly coarse grid leaves large separation
gaps. Middle: A 4×-refined uniform grid nicely resolves the contact, at the expense of gratuitous computation in the interior. Right: Our adaptive scheme.

Unlike Equation 2, GIMP de�nes the weight to be

wip =
1
V̂p

∫
Ω
χp (x)Ni (x) dx, (4)

with χp (x) being the particle characteristic function de�ned over
the particle domain Ωp .

The traditional MPM is a special case of GIMP where χp (x) =
V̂pδ (x − xp). Common GIMP schemes often choose χp (x) to be the
characteristic indicator function centered at xp , i.e.,

χp (x) =



1 if x ∈ Ωp ,

0 otherwise.

We model Ωp as an axis-aligned box centered at xp . Another com-
mon simpli�cation that is often made is that Ωp does not rotate or
deform. This is also known as uGIMP (undeformed GIMP). Thus
the integral is always evaluated in a box with size V̂p = Ldp , where
Lp is the �xed side length of particle p’s box and d = 2 or 3 is the
dimension. Under this choice of χp (x), Equation 4 simpli�es to

wip =
1
V̂p

∫
Ωp

Ni (x)dx. (5)

Similarly, we de�ne

∇wip =
1
V̂p

∫
Ωp
∇xNi (x)dx. (6)

Recall that Ni (x) is piecewise linear and C0 continuous. Since the
weights result from a convolution of Ni (x) with the indicator func-
tion of Ωp , wip becomes C1 continuous and ∇wip is C0 continuous
if they are viewed as functions of x. Additionally, wip satis�es all
constraints mentioned previously.

GIMP weights are inherently smooth. We note that GIMP further
recovers traditional MPM with quadratic B-spline interpolation on
a uniform grid when Lp = ∆x . We can see this from the convolution
de�nition of uniform B-spline functions. More speci�cally, assuming
∆x = 1 in 1D, the B-spline of order-0 is given by

N 0 (x) =



1 if x ∈ [0, 1],
0 otherwise.

If we convolute N 0 (x) with itself as N 1 (x) = N 0 (x) ∗ N 0 (x), we
can see N 1 (x) is exactly the piecewise linear order-1 B-spline with
support [−1, 1]. We can further write N 2 (x) = N 1 (x) ∗ N 0 (x) and
N 3 (x) = N 2 (x) ∗N 0 (x), or generally N k (x) = N (k−1) (x) ∗N 0 (x) to
recursively construct uniform higher order B-splines. Consequently,
by noticing N 0 (x) = χp (x) when Lp = ∆x , we see that the GIMP
shape function and the quadratic B-spline shape function are iden-
tical in this case. This result generalizes to 2D and 3D due to the
property that multi-dimension B-splines are simply tensor products
of univariate 1D B-splines.

Even though B-splines MPM and GIMP can be made equivalent
on a uniform grid, it is much more di�cult to generalize high or-
der B-splines to an adaptive grid. Much of the di�culty lies in the
treatment of T-junctions and transition grid cells between di�er-
ent levels. On the other hand, the GIMP view from Equation 4 is
naturally de�ned on an adaptive grid, as long as a C0 continuous
piecewise linear function Ni (x) is well de�ned. We show how to
robustly construct such basis functions in Section 5.

4 ELASTOPLASTICITY
We adopt �nite strain elastoplasticity to model di�erent material
behaviors. In this section we follow [Bonet and Wood 2008] and
assumes that the deformation gradient F is decomposed into elastic
and plastic parts as F = FEFP . In this paper we only consider (i)
purely elastic objects, (ii) elastoplastic von Mises materials, and
(iii) granular Drucker-Prager sand. However, our approach can be
easily combined with any constitutive models.

4.1 Hyperelasticity
In hyperelasticity setting, there exists an elastic energy density
function Ψ(FE) that penalizes the deviation of FE from a pure ro-
tation. As such, the �rst Piola-Kirchho� stress is determined by
P = ∂Ψ

∂FE (F
P)−T . The Cauchy stress can be obtained as σ = 1

J PF
T .

In this paper, we decided to choose the �xed-corotated model [Stom-
akhin et al. 2012] for purely elastic solids due to its robustness under
large deformation, where Ψ is de�ned as Ψ(FE) = µ‖FE − RE ‖2F +
λ
2 (J

E − 1)2, where RE is the rotation tensor from the polar decom-
position FE = RESE , JE = det(FE), µ and λ are Lamé parameters.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:6 • Gao, M. et al.

For elastoplastic materials, it is often more convenient to adopt the
Hencky strain ϵ = 1

2 log(FF
T) from Mast et al.[2013] and to use the

St. Venant-Kirchho� energy density

Ψ(FE) = µtr(log(ΣE)2) + 1
2λ(tr(log(Σ

E)))2, (7)

where Σ comes from SVD of FE : FE = UEΣE (VE)T .

4.2 Plasticity
In this paper we consider two plasticity models, namely the Drucker-
Prager model with a non-associative �ow rule for granular materials,
and the von Mises model with an associative �ow rule for perfectly
plastic materials. We use Equation 7 for the elastic response.

4.2.1 Drucker-Prager. The Drucker-Prager yield surface can be
derived by applying the Mohr-Coulomb friction law in a contin-
uum. The admissible stress is inside the region given by y (σ) =
cF tr(σ) + ‖σ − tr(σ)

d I‖F ≤ 0, where cF is the coe�cient of internal
friction. Discretely, if the trial stress is outside the yield region, it
is projected back onto the yield surface through an closed-form
solution of the return mapping [Klár et al. 2016]. The original return
mapping causes non-physical volume gain when the material is
under expansion. We adopt the volume correction treatment as in
Tampubolon et al. [2017] to eliminate this artifact.

4.2.2 von Mises. Von Mises plasticity is widely used for metal
and ductile materials. It is also closely related to computer graph-
ics plasticity models that were successfully applied for simulat-
ing plastic �ow and gooey materials [Bargteil et al. 2007; Wojtan
and Turk 2008]. In 3D, the von Mises yield surface is de�ned as
y (σ) =

√
3J2 −σy ≤ 0,where σy is the yield stress, J2 = 1

2 s : s is the
second invariant of the deviatoric stress s. Here s := σdev = σ + pI
andp = − 1

3 tr(σ). Unlike the Drucker-Prager yield surface for granu-
lar materials, von Mises plasticity uses an associative �ow rule. The
discrete �ow rule thus chooses ∂y

∂σ as its direction. In the principal
stress space, the shape of von Mises yield surface is an in�nitely
long cylinder centered at the hydrostatic axis (σ1 = σ2 = σ3, where
σ i is the i’th eigenvalue of σ). Following the same methodology in
[Klár et al. 2016], we derive a closed form solution of the return map-
ping for von Mises plasticity. Assuming ϵE := log(|FE |) is the trial
Hencky strain in the principal space, when the trial stress is outside
the yield region, we project ϵE to the yield surface to obtain a new
Hencky strain HE = ϵE −δγ dev(ϵE)

‖dev(ϵE) ‖ , where δγ = ‖dev(ϵE)‖ − σy
2µ

and dev(ϵE) = ϵE − tr(ϵE)
3 I.

5 ADAPTIVE BASIS FUNCTIONS
We employ a spatially adaptive computational grid. As the simu-
lation proceeds, the grid must locally re�ne and coarsen to hierar-
chical re�nement levels. Instead of trying to de�ne a C1 continu-
ous B-spline-like interpolation function that covers all cases and
T-junctions, we degrade the problem into de�ning a C0 function.
As discussed in Section 3.3, GIMP will use convolution to convert
the C0 continuous interpolation function Ni (x) to a C1 continuous
shape function wip .

Fig. 5. Illustration of free T-junction. A test case for the adaptive grid ba-
sis with free T-junctions described in Section 5.1. The interpolation functions
remain non-negative in the case of (a). However, in the (b) case where there
exist two T-junction nodes, Nc may turn negative and become problematic.

5.1 Adaptive grid basis with free T-junctions
We start by describing the state-of-the-art multi-level grid approach
by Lian et al. [2015]. Cell spacing of the grid of level n is ∆xn =
∆x0/2n , where ∆x0 is the coarsest cell spacing. This results in addi-
tional hanging nodes at T-junctions at the interface between cells
of di�erent re�nement levels.

Taking the case of Figure 5(a) as an example, cell 2 and 3 are
of a level higher than cell 1. Node b is a T-junction node at the
level transition interface. In the formulation of Lian et al. [2015]
it is treated as an actual degree of freedom on the grid. Inside cell
2 and 3, the interpolation functions associated with nodes a,b, c
are simply the standard bilinear hat functions. For example, if we
denote the hat function basis of node γ in cell k with Hk

γ , and the
grid basis interpolation function with N k

γ , we have

N 2
a = H2

a , N
2
b = H2

b , N
3
b = H3

b , N
3
c = H3

c . (8)

In other words, within cells that have no T-junctions in their periph-
ery, the shape functions of their corner vertices are the standard
bilinear hat functions; this is not the case, however for cells contain-
ing T-junctions (such as cell 1 in Figure 5), neither for the corner
vertices or T-junction nodes associated with such cells. N 1

b must be
de�ned in a way that ensures continuity of Nb along edge a − b − c .
If we parameterize cell 1 with a coordinate system spanning [−1, 1]2
with the origin at its center and assume node b is at (x = 1,y = 0),
then N 1

b =
1
2 (1 + x) (1 − |y |). To enforce continuity of Na ,Nb and

partition of unity, the interpolation function of node a and b inside
cell 1 are constructed as N 1

a = H1
a −

1
2N

1
b , N

1
c = H1

c −
1
2N

1
b . A similar

strategy can be adopted in 3D, where a transition cell may have 8
to 26 nodes, depending on the number of T-junctions.

While this approach works �ne for the case of Figure 5(a), it starts
to break the non-negativity constraint in the case of Figure 5(b)
where there exists another T-junction node d . Using the same local
coordinate system de�ned above, we have

N 1
b =

1
2 (1 + x) (1 − |y |), N 1

d =
1
2 (1 − |x |) (1 + y), (9)

H1
c =

1
4 (1 + x) (1 − y), N 1

c = H1
c −

1
2N

1
b −

1
2N

1
d . (10)

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials • 223:7

Fig. 6. Negative weights causing instability in a sphere dropping experiment.

Fig. 7. Illustration for constrained T-junctions. A test case for the our
adaptive grid basis with constrained T-junctions, as described in Section 5.2.

It is easy to see that N 1
c can sometimes become negative, for example

when x = 0.5 and y = 0.1. As a result, some grid nodes may have
negative mass after the particles-to-grid transfer. Negative weights
in MPM causes instability and severe loss of accuracy [Andersen
and Andersen 2007]. For example, we could construct a case with
two particles a�ecting a grid node with exactly opposite weights.
As a result, the nodal mass becomes zero, resulting in an incorrect
value of grid node velocity. Subsequently, the grid node velocity
update and grid-to-particles transfer will be erroneous, causing the
simulation to go unstable or behave non-physically. Figure 6 shows
a practical case where such instability happens at a region where
negative nodal mass exists.

5.2 Adaptive grid basis with constrained T-junctions
To prevent negative interpolation weights, we propose a di�erent
strategy for de�ning a C0 continuous Ni (x) for GIMP. The key idea
is the same with the classical constrained hanging node treatment
in octree FEM simulations [Fries et al. 2011; Legrain et al. 2011].
In contrast to the approach of Lian et al. [2015], our treatment
does not construct interpolation functions on the T-junctions. T-
junction nodes are constrained to move with their parent nodes at
cell corners. Therefore, T-junction nodes are embedded vertices that
do not belong to the set of real degrees of freedom.

We shall use the grid topology shown in Figure 7 to illustrate
our approach; note that this arrangement includes a number of real
degrees of freedom (colored red) as well as T-junctions (colored
green). Initially, we will ignore any constraints that the T-junction
nodes might be subjected to, and associate a shape function with
all enumerated vertices, real or T-junction. For a given node γ we
de�ne a shape function Hγ =

∑
n H

n
γ as the summation of all the

Fig. 8. Illustration of the shape functions Hγ defined in Section 5.2.

standard bilinear hat functions Hn
γ , summed over all cells (indexed

by n) for which γ is a corner vertex (not a T-junction). For example,
we would thus haveHa = H1

a+H
2
a andHb = H2

b+H
3
b in the scenario

of Figure 7. The resulting functions Hγ are plotted in Figure 8. Us-
ing this basis (in the absence of any constraints), a scalar �eld q(x)
would be interpolated from nodal values as q(x) = ∑

γ qγHγ (x).
Of course, the reconstructed function q(x) would be discontinuous
(since the shape functions Hγ are discontinuous themselves, most
notably along cell faces that contain T-junctions). Restoring conti-
nuity would require us to enforce constraints on the nodal values
qγ , such as qb = 1

2qa +
1
2qd , qc = 1

4qa +
3
4qd , qe = 1

4qa +
1
4qd +

1
2qi

and qj =
1
2qi +

1
2qk in our speci�c example. Substituting these

constraints into equation q(x) =
∑
γ qγHγ (x) replaces this summa-

tion with a di�erent expression q(x) =
∑
η qηNη (x), where now

η enumerates only the real (non T-junction) degrees of freedom,
and the new functions Nη (x) have been formed by accumulating
partial contributions from the constrained degrees of freedom that
were eliminated after the substitution. For our speci�c example of
Figure 7, we would have

Na = Ha +
1
2Hb +

1
4Hc +

1
4He , (11)

Nd = Hd +
3
4Hc +

1
2Hb +

1
4He , (12)

Ni = Hi +
1
2He +

1
2Hj , (13)

Nk = Hk +
1
2Hj , (14)

while the remaining non-T-junction nodes satisfy Nη = Hη . Note
that the contribution from a constrained degree of freedom to a real
degree of freedom (such as from Hc to Na) directly results from the
corresponding nodal value constraint (such as qc). We use these
newly de�ned functions Nη (x) as our shape basis; these functions
are fully C0 continuous, as illustrated in Figure 9. We show a more
detailed explanation of how one computes the shape for the basis
functions and prove their properties (continuity and partition of
unity) in the supplementary technical document [Gao et al. 2017].

We highlight the dual perspective : we can envision this con-
struction either as an alteration of the basis functions of real (non
T-junction) nodes, or as the result of constraining the coe�cients of
the shape functions Hγ associated with all nodes, to enforce embed-
ding constraints; this duality will be exploited in the next section.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:8 • Gao, M. et al.

Fig. 9. Visualization of our C0 continuous shape function basis, defined in Section 5.2. Shape functions are only associated with non-T-junction nodes.

Each modi�ed interpolation function is a linear combination of hat
basis functions. When we construct the GIMP shape functions and
their gradients through Equation 4 and 6, the resulting wip is C1

continuous, and ∇wip is C0 continuous. In practice, instead of ex-
plicitly constructing the modi�ed interpolation functions, we use
a ghost cell based multi-layer scattering approach that is e�cient
and only require simple uniform grid operations (see Section 6.1).

6 ACCELERATED GRID-PARTICLE TRANSFERS

6.1 Multi-layer embedding and interpolation
In the previous section, we momentarily treated T-junctions as ac-
tual degrees of freedom, and endowed them with associated shape
functions (Hγ). We will see that it is bene�cial to take this exer-
cise one step further. Consider the quadtree topology depicted in
Figure 10. For the purposes of this hypothetical exercise, imagine
that we fully subdivide the coarse cell on the left (with vertices
x2h00 , . . . ,x

2h
11) into four �ner cells, straddling vertices now referred

to as xh00, . . . ,x
h
22 (we are free to consider collocated vertices i.e. x2h10

and xh20 either as aliases of one another, or duplicates). Imagine that,

Fig. 10. Particle-grid transfer operations mapped to a multi-level sparse
grid structure; operations involving applications of weights are performed
solely on a uniform grid, and information is propagated across resolutions
via the embedding relation. The approach trivially extends to non-graded
grids.

instead of de�ning the starting shape functionsHγ on just the nodes
that appear on the octree, we de�ned them on all re�ned nodes (i.e.
de�ne a functionHh

i j for every re�ned node xhi j). Re�ned nodes obey
similar embedding relationships as previously seen for T-junctions,
for example xh11 =

1
4 (x

2h
00 + x

2h
10 + x

2h
01 + x

2h
11). As in the previous

section, we can construct the basis functions of the real degrees of
freedom, by eliminating all re�ned nodes that are not collocated
with a real node in the quadtree; this would yield for example

N 2h
11 = Hh

22 +
1
2H

h
12 +

1
2H

h
21 +

1
4H

h
11.

This linear relation could be leveraged to de�ne multi-level weights
via the GIMP convolution, resulting for example in an application
of Equation 4 to an expression of the form:

w2h
11,p = w

h
22,p +

1
2w

h
12,p +

1
2w

h
21,p +

1
4w

h
11,p (15)

Consider the repercussions of this construction: All weights of the
formwh

i j,p exhibit high regularity, as they result from the integration
of the standard bilinear hat function on a uniform grid; this is aggres-
sively leveraged in the vectorization optimization discussed in the
following subsection. Finally, consider what Equation 15 implies for
particle-to-grid transfers such as the mass update mi =

∑
pmpwip .

By substituting Equation 15 in this expression, we see that the mass
contributions could be equivalently computed in a two-step process:
we �rst compute partial contributionsm2h

i j =
∑
pmpw

2h
i j,p , and then

distribute these contributions to the real quadtree degrees of free-
dom by multiplying them with the respective embedding weights,
as shown in the left part of Figure 10.

We facilitate this hierarchical transfer by introducing the concept
of ghost nodes in Figure 10, which are similar in motivation with
those formulated by Setaluri et al. [Setaluri et al. 2014] to facili-
tate Laplacian stencil application, but di�erent in the number of
them that needs to be instanced. In the vicinity of any T-junction,
we create duplicate re�ned variables by subdividing every cell in-
cident to the T-junction down to the �nest level touched by the
T-junction. Among such nodes, those that are collocated with a real
(non-constrained) quadtree node are labeled as “real” degrees of
freedom; the remaining ones are labeled “ghost” and they serve as
conduits for implementing the transfer operations in a hierarchical
fashion. For any particle p, we detect the �nest level intersecting
the particle domain Ωp , and carry out the particle-to-grid transfer
exclusively to the re�ned nodes, some of which will be “ghost”. After
all particles have transferred their values to the appropriate uni-
form level, ghost node values are distributed in bulk to their coarser

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials • 223:9

parents (multiplied by their embedding weights), until this process
reaches all real quadtree nodes. The opposite process is followed for
the grid-to-particle transfer; grid values of ghost nodes are interpo-
lated from their embedding “real” parents, and then the weighted
transfer to the particle is evaluated exclusively at the �nest level
intersecting Ωp , as shown in the bottom-right part of Figure 10.

6.2 Vectorized weight computation
Our hierarchical approach to grid-particle transfers provides two
signi�cant regularity properties that can be leveraged to accelerate
the computation of transfer weights, which can form the bulk of
the computational burden if implemented ine�ciently, as they need
to be updated at every time step. First, since the actual transfer
(modulo the embedding-based distributions) always takes place at a
uniform grid, there is always a full set of 8 grid cells/27 grid nodes
(in 3D) that participate in this transfer. All eight of such cells reside
at the same level of resolution, and their contribution to the weight
stencils can be computed in parallel, via SIMD instructions.

In addition to the aforementioned property, our code exploits
yet another opportunity for SIMD computation: Since the shape
functions in all cells involved in our transfers have now been reduced
to the standard trilinear basis, we can consider the possibility of
computing the weights of all eight corner nodes of every cell in
parallel, using SIMD instructions. We illustrate how this materializes
for the weights themselves, although the process easily extends to
the weight gradients as well. Absorbing the characteristic indicator
function into the integral of Equation 4 results in

wi jk,p =
1
V̂p

∫
Ω∩Ωp

Ni jk (x) dx =
1
V̂p

∫ b

a

∫ d

c

∫ f

e
Ni jk (x) dxdyz

where we have explicitly used a triple index (i, j,k) ∈ {0, 1}3 to refer
to the eight vertices of a cell, and Ω ∩ Ωp = [a,b] × [c,d] × [e, f].
Since the integrand is separable, it can be easily computed in closed
form, e.g. for N111 = 1

dx 3 xyz we have

W (a,b, c,d, e, f) := 1
V̂p

∫
Ω∩ωp

N111 (x)dx =
(b2−a2) (d2−c2) (f 2−e2)

8V̂pdx3

We can easily observe that the integral of the shape functions Ni jk
other than the one given here, can be easily computed by performing
a change of variable xi ← 1 − xi for one or more of the coordinate
indices i = 1, 2, 3. This yields the following results:

w000,p = W (1−b, 1−a, 1−d, 1−c, 1− f , 1−e)
w001,p = W (a,b, 1−d, 1−c, 1− f , 1−e)
w010,p = W (1−b, 1−a, c,d, 1− f , 1−e)
w011,p = W (a,b, c,d, 1− f , 1−e)
w100,p = W (1−b, 1−a, 1−d, 1−c, e, f), etc...

We use this property, in conjunction with the regularity of computa-
tion across the eight cells involved, to implement a SIMD-optimized
weight computation that computes the weights of all 8 cell vertices
at once, by executing a vectorized implementation of the expression
W (·) for a properly adjusted set of integration bounds.

The feasibility of these SIMD optimization, and the ability to
structure the entire transfer using uniform operations as a building
block, was a direct consequence of how our theoretical interpolation

scheme was designed. The SIMD optimization would also directly
bene�t traditional GIMP on a uniform grid.

7 GRID RASTERIZATION AND PARTICLE RESAMPLING

7.1 Grid rasterization
We index grid levels with 1 ≤ qд ≤ Qд and particle types with
1 ≤ qp ≤ Qp , where lower case denote �ner grid resolution/smaller
particles. In pre-process, particles attributes (e.g. position, mass,
volume, and type) are prescribed by the user. Our convention is to
place coarser grid resolution (hence sparser particle distribution)
deep inside, and �ner grid resolution (hence denser particle distri-
bution) closer to the free surface or collision boundary. Static grid
adaptivity (e.g. Figure 2 and 3) is accomplished in a pre-process step.
However, dynamic grid adaptivity (e.g. Figure 4, 12, and 13) needs
to be computed for each time step.

For hyperelasticity, the grid and particle adaptations are com-
pletely determined by the particle types. Starting from the coarsest
level, the smallest particle type qp within a cell of the current grid
qд is computed. We re�ne the cell if qp < qд and the number of
particles of each sub-cell is no less than particles per cell prescribed.

For elastoplastic material, we need to perform particle resampling.
We �rst compute the approximate Manhattan distance d from the
“free surface" for each �nest cell. Then starting from the �nest grid
level, we merge sub-cells into a single cell only if they are beyond a
prescribed distance criterion. However, this simple strategy is prone
to the mismatch of particle type and grid level which can easily lead
to numerical fracture (Lian et al. [2015]). Another problem is that
for highly energetic motion (c.f. top right corner of Figure 11(a)),
sparse particles in the interior are easily driven to the surface, which
diminishes surface details.

7.2 Particle resampling
To alleviate these problems, we modify the split-and-merge ap-
proach proposed by Yue et al. [2015] to better suit our framework.
Split-and-merge is applied to a particle depending on both its par-
ticle type and the corresponding Manhattan distances of the cell
containing the particle. We de�ne three distance parameters dsmall,
dmedium and dlarge, if d < dsmall, neither split nor merge of particles
is enforced, otherwise the operations will be visually noticeable.
Split is necessary when dsmall < d < dmedium to retain a detailed
surface while merge is required for d > dlarge to reduce computa-
tional cost. In the last case, dmedium < d < dlarge, split-and-merge
depends on the particular application. Moreover, split-and-merge
is prohibited if the number of particles within a cell is either too
large or too small which could end up with the sparse particles
moving closer to the surface (cf. blue circle of Figure 11(b)). For
applications with more than two levels, (e.g. Figure 2 and 3), we
repeat the process between each level of transition.

Split. To split a particle of type q to four particles of type q − 1
in 2D (eight in 3D), we �rst put a square(or a cube in 3D) centered
at the original particle position with half diagonal length dx

4 (dx is
the size of the cell containing the particle), then randomly rotate
the square/cube and place the new particles in the vertices of the
square/cube. To preserve both mass and momentum, the mass and

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:10 • Gao, M. et al.

Fig. 11. Sand in a rotating circle. Top: particle split-and-merge turned o�.
Bo�om: particle split-and-merge turned on.

P2G
1 Core

G2P
1 Core

P2G
4 Cores

G2P
4 Cores

Dense 3.58 6.84 1.38 1.85
OpenVDB 2.39 5.8 0.64 1.54
SPGrid 3.05 1.26 0.82 0.28

Table 1. Benchmark. We compare our accelerated particle-to-grid (P2G)
and grid-to-particle (G2P) transfers to a dense uniform grid MPM
solver [Klár et al. 2016] and a sparse OpenVDB-based MPM solver [Tam-
pubolon et al. 2017] on an Intel(R) Core(TM) i7-4770R.

volume are equally distributed to all new particles while the velocity
and the deformation gradient are directly duplicated.

Merge. To merge particles, we start with a single particle and
then search for its closest neighbors of the same particle type. The
position of the new particle is the geometric center of the �ne
ones. The mass and volume are accumulated while the velocity is
computed from a mass-weighted average. For deformation gradient,
we �rst do the singular value decomposition FE = UEΣE (VE)T .
The matrix Σ̂ is computed from the average of the ΣE ’s. We apply
quaternion average to the UE ’s and VE ’s to get ÛE and V̂E . Finally,
we compute the new deformation gradient as F̂E = ÛE Σ̂

E
(V̂E)T .

8 RESULTS
We list the performance and simulation parameters of our 3D simu-
lations in Table 2, in which we also compare against uniform grid
simulations. The �rst two examples (Jello, Figure 4 and Hourglass,
Figure 13) illustrate the speedup of the adaptive approach against
uniform methods that yield comparable visual detail with e.g., [Klár
et al. 2016]. We highlight that the somewhat modest speedup is due
to the fact that we gratuitously re�ne around the entirety of the free
surface, rather than localizing re�nement on regions undergoing
contact. The last two examples (Dragon, Figure 2 and Armadillo,
Figure 3) show that, when spending comparable computation e�ort
with uniform techniques (with similar particle counts), our adaptive
simulation can resolve signi�cantly higher detail. Note that uniform
MPM cannot handle our �nest ∆x case within reasonable amount
of time and memory usage. Figure 12 shows colliding adaptive jellos
in 3D. For this test, the memory usage is 0.18GB for the adaptive
case and 0.24GB for the uniform dense case. The cost of particle-
grid transfer operations in relate to the cost of a whole time step
is 50% and 70% for them respectively. Figure 14 illustrates the fact
that our adaptive simulation (left) produces a visually similar de-
tailed dynamics of colliding jellos compared to a regular-dense-grid
simulation (right).

Benchmark. We compare our accelerated particle-grid transfers
to reliable implementations of the MPM solvers in [Klár et al. 2016]
(with a dense uniform grid data structure) and [Tampubolon et al.
2017] (with the OpenVDB [Museth 2013] sparse grid) on an Intel(R)
Core(TM) i7-4770R. We create a benchmark example with ∆x = 1

128 .
The particles are uniformed sampled on a grid from (18 ,

1
8 ,

1
8) to

(78 ,
7
8 ,

7
8) with spacing 1

256 , for a total of just over 7 million particles.
SPGrid (h�p://www.cs.wisc.edu/~sifakis/project_pages/SPGrid.html)
was sourced from the project website, while the other MPM bench-
marks were graciously shared with us by the respective authors.
Table 1 lists the timing comparison. We additionally release our
accelerated transfer code in the supplementary materials.

Contact. The bene�t of using an adaptive discretization include
better resolution of the contact between di�erent MPM objects (as
well as self contact). In Figure 4, we show a comparison of 2D col-
liding jellos on a uniform coarse grid, a uniform dense grid, and
our adaptive grid. Adaptivity allows us to achieve very small sepa-
ration distance. The adaptive discretization reduces the necessary
computational cost compared to the uniform dense case.

Dynamic Adaptation. We simulate dry sand with the Drucker-
Prager plasticity model and the free surface based adaptation cri-
terion (Figure 1 and Figure 13). Both the particles and the grid are
re�ned near the free surface and coarsened in the interior region.
The computational resources are thus focused on the visible part,
enabling highly detailed �ow resolution.

Small Features. We further demonstrate the e�ectiveness of our
method in resolving small scale collision object features. In Figure 2
we carve thin cracks on a glass table and put a dragon-shaped von
Mises goo on it. We choose a small grid resolution for e�ciency.
A uniform grid cannot fully resolve the thin feature. Our method
successfully let the goo to slip through the cracks by simply re�ning
the cells near the crack. The robustness of our method on non-
graded adaptivity allows us to re�ne the same cell for multiple times
without needing to specially take care of neighboring cells. Note
that the re�nement is only performed to an extremely small portion
of the computational domain and does not cause much overhead.
Figure 3 shows another example where we cut an armadillo with
two wires. Similarly, our method resolves the thin wire with a slight
increase in computational cost. Although we adopt three successive
levels of re�nement in both of these two examples, all cells are
either at the very coarsest or very �nest level of resolution with a
non-graded transition between them.

9 DISCUSSION
Limitations. Even though our adaptive scheme promises signif-

icant performance and detail bene�ts, it also carries a number of
intrinsic limitations. Taking full advantage of adaptivity in simula-
tions involving intricate contact would often require dynamically
re�ning parts of the surface involved in collision events at any point
in time (as opposed to preemptively re�ning the entire surface).
In those cases, visual artifacts due to resampling might be evident
(especially for simulation of granular materials, e.g. sand) and would
require special attention to mitigate. The GIMP convolution allowed
C0 multilinear bases to be boosted toC1 continuity in the computed

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials • 223:11

levels
(adaptive)

∆x
(�nest;adaptive)

particle #
(adaptive)

time/step
(adaptive)

∆x
(uniform)

particle #
(uniform)

time/step
(uniform) ρ E ν σy friction angle

Jello (Fig. 12) 3 1/256 8.8 × 105 1.67 1/256 1.74 × 106 2.74 1000 8e3 0.3 - -
Hourglass (Fig. 13) 2 1/256 8.1 × 105 1.14 1/256 1.68 × 106 2.84 1000 1e5 0.3 - 30
Dragon (Fig. 2) 3 1/512 1.567 × 106 2.78 1/150 1.67 × 106 2.83 800 8e3 0.3 10 -
Armadillo (Fig. 3) 3 1/512 5.2 × 105 1.15 1/128 5.2 × 105 0.85 800 8e3 0.3 10 -

Table 2. Simulation performance and parameters. (ρ is material density, E is Young’s modulus, ν is Poisson’s ratio and σy is plasticity yield stress.) (1)
Jello and Hourglass are run with Intel(R) Xeon(R) CPU E5-2687W v3. We compare the finest level ∆x , first frame particle count, and per-step cost of our
adaptive scheme with the simulation on a uniform grid that has the same resolution with our finest grid level. (2) Dragon and Armadillo are run with Intel(R)
Xeon(R) CPU E5-1650 v3. Sampling on a uniform grid using our finest grid ∆x causes a total number of over 30 million particles and cannot be handled within
reasonable amount of time. Therefore we adjust the uniform grid resolution to match the particle count of our adaptive simulation, while maintaining the
same particle-per-cell count.

weights; however, seeking a higher order of continuity is highly
nontrivial in the adaptive case, as it would likely require a basis that
isC1 pre-convolution. Our use of a hierarchy of sparse grids allowed
us to contain costs associated with expansive uniform grids; never-
theless, tracking the set of particles as they transition across cells of
di�erent resolution requires geometric search structures (e.g. box
hierarchies) whose traversal and update can be less parallel-friendly
than what would be necessary for the uniform case.

Scope restrictions. Our initial exploration of adaptive GIMP was
consciously restricted in scope to simple simulations of elastoplas-
ticity and re�nement rules. In particular, re�nement was triggered
by simpli�ed heuristics, such as the proximity to collision objects
and/or the free surface. We have not investigated more intricate re-
�nement criteria such as those triggered by large values of strain, or
spatially localized to regions undergoing self-collision, for which an
accurate and e�cient detection would be less trivial. We have also
restricted our investigation to purely explicit time integration tech-
niques, and did not consider scenarios of fracturing elastic bodies,
for which the use of adaptation would be naturally motivated.

Fig. 12. 3D colliding jellos. Two colliding jellos are simulated, where we
placed finer particles and grid resolution near the free surface of the material.

Future work. We look forward to investigating extensions to im-
plicit MPM approaches and evaluate if the SPGrid paradigm can
deliver similar accelerations to operator evaluations in assembly-
free iterative solvers. Extensions to MPM �uids and coupling behav-
iors between solid/granular/�uid phases would also be an exciting
direction of investigation. We would also like to investigate the in-
corporation of the A�ne Particle-In-Cell (APIC) method [Jiang et al.
2015] to our adaptive scheme for improved stability and angular
momentum conservation. Finally, investigating combined use of
adaptivity with fracture scenarios and detailed self-collision would
be a very interesting (and likely nontrivial) future thread.

ACKNOWLEDGMENTS
We would like to thank Prof. Xiong Zhang for useful discussions.
E.S. and M.G were supported by NSF grants IIS-1253598 and CCF-
1533885. UPenn authors gratefully acknowledge the GPU donation
from NVIDIA Corporation and a gift from Awowd, Inc.

REFERENCES
M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power Diagrams and

Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans Graph. 36, 4
(July 2017).

B. Adams, M. Pauly, R. Keiser, and L. Guibas. 2007. Adaptively sampled particle �uids.
In ACM Trans Graph, Vol. 26. ACM, 48.

S. M. Andersen and L. Andersen. 2007. Material-Point Method Analysis of Bending in
Elastic Beams. In Inter Conf Civil, Struct Env Eng Comp.

R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving �uid sheets with adaptively
sampled anisotropic particles. IEEE Trans Vis Comp Graph 18, 8 (2012), 1202–1214.

R. Ando, N. Thurey, and C. Wojtan. 2013. Highly adaptive liquid simulations on
tetrahedral meshes. ACM Trans Graph 32, 4 (2013), 103:1–103:10.

S. G. Bardenhagen and E. M. Kober. 2004. The generalized interpolation material point
method. Comp Mod in Eng and Sci 5, 6 (2004), 477–496.

Fig. 13. Sand in an hourglass. Sand in an hourglass is simulated with finer
particles and grid resolution strategically placed near the collision boundary.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

223:12 • Gao, M. et al.

Fig. 14. Comparison. The result of our adaptive formulation (le�) com-
pared with regular MPM on a dense grid (right).

A. Bargteil, C. Wojtan, J. Hodgins, and G. Turk. 2007. A �nite element method for
animating large viscoplastic �ow. ACM Trans Graph 26, 3 (2007).

C. Batty, S. Xenos, and B. Houston. 2010. Tetrahedral Embedded Boundary Methods
for Accurate and Flexible Adaptive Fluids. In Proc of Eurographics.

J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for �nite element analysis.
Cambridge University Press.

J. Brackbill, D. Kothe, and H. Ruppel. 1988. FLIP: A low-dissipation, PIC method for
�uid �ow. Comp Phys Comm 48 (1988), 25–38.

R. Bridson. 2008. Fluid simulation for Comp Graph. Taylor & Francis.
S. Capell, S. Green, B. Curless, Tom D., and Z. Popović. 2002. A multiresolution frame-

work for dynamic deformations. In Proc of the 2002 ACM SIGGRAPH/Eurographics
Symp on Comp Anim. ACM, 41–47.

N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a re-
stricted tall cell grid. ACM Trans on Graph (TOG) 30, 4 (2011), 82.

J. M. Cohen, S. Tariq, and S. Green. 2010. Interactive �uid-particle simulation using
translating Eulerian grids. In Proc of the 2010 ACM SIGGRAPH Symp on Interactive
3D Graph and Games. ACM, 15–22.

N. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri. 2007. Simulation of dynamic
crack growth using the generalized interpolation material point (GIMP) method.
Int J Fract 143, 1 (2007), 79–102.

G. Daviet and F. Bertails-Descoubes. 2016. A Semi-Implicit Material Point Method for
the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (July
2016).

G. Debunne, M. Desbrun, A. Barr, and M-P. Cani. 1999. Interactive multiresolution Anim
of deformable models. In Comp Anim and SimulationâĂŹ99. Springer, 133–144.

C. Dick, J. Georgii, and R. Westermann. 2011. A hexahedral multigrid approach for
simulating cuts in deformable objects. IEEE Trans on Vis and Comp Graph 17, 11
(2011), 1663–1675.

R. E. English, L. Qiu, Y. Yu, and R. Fedkiw. 2013. Chimera grids for water simulation. In
Proc of the 12th ACM SIGGRAPH/Eurographics Symp on Comp Anim. ACM, 85–94.

F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band
FLIP for liquid simulations. In Comp Graph Forum, Vol. 35. Wiley Online Library,
225–232.

T. Fries, A. Byfut, A. Alizada, K. Cheng, and A. Schröder. 2011. Hanging nodes and
XFEM. Int J Numer Meth Eng 86, 4-5 (2011), 404–430.

M. Gao, A. Pradhana, C. Jiang, and E. Sifakis. 2017. Supplemental Document: An Adap-
tive Generalized Interpolation Material Point Method for Simulating Elastoplastic
Materials. (2017).

E. Grinspun, P. Krysl, and P. Schröder. 2002. CHARMS: a simple framework for adaptive
simulation. ACM Trans on Graph (TOG) 21, 3 (2002), 281–290.

B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. 2006. Hierarchical RLE
level set: A compact and versatile deformable surface representation. ACM Trans on
Graph (TOG) 25, 1 (2006), 151–175.

T. Hughes. 2012. The �nite element method: linear static and dynamic �nite element
analysis. Courier Corporation.

G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. 2006. E�cient simulation of large
bodies of water by coupling two and three dimensional techniques. In ACM Trans
on Graph (TOG), Vol. 25. ACM, 805–811.

C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair
frictional contact. ACM Trans Graph 36, 4 (2017).

C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The A�ne Particle-
In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1–51:10.

C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The Material Point
Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1–
24:52.

P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009. Flexible simulation of deformable
models using discontinuous Galerkin FEM. Graphical Models 71, 4 (2009), 153–167.

G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-
Prager Elastoplasticity for Sand Anim. ACM Trans Graph 35, 4 (July 2016).

F. Labelle and J. R. Shewchuk. 2007. Isosurface stu�ng: fast tetrahedral meshes with
good dihedral angles. In ACM Trans on Graph (TOG), Vol. 26. ACM, 57.

G. Legrain, R. Allais, and P. Cartraud. 2011. On the use of the extended �nite element
method with quadtree/octree meshes. Int J Numer Meth Eng 86, 6 (2011), 717–743.

Y.P. Lian, P.F. Yang, X. Zhang, F. Zhang, Y. Liu, and P. Huang. 2015. A mesh-grading
material point method and its parallelization for problems with localized extreme
deformation. Comp Meth App Mech Eng 289 (2015), 291 – 315.

Y. Lian, X. Zhang, F. Zhang, and X. Cui. 2014. Tied interface grid material point method
for problems with localized extreme deformation. Int J Imp Eng 70 (2014), 50–61.

H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. 2016. A scalable schur-complement
�uids solver for heterogeneous compute platforms. ACM Trans on Graph (TOG) 35,
6 (2016), 201.

F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree
data structure. In ACM Trans Graph, Vol. 23. ACM, 457–462.

J. Ma, H. Lu, and R. Komanduri. 2006. Structured mesh re�nement in generalized
interpolation material point (GIMP) method for simulation of dynamic problems.
Comp Model Eng & Sci 12, 3 (2006), 213.

J. Ma, H. Lu, B. Wang, S. Roy, R. Hornung, A. Wissink, and R. Komanduri. 2005. Mul-
tiscale simulations using generalized interpolation material point (GIMP) method
and SAMRAI parallel processing. Comp Model Eng & Sci 8, 2 (2005), 135–152.

P-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M-P. Cani. 2016. Adaptive
physically based models in Comp Graph. In Comp Graph Forum. Wiley Online
Library.

C. Mast. 2013. Modeling landslide-induced �ow interactions with structures using the
Material Point Method. Ph.D. Dissertation.

K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans on Graph (TOG) 32, 3 (2013), 27.

M. A. Otaduy, D. Germann, S. Redon, and M. Gross. 2007. Adaptive deformations with
fast tight bounds. In Proc of the 2007 ACM SIGGRAPH/Eurographics Symp on Comp
Anim. Eurographics Association, 181–190.

S. Patel, A. Chu, J. Cohen, and F. Pighin. 2005. Fluid simulation via disjoint translating
grids. In ACM SIGGRAPH 2005 Sketches. ACM, 139.

D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015.
A material point method for viscoelastic �uids, foams and sponges. In Proc ACM
SIGGRAPH/Eurographics Symp Comp Anim. 157–163.

M. Seiler, D. Steinemann, J. Spillmann, and M. Harders. 2011. Robust interactive cutting
based on an adaptive octree simulation mesh. The Vis Comp 27, 6-8 (2011), 519–529.

R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A Sparse Paged Grid
Structure Applied to Adaptive Smoke Simulation. ACM Trans Graph 33, 6, Article
205 (Nov. 2014), 205:1–205:12 pages.

E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner’s
Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012
Courses (SIGGRAPH ’12). Article 20, 50 pages.

E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. 2007. Hybrid simulation of deformable
solids. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim. 81–90.

B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. In ACM Tran Graph,
Vol. 30. ACM, 81.

M. Ste�en, R. M. Kirby, and M. Berzins. 2008. Analysis and reduction of quadrature
errors in the material point method (MPM). Int J Numer Meth Eng 76, 6 (2008),
922–948.

D. Steinemann, M. A. Otaduy, and M. Gross. 2008. Fast adaptive shape matching
deformations. In Proc of the 2008 ACM SIGGRAPH/Eurographics Symp on Comp Anim.
Eurographics Association, 87–94.

A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent
invertible elasticity. In Proc Symp Comp Anim. 25–32.

A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point
Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1–102:10.

A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented
MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1–
138:11.

D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to
solid mechanics. Comp Phys Comm 87, 1 (1995), 236–252.

A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-
species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4
(2017).

H. Tan and J. A. Nairn. 2002. Hierarchical, adaptive, material point method for dynamic
energy release rate calculations. Comp Meth App Mech Eng 191, 19âĂŞ20 (2002),
2123 – 2137.

M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and J. O’Brien. 2010. Dynamic
local remeshing for elastoplastic simulation. ACM Trans Graph 29, 4 (2010), 49:1–11.

C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans
Graph 27, 3 (2008), 1–8.

Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a
material point method for shear-dependent �ows. ACM Trans Graph 34, 5 (2015),
160:1–160:20.

Y. Zhu and R. Bridson. 2005. Animating sand as a �uid. ACM Trans Graph 24, 3 (2005),
965–972.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 223. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Generalized Interpolation Material Point Method
	3.1 Governing equations
	3.2 Discretization
	3.3 From MPM to GIMP

	4 Elastoplasticity
	4.1 Hyperelasticity
	4.2 Plasticity

	5 Adaptive Basis Functions
	5.1 Adaptive grid basis with free T-junctions
	5.2 Adaptive grid basis with constrained T-junctions

	6 Accelerated Grid-Particle Transfers
	6.1 Multi-layer embedding and interpolation
	6.2 Vectorized weight computation

	7 Grid Rasterization and Particle resampling
	7.1 Grid rasterization
	7.2 Particle resampling

	8 Results
	9 Discussion
	Acknowledgments
	References

