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Abstract 

A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient 
Augmented Level Set (GALS) method is coupled with the two-phase momentum and energy conservation equations 
to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is 
adopted to discretize the advection and diffusion terms for velocity in computational cells located in the interfacial 
region. Furthermore, the GFM is also employed to treat the discontinuity in the stress tensor, velocity, and tempera-
ture gradient across the interface yielding a more accurate treatment in handling interfacial jump conditions. Ther-
mal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a 
sharp treatment for the energy solution. This sharp treatment is extended in estimating the interfacial mass transfer 
rate. At the computational cell, an n-cubic Hermite interpolation scheme is employed to describe the interface loca-
tion, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodolo-
gy for treating the various interfacial processes with a high degree of sharpness. The ability to predict the interface 
and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analyti-
cal solutions.  
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Introduction 
Heat transfer due to phase-change phenomena has 

wide industrial applications, such as cooling systems in 
nuclear reactors, refrigeration system, boilers, etc. Sim-
ulating such processes using computational resources 
provides the flexibility to predict thermo-dynamic 
quantities at any physical location, providing the 
framework for an in-depth analysis. 

Simulating two-phase flows with phase-change us-
ing Computational Fluid Dynamics (CFD) techniques 
was pioneered by Welch [1], by explicitly tracking the 
interface using a moving triangular mesh. The earliest 
contributions towards simulating phase-change prob-
lems with topological changes are attributed to the 
works of Son and Dhir [2] and Juric and Tryggvason 
[3]. Son and Dhir [2] used the Level set (LS) [4] meth-
od to capture the liquid-vapor interface to simulate film 
boiling phenomena; though, it should be noted that the 
surface forces were treated by assuming a smeared in-
terface. Alternatively, Juric and Tryggvason [3] devel-
oped a phase-change model using the Front Tracking 
(FT) [5] method. The results shown in [3] deal with 
high density ratios in 2D and are able to demonstrate 
film boiling.   

Predicting phase-change phenomena using LS 
methods was originally introduced in [2] to simulate 
film boiling near critical pressures. Sharp interface 
treatment utilizing the Ghost Fluid Method (GFM) for 
modelling phase-change was introduced by Tanguy et 
al. [14] and Gibou et al. [15]. Numerical algorithms 
developed for phase change simulations in the context 
of LS have two things in common. First, the two-phase 
momentum and energy solutions are coupled with the 
classical LS approach to capture the interface. Second, 
a PDE based extrapolation technique [16] has been ap-
plied to enable smooth treatment of differential terms in 
the energy solution. 

In the current work, the problem of heat transfer 
with phase change for two-phase system in the context 
of LS is revisited with the following new contributions: 

1. The interface is identified within each compu-
tational cell by a tensor product of cubic Her-
mite basis polynomials rendering fourth-order 
spatial accuracy locally. This provides a more 
accurate framework for the implementation of 
the Ghost Fluid Method (GFM) in the discreti-
zation of the diffusion and convection terms of 
the momentum equation, as well as the treat-
ment of the associated jump conditions. 

2. Sharp treatment for the thermal convection and 
diffusion terms is employed by explicitly lo-
cating the interface with the aid of the cubic-
Hermite polynomials. 

3. Rather, than transporting the interface !"  us-
ing the liquid velocity alone [14] or vapor ve-
locity alone [18] in conjunction with mass 

jump conditions, the interface in the present 
work is advected utilizing the liquid velocity 
in liquid phase region and the vapor velocity in 
vapor phase region, again in conjunction with 
the solution of mass jump conditions. 

4. High order accurate reinitialization strategy 
[19] is employed to redistance the level set 
function and its gradient. 

The current numerical approach is verified by con-
sidering a range of test cases from 1D to 3D by using 
known analytical solutions. In the following sections, 
an overview of the numerical method followed by test 
results are presented. 

 
Numerical Method 

The proposed numerical method utilizes a stag-
gered grid arrangement, where the fluid velocities are 
stored on cell faces and all other variables are stored at 
cell-centers (level set field and its gradient, pressure, 
temperature and thermo-physical properties). 

At the start of the simulation, the following varia-
bles are given; level set # , its gradient $# , fluid 
velocities i.e. liquid velocity %&  and vapor velocity 
%' , temperature ( , and the thermo-physical proper-

ties of fluids, such as density ) , dynamic viscosity 
* , thermal conductivity + , and specific heat capaci-

ty ,- . Using these flow variables, a step-by-step 
overview of the numerical approach is described below. 
 
Algorithm 

1. Compute temperature gradients at interfacial 
cells by enforcing Dirichlet boundary condition 
at the interface for temperature, using second or-
der accurate non-uniform stencils. 

2. Extrapolate temperature gradients from liquid 
phase to vapor phase and vice-versa. This en-
sures that, liquid temperature gradients and vapor 
temperature gradients are available at all interfa-
cial cells irrespective of the fluid phase present at 
a given cell. In the present work normal-wise 
constant extrapolation [16] is employed to ex-
trapolate each gradient component. 

3. Extrapolate interfacial mass transfer rate from in-
terfacial cells that belong to the liquid phase to 
all cells that contain liquid. Repeat the same pro-
cedure for cells occupying the vapor region. 
Similar to the above step, a normal-wise constant 
extrapolation [16] is employed. 

4. Compute mass transfer rate .  at all cell faces 
using linear interpolation. 

5. Compute ghost values for the liquid velocity in 
vapor region using the velocity jump condition. 
Repeat the similar computation to populate ghost 
values for the vapor velocity. 

6. Compute fluid velocities at all centers using lin-
ear interpolation. 



7. Compute the level set velocity using the availa-
ble fluid velocities and mass transfer rates at all 
cell centers. 

8. Advect the level set field and its gradient using 
Gradient Augmented Level Set (GALS) [20] ap-
proach. 

9. Reinitialize the level set and its gradient fields 
using Hermite-polynomial based reinitialization 
[19] method. 

10. Solve the two-phase momentum equation in both 
liquid and vapor phases using Chorin’s projec-
tion method [21]. Note that, while solving the 
governing equations in liquid phase, ghost values 
for velocity are used near the interfacial region, 
and similarly ghost values for vapor phase are 
used while solving the equations in vapor phase. 

11. Solve the two-phase energy equation at all cell 
centers to update temperature of both phases. A 
sharp treatment is employed while computing the 
convection and diffusion terms, which helps in 
capturing the jump in material properties accu-
rately near the interface. 

 
Results 

The proposed numerical method is verified on sev-
eral test cases, ranging from 1D to 3D. Comparisons 
between analytical and numerical results for the tem-
poral evolution of interface location and temperature 
are presented below. 
 
1D Stefan Problem 

The schematic of this test case is illustrated in 
Fig. 1, where vapor and liquid phases are shown sepa-
rated by the phase-interface. 
 

 
Figure 1. Layout for 1D Stefan problem. 

 
The temperature field and interface location for the 

setup are initialized using the analytical solution at time 
t=0.1s [6]. Comparisons between numerical and analyt-
ical results for interface locations at different time in-
stances are shown in Fig. 2. Good agreement is ob-
served between them even at the coarsest grid resolu-
tion. Figure 3 presents the temperature field comparison 
with the analytical solution at t=0.3s. Second order 
convergence is observed for the temperature field pre-
diction, which is shown in Table 1. 
 

 
Figure 2. Interface location as a function of time. 

 

 
Figure 3. Fluid temperature at t=0.3 s. 

 
Grid L1 error (T) Rate 
10 1.51e-01 - 
50 6.26e-03 1.98 

100 1.65e-03 1.92 
200 4.76e-04 1.79 

Table 1. L1 errors for fluid temperature at t=0.3 s. 
 
Vapor Bubble (2D & 3D) Growth Under Zero Gravity 
and With Prescribed / 
 Vapor bubble growth is predicted in both 2D and 
3D, given the interface mass transfer rate . . This test 
case highlights the numerical algorithm’s ability to cap-
ture the velocity jump. The calculation of the bubble 
growth rate is used as a metric to demonstrate this. 
 Temporal evolution of the vapor bubble for differ-
ent grid levels is presented in Fig. 4. Relative percent-
age deviation in the bubble radius from analytical solu-
tion is presented in Table 2. Results show first order 
convergence in predicting interface motion, this is due 
to the adoption of first order accurate GFM approach, 
which is currently being modified by including inter-
face location with higher order accuracy. We would 
also like to note that, the percentage errors observed are 
about half the magnitude reported in [18]. 
 This 2D vapor bubble case is extended to 3D, 
whose surface at three different time instances is shown 
in Fig. 5. The radius of the 3D bubble, as a function of 
time, is plotted in Fig. 6, which shows a good agree-
ment with the analytical result. 



 
Figure 4. Vapor bubble (2D) growth under constant .. 
 

Grid Relative error in 
r(t) (%) 

Rate 

32x32 1.65 - 
64x64 0.79 1.07 

128x128 0.33 1.26 
256x256 0.17 0.98 

Table 2. Relative percentage error in bubble radius at 
t=0.01 s. 

 

 
Figure 5. 3D visualization of vapor bubble growth un-

der constant .. 
 

 
Figure 6. 3D Vapor bubble growth under constant .. 

 
Vapor Bubble (2D) Growth Immersed in Super-
Saturated Liquid Under Zero Gravity Condition 

Growth of a 2D vapor bubble immersed in a super 
heated liquid due to phase change is studied in this test 
case. The analytical solution for such a system was de-
rived by Scriven [22], and is presented in [6,18]. 

A vapor bubble of radius r=5×1045 m is considered 
as the initial condition in a domain of 
[0,0.006]x[0,0.012] m. This setup corresponds to the 
radius of the bubble at to=0.03729s, as per the analytical 
solution. Temperature in the computational domain is 
initialized with the analytical values at to. Three grid 

levels (64x128, 128x256 and 256x512) are considered 
for the numerical simulation, which is ran until 
t=0.14916s (= 4to).  

The computed temperature field in comparison 
with the analytical solution is shown in Fig. 7. It should 
be noted that the jump in temperature gradient is cap-
tured near the interface. Comparison of the vapor bub-
ble radius between numerical and analytical results is 
presented in Fig. 8. Results show an accurate prediction 
of the temperature evolution and bubble growth using 
the presented numerical approach. 

 
Figure 7. Radial temperature distribution of fluid along 

the center of vapor bubble at t=0.14916 s. 
 

 
Figure 8. Growth of a 2D vapor bubble immersed in 

super heated liquid. 
 
Conclusions 

Test cases ranging from 1D to 3D are presented, 
and results show 2nd order convergence in predicting 
temperature field for the Stefan’ problem. Employing 
high order advection and reinitialization methods in 
conjunction with implementing the correct velocity 
jump conditions to compute interface velocities yielded 
superior results over the published works. This is 
demonstrated in the 2D bubble growth test case with 
prescribed mass transfer rate. Convergence was clearly 
noted in the results for a 2D bubble growth immersed in 
super-heated liquid test case. Further verification that 
include, parametric study on the growing bubble test 
case with different Jakob numbers, will be performed. 
This will provide a range of physical conditions, with 
varying degree of the sensible heat transfer, that the 
proposed numerical method can accurately simulate. 
The ability to simulate phase-change process under the 



effects of gravity, simulation of the film boiling phe-
nomena will be part of our future verification tests. 
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