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Figure 1: Smoke flow past sphere with 135M active voxels, 1K×1K×2K maximum resolution. Adaptive grid shown on the right.

Abstract

We introduce a new method for fluid simulation on high-resolution
adaptive grids which rivals the throughput and parallelism poten-
tial of methods based on uniform grids. Our enabling contribution
is SPGrid, a new data structure for compact storage and efficient
stream processing of sparsely populated uniform Cartesian grids.
SPGrid leverages the extensive hardware acceleration mechanisms
inherent in the x86 Virtual Memory Management system to deliver
sequential and stencil access bandwidth comparable to dense uni-
form grids. Second, we eschew tree-based adaptive data structures
in favor of storing simulation variables in a pyramid of sparsely
populated uniform grids, thus avoiding the cost of indirect mem-
ory access associated with pointer-based representations. We show
how the costliest algorithmic kernels of fluid simulation can be im-
plemented as a composition of two kernel types: (a) stencil opera-
tions on a single sparse uniform grid, and (b) structured data trans-
fers between adjacent levels of resolution, even when modeling
non-graded octrees. Finally, we demonstrate an adaptive multigrid-
preconditioned Conjugate Gradient solver that achieves resolution-
independent convergence rates while admitting a lightweight im-
plementation with a modest memory footprint. Our method is com-
plemented by a new interpolation scheme that reduces dissipative
effects and simplifies dynamic grid adaptation. We demonstrate the
efficacy of our method in end-to-end simulations of smoke flow.
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1 Introduction

Computer graphics research has explored opportunities for spatial
adaptation in fluid simulation using a broad spectrum of techniques,
including adaptive Cartesian grids [Losasso et al. 2004; Zhu et al.
2013; Ferstl et al. 2014], adaptive tetrahedral meshes [Klingner
et al. 2006; Ando et al. 2013] and particle based approaches [Adams
et al. 2007; Solenthaler and Gross 2011]. For the same number
of degrees of freedom, the visual richness of adaptive techniques
is clearly superior to uniform grids. However, the computational
cost is markedly higher. Common operations such as stencil com-
putations and sparse linear algebra are significantly more efficient
on uniform grids, as they can leverage cache-optimized memory
access patterns, maximize prefetching efficiency and simplify bal-
anced domain partitioning for parallelism.

This has prompted many authors to pursue balanced compromises
between highly adaptive representations and purely uniform grids,
to achieve the best of both worlds in terms of both detail and per-
formance. RLE-based techniques [Houston et al. 2006; Irving et al.
2006; Chentanez and Müller 2011] propose a hybrid between a
2D uniform grid and a 1D run-length encoding scheme. Adap-
tive mesh refinement (AMR) and chimera grid techniques [Sussman
et al. 1999; Patel et al. 2005; Dobashi et al. 2008; Tan et al. 2008;
Cohen et al. 2010; Golas et al. 2012; English et al. 2013] achieve
spatial adaptation by patching together overlapping uniform grids
of different resolutions. It has also been proposed that dimension-
by-dimension adaptation can focus resolution on areas of interest,
while maintaining a topologically uniform underlying grid [Zhu
et al. 2013]. Finally, one of the most popular and performant recent
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Figure 2: Quadtree modeled as a pyramid of sparse uniform grids.

techniques for storing adaptive volumetric data, OpenVDB [Museth
2013], builds on the performance potential of uniform grids by us-
ing a shallow tree with a high branching factor, storing a uniform
grid in every node.

We introduce SPGrid (short for Sparse Paged Grid), a novel data
structure for the storage and stream processing of sparsely popu-
lated uniform grids. SPGrid replicates both the throughput potential
and programming experience of using a uniform grid, while having
a storage footprint that only exceeds the actual sparse grid content
by a very modest margin. We use this data structure to construct
an adaptive discretization for fluid simulation where the conven-
tional tree- and pointer-based representation has been replaced (see
Figure 2) by a pyramid of sparsely populated uniform grids. We
show that all costly algorithmic kernels encountered in an adaptive
CFD simulation can be implemented in our scheme without explicit
tree traversal, by combining efficient streaming kernels operating
on uniform grids. Finally, we present an adaptive multigrid precon-
ditioned Krylov solver for the pressure Poisson equation which has
a very lightweight footprint, and outperforms alternatives based on
incomplete factorizations in terms of convergence and scalability.

Contributions Our core contributions are summarized below:
• A novel lightweight data structure (“SPGrid”) for large,

sparsely populated Cartesian grids, which leverages estab-
lished hardware acceleration mechanisms of the virtual mem-
ory subsystem to achieve competitive performance to dense
uniform grids, and supports coordinated storage of multiple
data channels with non-identical (albeit similar) domains of
support. SPGrid uses Morton encoding to map 3D data sets
into a linear memory span; however we show how stencil op-
erations can be performed natively with linearized (encoded)
addresses without translating them to geometric coordinates.

• A reformulation of conventional pointer-based octree-style
adaptive fluid discretizations using an SPGrid pyramid, where
the expensive algorithmic kernels (e.g. advection, discrete
gradient, divergence and Laplacian) are composed from sim-
ple, parallelizable uniform grid kernels. This property holds
even for non-graded octrees, i.e. cases where neighboring
cells may differ by more than one level of resolution.

• An adaptive multigrid-preconditioned Krylov solver that
achieves resolution-independent convergence rates and can be
natively implemented, in a matrix-free fashion, in the same
SPGrid pyramid used for all other fluid simulation kernels.

• An interpolation scheme that reduces dissipation effects in ad-
vection, and simplifies dynamic adaptation of grid topology.

Although these contributions are quite complementary and align
nicely in our final product, they are also modular and reusable in
other contexts. For example, a narrow-band level set application
could leverage SPGrid alone and forego the adaptive embellish-
ments. Similarly, one could replace SPGrid with OpenVDB (e.g.
in scenarios that demand out-of-core processing) to store sparsely
populated grids, and retain the pyramid adaptivity concept. In our
supplemental material we also explain how the SPGrid structure
can even be used for optimized storage and application of an In-
complete Cholesky preconditioner, if desired, instead of multigrid.

2 Related work

Cartesian grids are very popular for fluid simulation, typically using
a MAC grid discretization [Harlow and Welch 1965], the uncondi-
tionally stable semi-Lagrangian advection scheme [Stam 1999] and
a pressure Poisson projection step for incompressibility, commonly
solved using Preconditioned Conjugate Gradients [Fedkiw et al.
2001]. These fundamental concepts have also been employed in
octree discretizations [Losasso et al. 2004], and recently in more ef-
ficient RLE representations [Houston et al. 2006; Irving et al. 2006;
Chentanez and Müller 2011]. Grid-based discretizations are hardly
the only option, and a number of alternatives are based on tetrahe-
dral meshes [Feldman et al. 2005; Klingner et al. 2006; Chentanez
et al. 2007; Batty et al. 2010; Ando et al. 2013] which may also
provide the flexibility for spatial adaptation. Other authors have
also proposed solvers using hybrid Particle-Eulerian methods [Zhu
and Bridson 2005] as well as purely SPH-based methods [Desbrun
and Cani 1996; Müller et al. 2003; Premoze et al. 2003; Adams
et al. 2007], which can also support spatial adaptivity [Solenthaler
and Gross 2011]. However, these methods may exhibit suboptimal
cache performance as the data layout in memory is non-sequential.
To leverage cache-optimized memory access patterns, Morton in-
dexing has been used for various CFD applications [Aftosmis et al.
2004; Goswami et al. 2010]. Methods based on grids conforming
to the liquid surface [Clausen et al. 2013], Voronoi diagrams [Sin
et al. 2009; Brochu et al. 2010], and velocity-vorticity domain de-
composition [Golas et al. 2012] have also been proposed. Finally,
others have investigated guiding high resolution simulation from a
coarser resolution version [Nielsen and Bridson 2011], or adapting
the per-axis spacing of uniform grids [Zhu et al. 2013].

Independent of CFD applications, a rich literature exists in using
adaptive and compressed representations for volumetric data such
as distance fields [Frisken et al. 2000], voxelized geometry [Crassin
et al. 2009], and exceptionally refined level sets [Nielsen et al.
2007]. Various compressed storage structures have been proposed,
including hash-based approaches [Teschner et al. 2003; Brun et al.
2012] and Run-length encodings [Houston et al. 2006]. Finally, the
VDB data structure [Museth 2013], which evolved from Dynamic
Tubular Grids [Nielsen and Museth 2006] and the DB+Grid data
structure [Museth 2011] enjoys broad production use and is pub-
licly available via the open source OpenVDB software library.

Relation to OpenVDB Our proposed data structure, SPGrid, has
a significant conceptual affinity to the OpenVDB library [Museth
2013], which merits special mention. In fact, the availability of an
open-source implementation was extremely beneficial for our work,
as we had a mature, performance-conscious solution to benchmark
against. Both SPGrid and VDB seek to accelerate sequential and
stencil access. SPGrid places even higher emphasis on optimizing
throughput, especially in a multithreaded setting, to levels directly
comparable with dense uniform grids. In this vein, SPGrid relies
on hardware mechanisms for address translation and caching; for
example, VDB uses a software cache to store address translations
of tree nodes, while SPGrid effectively uses the Translation Looka-
side Buffer (TLB) for this purpose. The emphasis on maximizing
throughput necessitates certain compromises in scope and function-
ality. For example, SPGrid only stores sparse subsets of a single
uniform grid, while VDB can also store values at coarser tree nodes.
SPGrid relies on an additional software layer (see section 4) to ac-
commodate multiresolution storage. VDB is natively designed to
accommodate out-of-core processing, while SPGrid is exclusively
targetting cases where all data can remain resident in physical mem-
ory. The effective resolution of VDB grids is only limited by avail-
able space, while SPGrid has finite (albeit, gigantic) maximum grid
size. Table 1 compares key features of OpenVDB and SPGrid.



SPGrid OpenVDB

Random Access Very fast (Haswell)
Moderate (Ivy Bridge)

Fast

Sequential Access Very fast (≈ Uniform) Fast
Stencil Access Very fast Fast

Max. Grid Size 16K×32K×32K (1 channel)
8K×16K×16K (16 channels)

Unlimited

Out-of-core Not supported Supported

OS Platform
Linux tested (currently)

Independent
Caching Hardware Software

Multi-resolution Single grid only Yes

Table 1: Comparison of SPGrid and OpenVDB.

3 A Sparse Paged Grid structure (SPGrid)

Different application areas may adopt one of many sparse and adap-
tive storage schemes (octrees, hashed grids, RLE, etc) based on
their particular needs. CFD workloads, in particular, carry specific
design demands: the most fundamental observation is that sequen-
tial and stencil access are by far the most common use scenar-
ios; even “random” access typically exhibits spatial coherence (e.g.
semi-Lagrangian advection). Both iterative solvers (e.g. Conju-
gate Gradients) and direct methods or components (e.g. Incom-
plete Cholesky factorization) are memory-bound, mandating that
data storage schemes should optimize for memory bandwidth and
footprint. This is even more crucial for multiprocessor (or SIMD)
platforms that can be vastly underexploited if memory utilization is
not kept to a minimum. Additionally, fluid simulations need to op-
erate on multiple data channels of scalar and vector-valued quan-
tities (pressure, density, velocities, auxiliaries of Krylov solvers,
etc.), many of which are not geometrically coincident with one an-
other, but occupy very similar spatial extents (see Figure 6).

We propose a data structure for sparsely-populated uniform grids,
as one might use for example to solve a narrow-band level set prob-
lem. We note that if memory footprint was not a concern, one
could in principle satisfy the aforementioned algorithmic specifi-
cations by simply allocating a dense uniform grid, and only using
its sparse relevant subset. Stencil access is particularly straightfor-
ward to optimize in this context, since a specific neighbor of a grid
location is always stored a constant memory offset away from the
address of the reference data point. Although using dense storage
as a means to streamline access to sparse subsets is clearly an im-
practical proposition (grids in our work may have an occupancy as
low as 0.1%) this concept is similar to how Virtual Memory oper-
ates. CPUs allow a process access to a vast Virtual Memory ad-
dress space, provided that the sparse subset that is actually touched
(quantized to 4KB pages) is small enough to fit in physical mem-
ory. Our proposed data structure uses a locality-preserving mapping
from 2D/3D grid locations to a 1D memory span, and uses Virtual
Memory mechanisms to avoid allocation of unused regions.

3.1 Array layout

Our proposed SPGrid structure provides an abstraction for a mul-
tidimensional (2D/3D) array which only contains data in a sparse
subset of its entries. Similar to C++ static arrays, every array coor-
dinate, whether populated or not, has a specific location in (virtual)
memory where its contents would be stored. This is in contrast
to pointer-based octrees, VDB or hashed grids, which will heap-
allocate storage on first access, and maintain an explicit translation
between geometric array coordinates and the actual memory loca-
tion of a given entry. Although SPGrid reserves a gigantic virtual
memory address span for the sparse grid, only a tiny subset of array
entries will ever be touched and occupy space in physical memory.

Figure 3: Illustration of the traversal order by which SPGrid maps
2D/3D array data to a linear memory span. Lexicographical or-
der is used to traverse the interior of small-sized blocks, while the
blocks themselves are laid out along a space-filling Morton curve.

Unlike the lexicographical ordering of C++ arrays, SPGrid uses a
custom traversal pattern to map 2D/3D geometric coordinates into
linearized memory offsets. We first partition the array into rect-
angular blocks of a small, carefully chosen size (our fluid simula-
tion examples use 4 × 4 × 4 blocks). Array coordinates are then
mapped to 1D memory offsets by traversing the contents of each
block lexicographically, and arranging blocks along a space-filling
Morton curve as shown in Figure 3. Morton ordering is a locality-
promoting map, ensuring that geometrically proximate array entries
will, with high probability, be stored in nearby memory locations.
As a consequence, if the sparse occupancy pattern of the array ex-
hibits high spatial coherency, the corresponding data entries will be
highly clustered in memory. The next step is to reserve a virtual
memory address span, for the entire array, but without occupying
space in physical memory until its contents need to be accessed.

Modern operating systems provide mechanisms for reserving vir-
tual memory space without reserving physical memory beforehand.
In Linux, this functionality is embodied in the mmap system call,
which is used in our implementation as follows:

void *ptr=mmap(0,size,PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,-1,0)

Invoked as such, mmap will promptly reserve even a vast virtual
memory span (up to the architectural limit of 128TB per process)
and return immediately without reserving any physical memory.
The mmap arguments MAP_ANONYMOUS|MAP_NORESERVE fur-
ther instruct the operating system to never swap out any page in
this span, ensuring that any page in this virtual address range is ei-
ther physical-memory resident, or has never been touched before
(an out-of-memory error will be triggered before ever violating this
property). After this initial call, any subsequent access to a memory
location within the span reserved by mmap has one of the follow-
ing effects: (a) If the virtual page containing the requested address
does not have a translation in the virtual page table then a page
fault occurs, prompting the operating system to reserve a physical
page, record the mapping in the page table, and zero-fill the physi-
cal page contents prior to making it available for normal use. (b) If
the page of the requested address has already been mapped (i.e. it
has been touched before), address translation (and handing of any
TLB misses, triggering a page table walk) is handled completely in
hardware, without operating system intervention. The latter case is
no different to the handling of a memory request for an address that
has been allocated with any other mechanism. Note that, in order
for our scheme to work, the reservation of the host array memory
span must be done with the mmap mechanism (or a mechanism
like VirtualAlloc under Windows), and not with the malloc library
function, or the default C++ operator new, as those will automati-
cally map the requested range to physical memory. Finally, we as-
sume that the allocated space for the entire array is always aligned
to 4KB page boundaries, which will be automatic if mmap is used.



Figure 4: The 1-dimensional index of every array entry is computed
by bit-interleaving the binary expansions of the array coordinates.

3.2 Address computation and multi-channel arrays

The relation between Cartesian coordinates and the linearized index
suggested by our traversal scheme becomes apparent if we examine
their binary expansion. As seen in Figure 4 the linearized index of
an array entry is computed by interleaving the bits of the multidi-
mensional Cartesian coordinates according to a specific pattern. We
also specified that SPGrid should accommodate storage of multiple
data channels (corresponding to different simulation variables). In-
stead of dedicating a separate SPGrid for each channel, we choose
to interleave their contents in memory at block granularity. In fact,
we choose the geometric block size such that all channels of a block
will fit exactly in a 4KB memory page. In the example of Figure 5,
4KB pages are used to store four distinct float-valued data channels
(u, v, w, p) allowing 1KB or 256 entries per channel; this suggests
a geometric block size of 8× 8× 4. Our smoke simulator uses 16
channels, each storing either a single-precision floating point value
or a 32−bit integer, allowing for storage of 64 entries per channel,
and resulting in a block size of 4×4×4. Note that it is not necessary
that all data channels have the same width; it is perfectly possible
to mix channels containing floats and doubles, for example.

For quick access, we precompute a base pointer for each data chan-
nel, indicating the first memory location where an entry of this
channel (in essence, the entry corresponding to zero Cartesian coor-
dinates) would be stored. The byte offset between the location of an
arbitrary entry (i, j, k) of a channel and the respective base pointer
is computed as shown in the lower part of Figure 5. We note that:

• The interleaving pattern is known at compile time since it only
depends on the number and size of channels. Since the spread
pattern of each coordinate (i, j or k) preserves the ordering
of its bits, we encode it by storing (per coordinate) a 64-bit
mask of the bit locations that each coordinate is spread into.

• The zeros inserted into the bit pattern are necessary both for
aligning data according to their size, as well as “jumping
over” the other channels before moving on to the next block.

• The bit interleaving pattern need not be concerned with the
maximum array size. We construct the spread masks to use as
many of the coordinate bits as possible when assembling the
64−bit offset, even if the populated array size is smaller.

The bit interleaving operation is not trivial in terms of cost, and cer-
tainly more costly than the offset translation in lexicographically
ordered static C++ arrays (which would just require 2 additions and
2 multiplications in 3D). The cost is significantly lower on CPUs
of the Haswell architecture however (16 cycles for translation of
a 3D coordinate), since they include hardware instructions (pdep)
for distributing bits according to a mask. On Ivy Bridge processors
the cost of a full 3D translation is 85 cycles in our optimized imple-

i0i1i2i3i4i5 j0j1j2j3j5 j4 k0k1k2k3k4k5 0 0 0 0

i0i3i4 i1i2i5 j0j3j4 j1j2j5 k0k3k4 k1k2k5

Lexicographical index in block

Data channel alignment
(4-byte for �oats)

Spacing for other
channels in block

Data o�set in 4KB page (12bits)Virtual page number (52bits)

Z-array coordinate (binary)Y-array coordinate (binary)X-array coordinate (binary)

O�set from channel base (offset):

Geometric array coordinates (i,j,k):

4KB Page (one block)

u v w p u v w p u v w p

256 �oat entries per channelBeginning of
      allocated span

ubase vbase
wbase pbase

offset{p(i,j,k)}

Channel Staggering:

Figure 5: Channel interleaving within a memory page, and com-
putation of memory data offsets from geometric array coordinates.

mentation. Note that, in cases of true random access with no spatial
locality, this translation cost would actually not be the bottleneck, as
cache/TLB miss penalties would likely be even larger. However, the
translation cost is unacceptable for streaming (sequential or stencil)
access, for which we propose an alternative, efficient methodology.

3.3 Access modes

True random access is very uncommon in CFD workloads. The
bulk of the computational load in such applications is spent in
streaming kernels and performing sequential or stencil access on
data. We proceed to describe our methodology for executing such
kernels at an efficiency comparable to dense arrays.

Sequential access We use the term sequential access to refer to
kernels that stream through the contents of one or more data chan-
nels in a sequential fashion (e.g. following the traversal order in
Figure 3) and perform operations only between data entries (from
different channels) with the same array index. Scaling a data chan-
nel by a constant, copying one channel to another one, or the BLAS
Saxpy subroutine are examples of sequential access. Reduction
operations (e.g. dot products, max/min computations) also fit in
this category as they follow the same access pattern. Incidentally,
those are exactly the kernels used in iterative solvers such as Con-
jugate Gradients (in addition to a Matrix-Vector multiply, which is
a stencil operation if implemented in a matrix-free fashion).

Within each geometric block, implementing a sequential kernel is
trivial, as the data of each channel are sequentially arranged in
memory (and also aligned, allowing the compiler to automatically
issue SIMD instructions). Furthermore, TLB misses are reduced
since all channels for a given block reside in the same memory
page. The only question is how we iterate over the sparse collection
of populated blocks. For this reason we use two acceleration struc-
tures: (a) When initializing the topology of our sparse array, we
use a bitmap to record all geometric blocks that have been touched.
Since we dedicate only 1 bit for every 4KB, or 215 bits of useful
data (assuming that the sparsity patterns of different channels are
highly correlated) the size of this bitmap is just 0.003% of the re-
served virtual memory space. For example an SPGrid storing 16
float-valued channels at an ambient resolution of 2K × 2K × 2K,
corresponding to 512GB of “virtual” SPGrid size, and 5GB of
real data payload (assuming 1% occupancy) would only necessitate
16MB (0.3% of the useful data footprint) for this bitmap. (b) For
efficient traversal of the sparse set of populated blocks, we construct
a flattened array of linearized 64−bit offsets, for the first entry of



each populated block. This array of block offsets is updated in bulk
after any operation that changes the SPGrid sparsity pattern. Note
that these offsets are not channel specific; since they point to the
first entry of each block, the lower 12−bits will be equal to zero re-
gardless of the channel, and thus can be used even for channels with
different data size (i.e. float vs. double). We note that instead of
flattened block offsets, one could alternatively store the geometric
coordinates of the first element of each occupied block; in this case
we would pay the cost of translation just once (for the root of the
block) which would easily amortize over the processing time over
the remaining block entries which can be accessed sequentially. We
try to avoid this, however, and seek to operate in “flattened” offset
space for as many of our kernels as possible.

Stencil access Perhaps the most significant access mode from a per-
formance standpoint involves sequential iteration over the sparse
index set, and application of a geometric stencil (e.g. a 7-point
Laplacian) at each location. As previously described, sequentially
iterating over the locations where the stencil is to be centered is
accommodated via the block offset array. The main challenge is
the computation of memory locations of geometric neighbors that
are pulled into the evaluation of the stencil. While an on-the-fly
translation of geometric neighbor coordinates into memory offsets
is possible, this would require 6 translations for a 7-point Lapla-
cian in 3D; even on a Haswell processor, this limits us to about 5%
of the processing throughput that the same operation would exhibit
on a lexicographically ordered dense array (where stencil neighbor
offsets would translate into constant strides in memory).

We propose a method for computing stencil neighbor locations na-
tively in linearized offset space, without ever explicitly translating
into geometric coordinates. For example, consider a stencil which
includes a geometric neighbor with offset (−1, 2, 1) from the ref-
erence point of the stencil. We proceed to compute the flattened
version of this relative coordinate by translating the integer coordi-
nates into a packed 64−bit offset as in Figure 5. Negative values are
encoded as 2’s complement and bit-multiplexed in the usual fash-
ion. Our key observation is that it is possible to directly add this
packed offset to a base (also packed) flattened index, in a very ef-
ficient fashion. More concretely, given the packed translations of a
location (i, j, k) and an offset (δi, δj, δk) it is possible to directly
evaluate the packed translation of the sum (i+ δi, j + δj, k + δk)
without converting to geometric (unpacked) coordinates.

As a first step, we describe a simpler operation, which we label
MaskedAdd which extracts the same collection of bits (according
to a bit mask) from its two 64−bit inputs I and J , performs normal
addition on the extracted values, and then distributes the bits of the
addition result in a 64−bit final value according to the same mask:

template<uint64_t mask>
uint64_t MaskedAdd(uint64_t I,uint64_t J)
{return ((I & mask) + (J | ~mask)) & mask;}

In essence, MaskedAdd inserts zeros in I on each bit location
where the mask is zero, and respectively inserts ones in the same
bit locations for J . This train of 1-bits injected between the bit lo-
cations that are specified by the mask acts as a vehicle to propagate
any carries to the next effective bit location. Three MaskedAdd in-
vocations can be combined to add two bit-packed 3D coordinates,
using the three respective bit masks:

template<uint64_t xm,uint64_t ym,uint64_t zm>
uint64_t PackedAdd(uint64_t I,uint64_t J)
{return MaskedAdd<xm>(I,J)|

MaskedAdd<ym>(I,J)|MaskedAdd<zm>(I,J);}

When using constant offset stencils (e.g. uniform grid Laplacians)

we pre-translate the geometric neighbor offsets into the respective
packed offsets. We then fetch neighbors in a stencil application
by executing the PackedAdd routine, which is very efficient; on
a Haswell processor it takes approximately 5 cycles, while on Ivy
Bridge systems it executes in 7 cycles (further savings are possible
if either I or J are compile-time constants, which is frequently the
case). Notably, the assembly code generated for PackedAdd uses
21 instructions. However the specific instruction mix of integer op-
erations distributes extremely well on the multiple functional units
of these CPUs, enabling superscalar execution.

Bulk stencil operations and the offset shadow-grid The
PackedAdd mechanism is very efficient and achieves almost 50%
of the dense array throughput on some Haswell processors (Intel
Xeon E3-1200 v3 family). On some Ivy Bridge platforms, how-
ever, which offer a higher ratio of memory bandwidth to compute
capacity (e.g. Intel Xeon E5-2600 v2 family) dense arrays can still
achieve about 3× higher throughput. A further optimization is pos-
sible, in scenarios where we expect active SPGrid blocks to have
a rather high occupancy (50% or more). This is certainly the case
for our CFD application, as our SPGrids store narrow-bands with a
width of 8-16 voxels, and our 4 × 4 × 4 geometric blocks (for 16
data channels) are consequently very well utilized. The main idea
is that within a block PackedAdd is invoked in many instances
where it is not strictly needed (for example, the “right” neighbor
of the first voxel of each block can just be found at the adjacent
memory location), and many results of PackedAdd are multiply
computed as the same voxel is reached from many neighboring lo-
cations. When we know our stencil has narrow support (e.g. Lapla-
cian), we can precompute in-bulk all linearized offsets in an ex-
tended window (sized 6 × 6 × 6 in our case) reaching one voxel
outside our geometric block. Due to the very specific nature of this
computation, further optimizations are possible: For example, off-
sets within the 4 × 4 × 4 region of this window (corresponding
to the block itself) are always constant (and corresponding to in-
dex offsets 0 − 63). Also, many of the offsets at the boundary of
this window can be computed with MaskedAdd operations instead
of the full PackedAdd. In reasonably wide-banded datasets, this
offset shadow-grid optimization nearly matches the throughput of
dense storage and access, for all modern processor variants.

Performance We executed a series of benchmarks, comparing SP-
Grid with OpenVDB and static (lexicographically ordered) C++
arrays. As an example of a streaming (sequential-access) kernel,
we used the OpenVDB offset filter, while the Laplacian tool
was used as an example of a stencil kernel. The implementation
using conventional C++ arrays allocated a full dense array, and em-
ployed a blocked traversal to optimize cache efficiency. To emu-

Type Timing (in seconds)
Dense Narrow band

Serial

Streaming
SPGrid .020452 .015052
VDB .075464 .056312

C-style .0143 .0267

Stencil
SPGrid .064024 .047056
VDB .600756 .44208

C-style .0488 .0944

4 cores

Streaming
SPGrid .009584 .006828
VDB .021228 .015928

C-style .0065 .0119

Stencil
SPGrid .02428 .018232
VDB .169508 .126796

C-style .0148 .0227

Table 2: Timing for streaming/stencil operations on dense and nar-
row band data sets for SPGrid, OpenVDB, and static C++ arrays.



Figure 6: (a) Pressure (green) and velocity (horizontal in red, vertical in blue) variables at their native locations in our octree discretization,
(b) illustration of common stencils: a pressure gradient in brown, velocity divergence in green, and a pressure Laplacian in red - blue circles
indicate locations where the stencil coefficients are stored (if necessary) on the lattice, (c) ghost cells introduced per level in our pyramid of
sparsely populated grids, (d) distribution of simulation variables in our pyramid, ghost cell variables are plotted as dashed circles.

late a more typical use scenario, the SPGrid version allocated eight
32−bit data channels, resulting in a block size of 8×4×4, although
most channels remained unused in our test kernels. Two datasets
were considered: (a) a dense, fully populated 2563 uniform grid
(16.8M voxels), and (b) a sparse sphere-shaped narrow band ex-
ample embedded in a 10243 grid, containing 11.8M active vox-
els. The benchmarks were run on a 4-core 3.5Ghz Haswell system
(Intel Xeon E3-1270 v3), both in serial and multithreaded execu-
tion. OpenVDB version 1.2.0 was used for our tests; our reported
VDB performance numbers should not be construed as the perfor-
mance ceiling of the library (performance could be higher in later
versions), but merely as the results of our best effort in applying
VDB to these workloads. Table 2 summarizes the results.

A few points to note: The conventional, lexicographically ordered
C++ array was the best performer in the dense dataset; SPGrid
was able, however to match about 70% of its throughput. For
the narrow-band dataset the C++ array underperformed SPGrid,
presumably due to suboptimal prefetching (and lower occupancy
of cache lines with data). Both VDB and SPGrid do not appear
to suffer a significant performance degradation when operating on
narrow-band data, which would be justified due to the tighter clus-
tering of geometrically proximate array entries in memory they both
employ. SPGrid was shown to outperform VDB in these kernels,
especially the Laplacian computation (which we largely attribute
to the offset shadow-grid optimization). All of these kernels were
memory-bound in their multi-threaded variant; when tested on an
Ivy Bridge Xeon E5-2600 v2 system, the observed performance
closely matched the memory bandwidth ratios of the two machines.

4 Adaptive Discretization

Adaptive discretizations such as octrees have been successfully
used for CFD simulations [Losasso et al. 2004; Ferstl et al. 2014].
In certain cases, sequential operations (e.g., adding two channels)
can be optimally efficient when operating on all leaf nodes if those
have been explicitly flattened/linearized. However, the application
of stencils is not a straightforward proposition as accessing neigh-
bors might require the traversal of several levels in the tree-based
representation. For non-graded octrees, this issue is exacerbated
by the fact that the neighbor count is not known in advance; Thus,
if stencil applications are performed one cell at a time, we end up
underutilizing bandwidth because data cache lines are not used en-
tirely, suffer high latency because of indirection, and do not exploit
prefetching because the access patterns are not regular. Due to these
reasons, conventional tree-based representations of octrees suffer a
significant runtime penalty compared to dense uniform grids.

4.1 Pyramid of sparsely populated uniform grids

We propose a new scheme to ameliorate the above issues by or-
chestrating a sequence of actions which ensure the correct result of
applying a stencil at all cells, and fully utilize bandwidth and the
benefits of prefetching. Our key idea is to replace the tree-based
octree representation with a pyramid of sparsely populated uniform
grids, as shown in Figure 6(d). We use SPGrid to store the sparsely
populated grid at every level of this pyramid. Our objective is to
solve the incompressible inviscid Navier-Stokes equations

ut + (u · ∇)u +
∇p
ρ

= f (1)

∇ · u = 0 (2)

with a splitting scheme as in [Stam 1999]. Here, u = (u, v, w)
is the vector velocity field, f encapsulates external forces, p is the
scalar pressure field, and ρ is the fluid density. The fundamental
operations that go into solving equations (1) and (2) are: scalar ad-
vection of cell-centered densities, advection of each face-centered
velocity component, followed by a Poisson projection step of the
velocity field to make it divergence free. The persistent simula-
tion state variables for a smoke simulation are a scalar density field
stored at cell-centered locations, and a vector velocity field stored
component-wise on X , Y and Z-oriented faces. The scalar pres-
sure field is stored at cell-centered locations. We use four float-
valued SPGrid channels to store these variables. Finally, we dedi-
cate an additional SPGrid channel (of type uint32_t) for storing
Boolean flags associated with the geometry of the domain, for ex-
ample, to indicate cells that are present in the octree and also faces
that carry velocity degrees of freedom. When translating from the
geometrical concept of an octree to the pyramid (see Figure 6(a),(d)
respectively), we need to identify cells and faces that carry degrees
of freedom. Thus, we define active cells and faces as follows:

• A cell at a given level of the pyramid is active if it is geomet-
rically present and undivided in the octree.

• A face at a given level is active if that face is geometrically
present and undivided in the octree. This implies that an active
face has at least one cell neighbor that is active at its level.

As seen in Figure 6(d), every pyramid level collects all active vari-
ables belonging to it. We now describe how to emulate the main
routines of an adaptive CFD smoke simulation with our two funda-
mental algorithmic kernels: stencil operations within a single level,
and transfer operations between adjacent levels in the pyramid.



Figure 7: Assembly of our Laplacian operator as a concatenation of uniform grid operations. (Left) Ghost values are progressively propa-
gated from their parent cells from the coarsest to the finest grid, (Middle) a uniform Laplacian is evaluated independently on every level of
the pyramid, and (Right) components of the per element Laplacian are successively accumulated from the finest grid to the coarsest grid.

4.2 Discrete operators

For notational convenience, we index each level with 1 ≤ l ≤ L,
where lower indices denote finer grids. We denote a cell that na-
tively lives at level l and has multidimensional index I asClI . When
remapping the octree to the pyramid, we introduce ghost cells - a
cell ClI is ghost if the following three conditions are all jointly met:

1. ClI is not active at level l,
2. ClI neighbors a cell that is active at a level s ≤ l,
3. There exists a coarse parent ofClI at level l∗ > l that is active.

See Figure 6(c) for an example. This description of ghost cells
allows us to cleanly emulate even non-graded level transitions with
no additional modifications to our algorithm. Our two kernels that
operate on cell-centered data distributed across the pyramid are:

1. Ghost Value Propagate - an upsampling routine in which data
from level l is copied to fine ghost children at level l − 1 (see
Figure 7, left). This operation is successively applied from
coarser to finer grids at level transitions.

2. Ghost Value Accumulate - a downsampling routine in which
data in level l accumulates contributions from any fine ghost
children at level l − 1 (see Figure 7, right). This operation is
successively applied from finer to coarser grids.

Implementation impact In a fashion similar to the native compu-
tation of stencil offsets in Section 3, the uniform grid nature of the
pyramid levels allows us to compute pairs of child and parent in-
dices natively using linearized offsets without converting back and
forth into geometric coordinates. Given that our grids are sized to
powers of 2, the parent index can be computed from the child index
with simple shifts and inexpensive logical operations. We refer the
reader to the code in our project page for implementation details.

Note that from an algebraic perspective, Ghost Propagate and
Ghost Accumulate are adjoint operators. These very simple and par-
allelizable kernels allow us to emulate multi-resolution operations
such as the discrete gradient, divergence, and Laplace operators.

Discrete Gradient Similar to [Losasso et al. 2004], we define pres-
sure gradient values at each face bordering active cells. In the sam-
ple configuration shown below, the following gradient values are
defined at the level of resolution of cell containing p0

g01 =
p1 − p0

∆01
, g02 =

p2 − p0

∆02

Here, ∆0i represents a scaling that depends on the sizes of the
two cells bordering the respective face. As mentioned in [Losasso

et al. 2004], for the case where the gradient lives between two cells
of the same size, ∆ should correspond to the distance between
the two cell centers, for example, ∆01 = h. They also mention
that there is a certain amount of flexibility in the choice of ∆ for
the case where a face borders two cells of different resolutions.

p2

g02

p0

pG2

p1g01
h

The flexibility arises because the divisor
does not affect the ability of the result-
ing linear system to make the velocity field
divergence free. However, the degree by
which the linear system approximates the
Poisson operator depends on the divisor. In
our case, we set ∆ = (h+h/2)/2 = 3h/4
for a single level transition. If a face con-
nects cells that differ by more than one level of refinement, we set
∆ = 3hmin/2, where hmin is the size of the smaller of the two
cells. This convention allows our propagation/accumulation ker-
nels to be free of any external scaling factors, and simplifies the
code. Now, consider the gradient g02, which needs to access val-
ues p0, p2, which live on different levels of the SPGrid pyramid.
Instead of performing on-the-fly traversal of the pyramid, we use
the Ghost Propagate routine, in bulk, before starting the gradient
computation, to propagate the value of p2 into its ghost copy pG2
which is the same level where p0 resides. Ultimately, we simply

compute g02 =
pG2 −p0

∆02
. The very definition of a ghost cell guar-

antees that a gradient computation at the location of an active face
will always have either active or ghost pressures at either side, and
can thus be computed natively at the present level. In summary, for
computing gradient values at all active faces, we first use our prop-
agation kernel to copy pressure values from coarse to fine cells (see
Figure 7, left). These values can then be directly used to compute
the gradient at each level without additional considerations.

Divergence Similar to [Losasso et al. 2004], we compute the
volume-weighted velocity divergences on cell centers as follows

Vcell∇ · u =
∑
faces

(uface · n)Aface (3)

where n is the unit normal vector pointing out of a face, and Aface is
the area of that face. Similar to our implementation of the gradient
operator, instead of collecting the contributions of all faces (from
different levels) to a given cell’s divergence, we use the ghost cells
to collect divergence components, starting at the level where each
of the surrounding faces is active. In our insert example above, the
contribution of the face marked g02 to the divergence stored at loca-
tion p2 will first be placed in the ghost value pG2 , and accumulated



Figure 8: Left: Conceptual hierarchy for our Multigrid V-cycle.
Right: The actual pyramid used in our equivalent implementa-
tion. Note that the number of Multigrid levels is independent (here,
higher) than the number of distinct levels of refinement in the initial
octree. Cells introduced purely for Multigrid are shaded yellow.

(at the end of all contributions) back to the parent (p2) of the ghost
cell. In summary: We first process each level of the pyramid inde-
pendently; the contribution of every face to the divergence is first
added to the ghost cell that immediately borders it. After all lev-
els have been individually processed, we perform a sweep of Ghost
accumulate calls, from finest to coarsest level (Figure 7, right).

Laplacian The Laplacian operator is composed by combining the
gradient and divergence operator in sequence. Since the Ghost
propagate routine appears at the beginning of this sequence, and
the Ghost accumulate at the end, we combine the per-level gradi-
ent and divergence (in the middle of the sequence) to yield a per-
level Laplacian. The complete sequence is illustrated in Figure 7.
Composing the adjoint gradient and divergence operators together
results in a symmetric Laplacian operator, as expected.

5 Adaptive Multigrid Preconditioner

A collateral benefit of our method for computing the Laplacian
is that the operator is not explicitly computed, but applied in a
matrix-free fashion. This benefit is in part negated if an Incom-
plete Cholesky factorization is used. First, the explicit matrix needs
to be extracted and second, the factorization of the matrix does
not align optimally with our SPGrid pyramid concept. However,
it is noteworthy that even though the factorization is not a stencil-
friendly operation, the forward and backward substitution opera-
tions can be SPGrid-optimized as shown in the supplemental docu-
ment. Still, we view this as an obstacle to our SPGrid discretization
attaining its full potential, as explicit preprocessing is required ev-
ery time the underlying octree topology changes, and using Incom-
plete Cholesky factors inevitably makes preconditioning a band-
width bound operation. Moreover, our methodology allows us to
achieve levels of discretization that push the limits of the Incom-
plete Cholesky factorization as a preconditioner. We propose an al-
ternative multigrid-based preconditioner for Conjugate Gradients,
which is essentially an extension of a previously documented uni-
form multigrid scheme [McAdams et al. 2010] to an adaptive grid.

For our Multigrid preconditioner, we conceptually envision a hier-
archy of adaptive grids, each one of which descends to a progres-
sively coarser level of discretization, as shown in Figure 8(left). In
practice, we generate this by successively coarsening the finest level
of our octree discretization into their immediate parents for as many
levels as desired. Note that the depth of our Multigrid hierarchy and
the depth of our initial octree do not need to be tied to one another.
For example, we could envision a shallow Multigrid cycle that de-
scends to a level of resolution where our grid is still adaptive, or we

could consider a deep cycle which descends to even coarser levels
of resolution than initially present in the octree discretization. Fig-
ure 8 demonstrates the latter case. For each level of the hierarchy,
all cells other than the most finely refined ones are guaranteed to
also exist at the immediately coarser hierarchy level. We thus re-
strict such cells by simply copying their values to their counterparts
on the next (coarser) octree of the hierarchy. The finest cells of each
level additionally distribute their contents using the standard trilin-
ear stencil as described in [McAdams et al. 2010]. Prolongation,
as usual, is constructed as the transpose operator to restriction. Fi-
nally, as in [McAdams et al. 2010], our smoother of choice is the
damped Jacobi iteration which is convergent for this problem and
facilitates parallelism. The one aspect in which our approach is dif-
ferent is that our smoother only operates on the finest cells of every
Multigrid level, as coarser levels will be smoothed in subsequent
levels of the V-cycle. With these modifications, we can implement
a complete V-cycle using only a single SPGrid pyramid instead of a
hierarchy of SPGrid pyramids, as illustrated in Figure 8(right). Of
course, this requires the augmentation of active cells (as defined in
Section 4.1) with an additional collection of cells (shaded in yel-
low) which are the recipients of the restriction of finer levels within
the hierarchy. Since those cells are only introduced in coarser levels
of resolution and only in banded regions, their memory footprint is
not significant or in any way prohibitive to allocate and maintain.
Our Multigrid V-cycle is summarized in Algorithm 1.

All superscripts in Algorithm 1 refer to the SPGrid level of a vari-
able, i.e., which level it belongs to in the original adaptive pyramid.
We first copy the right hand side to active cells (line 2) at the finest
level of resolution. All other cells, including fine ghost cells re-
ceive zero. At each level l, we begin with a zero initial guess (line
4) which is required in order to use Multigrid as a preconditioner.
Next, a smoother is applied only to the the finest cells at this level
of the Multigrid hierarchy, as mentioned above. For this reason,
along with starting with a zero initial guess, the smoother does not
require any transfer operators and is simply a uniform grid stencil.
After computing the residual everywhere at level l, including on
ghost cells, we restrict residual values to level l + 1 and accumu-
late ghost residual values to level l + 1. This ensures that all cells
at level l + 1 have the proper residual value. At the bottom of the
Multigrid V-cycle, a non-Multigrid solver is used to exactly solve
the coarse level problem. The upstroke of the V-cycle is the adjoint
of the downstroke. Here, ghost values of u are propagated such
that finer cells receive information from their coarse neighbors. Fi-
nally, we smooth u as in the downstroke. Figure 9 illustrates the
convergence behaviors of our solver. For the example shown in

Algorithm 1 Multigrid algorithm

1: procedure MG_VCYCLE(f ,L,L)
2: b(1) ← f (1) . b(1) ≡ 0 on ghost cells
3: for l = 1 to L−1 do . L multigrid levels
4: u(l) ← 0
5: Smooth(u(l), b(l))
6: r(l) ← b(l) − L(l)u(l) . includes ghost cells
7: b(l+1) ← f (l+1)+ Restrict(r(l))
8: GhostValueAccumulate(r(l)

G → b(l+1))
9: end for

10: Solve u(L) ← (L(L))−1b(L) . Using ICPCG
11: for l = L−1 down to 1 do
12: GhostValuePropagate(u(l+1) → u

(l)
G )

13: u(l) ← u(l)+ Prolongate(u(l+1))
14: Smooth(u(l), b(l))
15: end for
16: end procedure
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Figure 9: Relative residual reduction factors for MGPCG and
ICPCG for the examples shown in Figure 11 and 12. Note that
MGPCG achieves asymptotic convergence rates in both examples.

Figure 11, we benchmark three alternatives: a stock Incomplete
Cholesky factorization using a compressed sparse row matrix stor-
age requires around 170 sec per PCG iteration, a SPGrid-optimized
Incomplete Cholesky version (as outlined in our supplemental ma-
terial) requires around 1.5 sec per PCG iteration, and our proposed
Multigrid preconditioned Conjugate Gradient algorithm requires 5
sec per PCG iteration (but converges in far fewer total iterations).

Preconditioner or stand-alone solver? A legitimate concern is
whether we should pursue using multigrid as a preconditioner to
a Krylov method, or as a stand-alone solver. Two scenarios were
identified in [McAdams et al. 2010] where convergence of a “stock”
standalone multigrid solver could become problematic: (a) If there
is a geometric discrepancy between domains Ωh and Ω2h (for ex-
ample, if we compute a voxelized approximation of the continuous
domain). (b) If there are topological features at a grid spacing of
h, such as thin slits or thin fingers of cells which are not resolved
at a grid spacing of 2h, further discrepancies would be observed in
the discretized operators. In our adaptive setting, we are also con-
fronted with a third challenge: (c) When using a first order approx-
imation (as in [Losasso et al. 2004]) to a continuous discrete oper-
ator (in our case the Poisson operator), further discrepancies may
arise between discretizations at different grids due to the presence
(or not) of regions where the local truncation error is first order.

Multigrid-native remedies do exist for these challenges. For (a) typ-
ically the convergence behavior is normalized by smoothing more
near boundaries. The methodology of [Ferstl et al. 2014] could be
used to remedy (b), by introducing nonmanifold features in coarser
levels of the hierarchy; unfortunately this would compromise the
regularity and performance of SPGrid. More complex and esoteric
Multigrid remedies exist for (b) and (c) such as recombined iter-
ants or identification of the actual modes of discrepancy (see [Trot-
tenberg et al. 2001]) and re-incorporation in a least-squares solve.
Fortunately, it has been well-documented that scenarios (b) and (c)
can be very successfully treated by wrapping a Krylov subspace
solver around Multigrid. In addition, the intensity of extra bound-
ary smoothing due to (a) can be kept to moderate levels, if only
using the cycle as a preconditioner. This should not be construed as
a defeatist move and an attempt to circumvent the problem, but as
a calculated decision to trade a small number of additional PCG it-
erations for a much more complicated problem-specific Multigrid-
centric solution. Typically, the only price we pay is a very slight
increase in PCG iterations. This was certainly the case observed in
our examples; for the complex flow of Figure 11 an extra few PCG

(a)
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uL (ξ1, ξ2, ξ3) uR

Figure 10: (a) Interpolation from cell-centered values in two spa-
tial dimensions, (b) Interpolation from face-centered values in three
spatial dimensions.

iterations were used, but no exotic modifications in our V-Cycle
were necessary to ensure good preconditioning.

6 Advection Scheme

Lastly, we detail a minor contribution which complements the de-
sign choices offered by SPGrid and the pyramidal storage structure.
In various parts of our simulation pipeline, most prominently in the
course of the advection step or when performing modifications to
the adaptive layout of the fluid domain, we need to perform un-
structured interpolation, i.e., computation of the physical quantities
at locations other than specific grid-aligned locations. In addressing
this need, we have to balance convenience and accuracy. Of course,
interpolation is easily handled in uniform regions of the fluid do-
main by standard bilinear interpolation in two spatial dimensions
and trilinear interpolation in three spatial dimensions. However, it
is not very clear how to interpolate values near areas of level tran-
sition. To handle such cases, [Losasso et al. 2004] averaged values
to nodes which, albeit very convenient, is quite dissipative. In fact,
their scheme suffers from dissipation even if the velocity field was
zero everywhere - leading to increased dissipation with small time
steps. This yields the awkward scenario of preventing the simu-
lation from taking extremely small time steps to avoid excessive
numerical dissipation. Ideally, an interpolation scheme should

• return the exact value if the lookup location coincides with a
location where the physical quantity is natively stored,

• keep any advected quantity asymptotically unchanged, at the
limit of the time step approaching zero,

• retain the convenience of the node-based averaging ap-
proach [Losasso et al. 2004] as much as possible.

Motivated by the above criteria, we propose the following inter-
polation scheme. As a first step, we perform an averaging of the
simulation quantities from their native locations (face centers or
cell centers) to nodes, qualitatively similar to [Losasso et al. 2004].
However, we use a different scheme for weighting contributions of
quantities that originate from cells of different resolution. In partic-
ular, we perform a weighted contribution of every face-centered (or
cell-centered) value to all of its surrounding nodal locations, where
the weight is inversely proportional to the feature size of the geo-
metric primitive where that quantity lives. Doing so guarantees that
nodal values are interpolated without error for linear fields. Once
we have a full contingent of both face-centered (or cell-centered)
and node-centered values, then we interpolate as described next.

6.1 Per-cell interpolation

Consider a two dimensional example for interpolation from cell-
centered quantities at a location with bilinear coordinates (ξ1, ξ2),
as shown in Figure 10(a). First, we compute a bilinearly interpo-
lated value φIc at the cell center from the nodal values φ00, . . . , φ11,



i.e.,
φIc = (φ00 + φ10 + φ01 + φ11)/4

Next, we compute a correction δφc = φc − φIc , similar in spirit
to [Brochu et al. 2010; Ando et al. 2013]. Finally, the result of our
interpolation scheme is computed as follows

φ(ξ1,ξ2) = φ00(1− ξ1)(1− ξ2) + φ10ξ1(1− ξ2)

+ φ01(1− ξ1)ξ2 + φ11ξ1ξ2

+ 2δφc ·min{ξ1, 1− ξ1, ξ2, 1− ξ2} (4)

Note that φ(ξ1,ξ2) = φc when (ξ1, ξ2) coincides with the location
of the cell center. An analogous scheme is used for interpolating
values from cell-centered data in three spatial dimensions.

6.2 Per-face interpolation

Consider a three dimensional example for interpolation from face-
centered quantities at a location with barycentric coordinates
(ξ1, ξ2, ξ3). Without loss of generality, let us assume that the quan-
tity being interpolated lives on faces normal to the x-axis, as shown
in Figure 10(b). First, we obtain the values uL, uR at the projected
locations on the left and right faces. This is done by identifying the
undivided faces (shown shaded in Figure 10) that the locations xL
and xR belong to and using equation (4) to compute the value at
these locations from the nodal and face-centered values. The final
interpolated value u(ξ1,ξ2,ξ3) = uL(1− ξ1) + uRξ1.

7 Smoke Flow Examples
We demonstrate the effectiveness of our SPGrid framework through
several examples. Figure 11 shows a complex domain where
smoke flows in from the bottom left and exits from the top right.
Our Multigrid preconditioned solver is able to accurately capture
the incompressible behavior, while ICPCG fails to converge with
200 PCG iterations and produces a compressible flow field. Fig-
ure 12(top) shows smoke flow past a sphere with a source at the bot-
tom. The adaptive placement of resolution produces large amounts
of small scale detail that cannot be captured with a uniform grid
using a comparable number of degrees of freedom (see the supple-
mental video). Figure 12(bottom) shows smoke emanating radi-
ally outwards from a sphere. Our method is able to capture a large
number of vortices without explicit enhancements such as vorticity
confinement [Fedkiw et al. 2001] or vortex particles [Selle et al.
2005]. In fact, none of our examples use such techniques to gen-
erate additional detail than that resulting from the underlying Eu-
lerian discretization. Finally, Figure 13 shows an example where
the underlying topology is changing dynamically. Table 3 shows
the timing breakdown for all examples. Implementation notes:
We implemented our smoke simulation pipeline within the SPGrid
framework using 16 channels. We use four channels for storing
the smoke density and velocity field, five channels for computing
nodal velocities during advection and using as temporaries during
interpolation. Our Multigrid preconditioner uses four channels, and
PCG requires four channels as well. We dedicate a channel to stor-
ing Boolean flags associated with the geometry of the domain.

8 Limitations and Future Work
A number of limitations for SPGrid were listed in Table 1, corre-
sponding to conscious choices in the interest of optimal throughput.
Our current mechanism for dynamically adapting the topology ini-
tializes a new pyramid every time, however, we would like to move
to the paradigm where we can instruct the virtual memory system
to “forget” that a page had ever been touched (as a consequence,
such page would be re-instanced and zero-filled on the next access

Fig. 11 Fig. 12
(top)

Fig. 12
(bottom) Fig. 13

Time step 336 575 650 756
Advection 9 26 48 18
Projection 319 525 535 645

One PCG iteration 9 20 29 28
Write state to disk 2 5 16 3

Grid adaptation N/A N/A N/A 111

Table 3: Averaged timing breakdown (in seconds) for smoke flow
examples. The first 3 columns were run on an Intel Xeon E5-2670;
the last column was run on an Intel Xeon E5-2650.

attempt). Under Linux, this is provided via the madvise system
call. Additionally, we have focused on the Linux programming in-
terface for our current implementation; as future work we will pro-
duce a port of the SPGrid library that also runs under the Windows
operating system. Finally, our smoke simulation scheme was very
elementary, and we did not leverage opportunities for more accu-
rate advection schemes, methods to counteract numerical dissipa-
tion [Olshanskii et al. 2013], and higher order accurate discretiza-
tions of the Poisson operator [Losasso et al. 2005]. We will address
such simulation features, along with an investigation of applying
SPGrid to free surface flows in future work.
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