
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2016)
Ladislav Kavan and Chris Wojtan (Editors)

A macroblock optimization for grid-based nonlinear elasticity

Nathan Mitchell Michael Doescher Eftychios Sifakis

University of Wisconsin-Madison University of Wisconsin-Madison University of Wisconsin-Madison

Abstract
We introduce a new numerical approach for the solution of grid-based discretizations of nonlinear elastic models. Our method
targets the linearized system of equations within each iteration of the Newton method, and combines elements of a direct
factorization scheme with an iterative Conjugate Gradient method. The goal of our hybrid scheme is to inherit as many of the
advantages of its constituent approaches, while curtailing several of their respective drawbacks. In particular, our algorithm
converges in far fewer iterations than Conjugate Gradients, especially for systems with less-than-ideal conditioning. On the
other hand, our approach largely avoids the storage footprint and memory-bound nature of direct methods, such as sparse
Cholesky factorization, while offering very direct opportunities for both SIMD and thread-based parallelism. Conceptually, our
method aggregates a rectangular neighborhood of grid cells (typically a 16× 8× 8 subgrid) into a composite element that
we refer to as a “macroblock”. Similar to conventional tetrahedral or hexahedral elements, macroblocks receive nodal inputs
(e.g., displacements) and compute nodal outputs (e.g., forces). However, this input/output interface now only includes nodes on
the boundary of the 16× 8× 8 macroblock; interior nodes are always solved exactly, by means of a direct, highly optimized
solver. Models built from macroblocks are solved using Conjugate Gradients, which is accelerated due to the reduced number
of degrees of freedom and improved robustness against poor conditioning thanks to the direct solver within each macroblock.
We explain how we attain these benefits with just a small increase of the per-iteration cost over the simplest traditional solvers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling

1. Introduction

The Newton method has largely been the golden standard for
the simulation of nonlinear elastic bodies, although a number
of interesting deviations from this standard approach have gar-
nered attention in the graphics literature (e.g., nonlinear multi-
grid cycles [ZSTB10], projective and position-based dynamics
[MHHR07, BML∗14, Wan15] and shape matching [RJ07]). In a
typical Newton scheme, once a linear approximation to the govern-
ing equations is computed, most practitioners will either employ
a direct method or select a technique from a spectrum of iterative
methods in order to solve the resulting system.

Direct solvers are perhaps the safest and most straightforward
way to solve the system that results from the linearization of the
governing equations. These methods can be quite practical for rel-
atively small problems when direct algebra is not very expensive.
Additionally, these techniques are quite resilient to the condition-
ing of the underlying problem. Even for large models, high qual-
ity parallel implementations such as the Intel MKL PARDISO li-
brary are available. Despite such advantages, direct methods suffer
from inherently superlinear computational complexity. Even with
the benefit of parallelism, direct methods will typically be more
expensive than several iterative schemes, especially if few number

of iterations are performed. Additionally, direct methods are inher-
ently memory bound; at the core of direct solvers are forward and
backward substitution routines that carry out a very small num-
ber of arithmetic operations for each memory access required. This
often results in grossly memory-bound execution profiles on mod-
ern hardware. This drawback is even more heavily felt for large
models that do not fit in cache. Finally, each iteration of the New-
ton method is inherently inexact, providing only a step towards the
converged solution. With direct methods we often find ourselves
perfectly solving an inaccurate linearized approximation.

With iterative solvers, we can aim for an approximate solution
to the linearized problem with the understanding that with each
Newton iteration the problem itself will change. These methods
include Krylov methods like Conjugate Gradient, Multigrid, and
fixed-point iterations such as Jacobi, Gauss-Seidel and SOR. The
primary benefit of iterative techniques is that each individual it-
eration is relatively cheap; this allows users the option to either
iterate as much as they can afford, or alternatively truncate the it-
erative process when the approximate solution is acceptable. Also,
many iterative methods are assembly-free, alleviating the need to
construct or store the stiffness matrix. In fact, some of the most
efficient techniques go to great lengths to minimize memory foot-
print [MZS∗11] while leveraging SIMD and multithreading.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

Figure 1: (Left) High resolution human mesh posed quasistatically by a skeleton with soft spring constraints. (Center) Embedding lat-
tice divided into macroblocks (shown as alternating regions of green and purple). (Right) Illustration of the degrees of freedom along the
macroblock boundaries. Conjugate Gradients is applied to a system with the size of these interface nodes. The model has 286K grid cells.

Iterative solvers often have to cope with challenges of their own.
Local methods like Jacobi, GS, and SOR are slow to capture global
effects, as they propagate information at a limited speed across the
mesh. Krylov methods will typically prioritize the most important
modes that contribute to a high residual; for example, consider a
system with a few tangled elements that create large local forces.
Elements suffering from small errors will be relatively neglected by
a method like Conjugate Gradients, while the solver focuses on the
highly tangled elements before turning its attention to the bigger
picture. Multigrid is an interesting alternative that often emerges as
the performance champion; however, it can often be tricky to get
to work robustly, and might be less appropriate for thin elastic ob-
jects, such as a thin flesh layer on a simulated face. Preconditioning
can accelerate the convergence of iterative solvers but, in contrast
to certain fluids simulation scenarios, the accelerated convergence
might not always justify the increased per-iteration cost. Precon-
ditioners based on incomplete factorizations are memory bound
as they require matrix assembly, and generally require an expen-
sive re-factorization step at each Newton iteration. We note that the
same factorization overhead would be incurred even when the New-
ton method is nearly converged, where just a handful of iterations
would suffice to solve the linearized equations. Multigrid-based
preconditioners might achieve more competitive performance, but
such approaches have been primarily tested in the area of fluid sim-
ulation [FWD14] and not so much in nonlinear deformable solids.

We propose a hybrid method that balances certain advantages
of both direct and iterative schemes. Specifically we endeavor to
achieve a good compromise between memory and compute load,
reduce the memory footprint whenever possible, while significantly
reducing iteration count. We pursue these goals while being com-
petitive with the per-iteration cost of unpreconditioned CG. We em-
ploy a grid-based discretization, and aggregate rectangular clusters
of cells into “macroblocks” with a proposed size of 16×8×8 cells.
These clusters essentially act as composite elements the same way
that a typical hexahedral element can be thought of as a black box
that takes displacements as inputs and produces nodal forces as out-
put. However, our composite elements only take in displacements
on the nodes of their periphery and return forces on those same
boundary nodes. Using this construct we obtain an equivalent lin-
ear system with degrees of freedom only on cluster boundaries.

Scope Our paper is an exploration of the performance potential
offered by composite “macroblock” elements, initially focusing on
the well-established simulation paradigm of a Newton-type scheme
for solving a nonlinear system of governing equations. Thus, we
only focus on grid-based discretizations of elasticity, and forgo the
exploration of different simulation paradigms (e.g., multigrid, pro-
jective dynamics) where our formulation might still have a viable
role (see brief discussion in section 7). Finally, we consciously
restrict our investigation to grid-based models that do not exhibit
non-local interactions, such as spring-based constraints or penalty-
based self-collision resolution mechanisms (one-sided collisions
between the elastic body and kinematic objects are supported).

2. Related Work

The need for efficient, ideally interactive simulation of deformable
bodies has been catered to by several procedural techniques
[JMD∗07, KCvO08, VBG∗13], although when fidelity and real-
ism is the objective, physics-based methods are typically employed
[TPBF87]. The Finite Element Method has been very popular in
this aspect, and various authors have successfully used it to ani-
mate a diverse spectrum of behaviors [OH99, TBHF03, ITF04].

Grid-based, embedded elastic models [MTG04, NPF06,
MZS∗11, PMS12, MCS15] have been very popular due to their
inherent potential for performance optimizations, and can also
be used with shape-matching approaches [RJ07]. They form
the foundation for a class of highly efficient, multigrid-based
numerical solution techniques [ZSTB10, GW08, DGW11].

Authors have sought to accelerate simulation performance via
a number of avenues, including the use of optimized direct
solvers [SSB13] and delayed updates to factorization approaches
[HLSO12]. Others have sought to leverage the Boundary Element
Method [JP99] to approach real-time deformation and similar for-
mulations that abstract away interior degrees of freedom to acceler-
ate collision processing [GMS14]. Our method has significant ties
to these approaches, as well as the general class of Schur comple-
ment methods [QV99]. In our present work, we leverage such a for-
mulation to aggregate local neighborhoods of simulation elements
into composite elements that interface with the simulation system
exclusively via their boundary.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

Figure 2: A kinematic rigid sphere collides against a high-resolution embedded face model. The relatively small thickness of the elastic flesh,
in addition to the topological features near the nose and mouth regions, would complicate the use of a typical multigrid solver [MZS∗11].

3. Macroblock-based discretization and numerical solution

We start by reviewing the equations that our method targets, and
detailing how our proposed macroblock concept can reformulate
them into an equivalent but more efficiently solvable form. This
process will necessitate the exact solution of several smaller sys-
tems of equations, each in the order of a couple thousand of un-
knowns. In this section we will simply assume that a highly ef-
ficient direct solver for those systems is available. Section 4 will
provide the implementation details of this highly optimized solver.

The governing equations describing the deformation of an elastic
nonlinear solid depend on the time integration scheme employed.
For example, in quasistatic simulation we have to solve the nonlin-
ear equilibrium equation f(x; t) = 0 at any time instance t. Using
an initial guess x(k) of the solution, Newton’s method computes a
correction δx = x(k+1)−x(k) by solving the linearized system:

− ∂f
∂x

∣∣∣∣
x(k)︸ ︷︷ ︸

K(x(k))

· δx = f(x(k)) (1)

If an implicit Backward Euler scheme was used, a system with sim-
ilar structure would form the core of Newton’s method [SB12]:[

(1+
γ

∆t
)K(x(k))+ 1

∆t2 M
]

δx= 1
∆t

M(vp−v(k))+f(x(k),v(k)) (2)

where M is the mass matrix, γ is the Rayleigh coefficient, vp the
velocities at the previous time step, and f now includes both elastic
and damping forces (see [SB12] for further details).

Despite the semantic differences, the linear systems in equations
(1) and (2) are very similar from an algebraic standpoint:

• Their coefficient matrices are both symmetric positive definite.
• Their coefficient matrices have the same sparsity pattern.
• In a grid-based discretization, their coefficient matrices can be

assembled from the contributions of individual grid cells.

We note that in order for this last property to hold true, we have
assumed that our elastic model does not have any interactions be-
tween remote parts of its domain, such as penalty forces used to
enforce self-collision (which we consciously excluded from our
scope). Incidentally, penalty forces used to enforce collisions with
external kinematic bodies are allowed, since their point of applica-
tion on the elastic body can be embedded in a single grid cell. For

brevity, we will write any linear system that shares the three proper-
ties above using the simplified notation Kx = f, without individual
emphasis on whether the system originated from a quasistatic, or a
dynamic implicit scheme as in equations (1) and (2), respectively.

The crucial next step in our proposed approach is a partitioning
of the active grid cells into macroblocks, which are grid-aligned
rectangular clusters of a predetermined size, as illustrated in figure
1. In our implementation we use macroblocks with dimensions of
16× 8× 8 grid cells, although the formulations in this section are
largely independent of the macroblock size. Section 5 provides the
reasoning behind the choice of this particular size of a macroblock.

Each macroblock Bi consists of up to 16× 8× 8 = 1024 grid
cells Ci1 ,Ci2 , . . . ,CiM ; note that in some cases this maximum num-
ber of constituent cells will not be reached, if the macroblock over-
laps with the boundary of the elastic object, or if “gaps” of empty
grid cells are present within its extent. Similarly, up to 17× 9× 9
nodal degrees of freedom will be present in the region spanned by
Bi. Up to 15×7×7 of them will be on the interior of Bi and thus
will not be touched by any other macroblock; we will denote this in-
terior node set with Ii. The remaining nodes, located on the bound-
ary of Bi are potentially shared by neighboring macroblocks; we
will call these interface nodes (as they reside at the interface be-
tween macroblocks) and denote their set with Γi. All sets Ii are
clearly disjoint, and we will denote their union by I = ∪Ii. The
interface sets Γi do overlap with one another, and we denote their
union by Γ=∪Γi. For large enough models, we expect around 72%
of grid nodes to lie in some interior set, and approximately 28% on
the interface set Γ, using the aforementioned macroblock size.

Our objective will be to replace the linear system Kx = f with
an equivalent system, which only includes the interface nodes in Γ

as unknowns. To do so, we first write the system in block form, by
separating interior and interface variables as follows:(

KII KIΓ
KΓI KΓΓ

)(
xI
xΓ

)
=

(
fI
fΓ

)
Using block Gauss elimination, this system can be converted to the
following equivalent block-triangular form:(

KII KIΓ
0 KΓΓ−KΓIK−1

II KIΓ

)(
xI
xΓ

)
=

(
fI

fΓ−KΓIK−1
II fI

)
(3)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

Figure 3: Armadillo model deforming as a result of kinematically animated Dirichlet constraints. Embedding lattice shown on the right.

Equation (3) suggests the following algebraically equivalent
method for solving the system Kx = f:

Step 1 Compute an interface-specific right hand side, from the bot-
tom block of the right hand side of system (3):

f̂Γ = fΓ−KΓIK
−1
II fI (4)

Step 2 Solve the interface-specific system K̂xΓ = f̂Γ to compute the
values xΓ of all interface nodes. Note that the matrix of the system

K̂ = KΓΓ−KΓIK
−1
II KIΓ (5)

is the Schur complement of the symmetric positive definite origi-
nal matrix K, hence it is symmetric and positive definite in its own
right. We will solve this system, which only involves interface de-
grees of freedom, using Conjugate Gradients.

Step 3 Conclude the computation by solving for the interior nodal
variables from the top block of system (3) as:

xI = K−1
II (fI−KIΓxΓ) (6)

In order to reproduce the exact solution of Kx = f, we would need
to solve the interface problem K̂xΓ = f̂Γ in Step 2 exactly. However,
given that we only use this solution as part of an iterative Newton
update, there is nothing preventing us from stopping the Conju-
gate Gradients solver for the interface system short of full conver-
gence. However, as we discuss in sections 6 and 7, the interface
problem requires far fewer CG iterations to produce good quality
results than the same Krylov method applied to Kx = f. Further-
more, the optimizations of the following section allow us to make
the per-iteration cost of CG on the interface problem be comparable
to each CG iteration on the original problem, resulting in a signifi-
cant net performance gain. When assessing the cost of Steps 1-3, it
is important to observe the following:

Inversion of KII is the main performance challenge. The most
performance-sensitive component of this process is the multipli-
cation with the inverse K−1

II of the matrix block corresponding to
variables interior to macroblocks. Nevertheless, since there is no
direct coupling (in K) between interior variables of neighboring
macroblocks, KII is a block diagonal matrix, comprised of decou-
pled diagonal components for each set of interior variables of each
macroblock. We thus use multithreading to invert the interior of
each macroblock in a parallel and independent fashion. Within each
macroblock, we use the aggressively SIMD-optimized direct solver
detailed in section 4 to perform the inversion exactly and efficiently.

Multiplication with KIΓ,KΓI in Steps 1 & 3 is inexpensive. The
off-diagonal blocks KIΓ and KΓI appearing in Steps 1 and 3 are
small and sparse sub-blocks of K. In addition, they are only used in
two matrix-vector multiplications across Steps 1 and 3 for an entire
Newton iteration (we will address their role in Step 2, next). These
matrices can be efficiently stored in sparse format, and their mul-
tiplication with vectors can be parallelized (in our implementation,
via SIMD within macroblocks and multithreading across blocks).
These matrices have minimal performance impact in our examples.

Conjugate Gradients does not need to construct K̂. The interface
matrix K̂, being a Schur complement, is significantly denser than
the original matrix K; for example, any two nodal variables on the
interface of the same macroblock would be coupled together. For-
tunately, the Conjugate Gradients method does not need this matrix
to be explicitly constructed. Instead, the only requirement is to be
able to compute matrix-vector products of the form

sΓ = K̂pΓ =
(

KΓΓ−KΓIK
−1
II KIΓ

)
pΓ

for any given input vector pΓ. In fact, we can compute such prod-
ucts on a per-macroblock basis. We start by computing the restric-
tion of pΓ to the boundary Γi of each macroblock Bi, which we
denote by pΓi . Subsequently, we compute a partial contribution to
the matrix-vector product as

sΓi = K̂ipΓi =
(

KΓiΓi −KΓiIi K
−1
IiIi

KIiΓi

)
pΓi (7)

The highly efficient evaluation of the expression in equation (7) is
precisely the focus of section 4. We compute the contributions of
all macroblocks sΓi in parallel, via multithreading, and reduce them
all together in a final summation to produce the global result sΓ.

Finally, we point out a significant intuition behind the nature of
the macroblock-local Schur complement K̂i, defined via equation
(7). Similar to how an elemental stiffness matrix maps nodal dis-
placements to nodal force differentials for a tetrahedral or hexahe-
dral element, the macroblock stiffness matrix K̂i directly maps dis-
placements on the boundary to forces on the same boundary nodes,
under the assumption that all interior nodes are functionally con-
strained to their exact solution subject to the boundary displace-
ment values. We note the similarity of this concept to the work of
Gao et al [GMS14], although they used a Schur complement to
abstract away the interior nodes of an entire model, rather than as-
sembling an elastic solid from macroscopic cell blocks.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

(a)

(b)

(c)

(d)

(e) (f)

Figure 4: The 15×7×7 macroblock interior nodes are hierarchically subdivided, yielding (a) sixteen 3×3×3 “subdomains” and (b,c,d,e)
four “interface” layers. The first subdomain is reordered to maximize sparsity, and this ordering is mirrored (f) to the other 15 subdomains.

4. An optimized direct solver for macroblocks

As outlined in section 3, inverting KIiIi within each macroblock is
the most performance-sensitive part of our numerical approach. In
this section we explain how this operation can be performed with
high efficiency, by reducing its memory footprint and aggressively
leveraging instruction-level (SIMD) parallelism. We have designed
a numerical data structure containing the appropriate metadata and
computational routines to compute the matrix-vector product sΓi of
equation (7), given the boundary values pΓi as input. This struc-
ture stores matrices KΓiΓi , KΓiIi and KIiΓi explicitly in compressed
sparse format (with slight modifications to facilitate SIMD paral-
lelism, as explained in section 4.3), as those are relatively compact
and inexpensive to multiply with. In addition, we store just enough
information to be able to multiply the interior inverse K−1

IiIi
with

input vectors, without storing this matrix explicitly. As this section
focuses on a single macroblock Bi, we omit the macroblock index i,
using the symbols I and Γ to denote its interior and interface nodes.

Given the sparsity and definiteness of KII, one straightforward
approach would be to compute its (exact) Cholesky factorization,
under a sparsity optimizing variable reordering. This factorization
would take place once per Newton iteration, while forward and
backward substitution passes would be used to apply the inverse
in every subsequent CG iteration based on equation (7). We do,
in fact, compute exactly such a reordered Cholesky factorization;
however, instead of forward/backward substitution, we leverage a
hierarchical alternative (derived from the coefficients of the com-
puted factorization) that achieves the same result in significantly
less time, by reducing the required memory footprint.

4.1. Reordering

We utilize a custom reordering of the 15× 7× 7 interior nodes
of the macroblock, in order to optimize the sparsity of Cholesky
factorization and expose repetitive regular patterns that can be
matched with SIMD calculations. We define this reordering by
means of a hierarchical subdivision, as illustrated in figure 4. First,
we subdivide the 15×7×7 interior region into two 7×7×7 sub-
regions, separated by a 1×7×7 interface layer, illustrated in blue

color in figure 4(e). Each of these two regions is further subdi-
vided into two 3× 7× 7 parts, separated by 1× 7× 7 interface
layers, shown in orange in figure 4(d). Those 3×7×7 regions are
then split into two 3× 3× 7 parts, separated by 3× 1× 7 inter-
faces, shown in green in figure 4(c). A last subdivision results in
two 3× 3× 3 subdomains, on either side of a 3× 3× 1 connector,
drawn in magenta in figure 4(b). We refer to the resulting 3×3×3
blocks as subdomains, and the connective regions in figures 4(b)
through 4(e) as Level-1 through Level-4 interfaces. We then pro-
ceed to compute a minimum-degree reordering for one of the 16
resulting 3× 3× 3 subdomains, and mirror this reordering across
their hierarchical interfaces to enumerate the nodes of all remain-
ing subdomains. This mirroring is essential in creating repetitive
patterns in the Cholesky factors, on which SIMD optimizations are
crucially dependent. The final overall reordering is formed by as-
sembling a tree of this hierarchical subdivision (with interfaces on
parent nodes, and the regions they separate as their children), and
computing a reverse breadth-first tree traversal.

We have found this reordering to be optimal; it matches or out-
performs any heuristics (e.g., minimum-degree reordering in Mat-
lab) in the sparsity of the Cholesky factors. The resulting sparsity
pattern is illustrated in figure 5. Matrix entries colored red are a sub-
set (but not all) of the entries that were filled-in during the Cholesky
process. As expected, forward and backward substitution on this
matrix is a pronouncedly memory-bound operation; hence we pro-
pose a further algorithmic modification that produces the same re-
sult with approximately one-seventh of the memory footprint. This
alternative approach will only need to store the number of coeffi-
cients corresponding to the black-colored entries in figure 5. The
metadata for this alternative approach, detailed next, will be har-
vested from the Cholesky factorization just computed.

4.2. Hierarchical factorization

Consider the first hierarchical subdivision, illustrated in 4(e), which
separated the 15×7×7 block of interior nodes into two 7×7×7
subregions, which we denote by I1 and I2, along with a 7× 7× 1
connective region, denoted Ic (drawn blue in the figure above). If
we reorder the matrix KII to expose this partitioning, it assumes the

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

following block form: K11 K1c
K22 K2c

Kc1 Kc2 Kcc


It can be easily verified that the inverse of this matrix can be written
in the following Block-LDL form: I −K−1

11 K1c
I −K−1

22 K2c
I

K−1
11

K−1
22

C−1

 I
I

−Kc1K−1
11 −Kc2K−1

22 I


where C = Kcc−Kc1K−1

11 K1c−Kc2K−1
22 K2c is the Schur comple-

ment of Kcc. With this formulation, solving a problem KIIxI = fI is
equivalent to multiplying with the factorized version of K−1

II in the
equation above. We make the following significant observations:

• Other than the (seemingly elusive) inverses K−1
11 ,K−1

22 and C−1,
the factorization above does not incur any fill-in; factors such as
K1c, etc. have the original sparsity found in sub-blocks of KII.
• We can prove that the lower-triangular Cholesky factor of the

Schur complement C is exactly the bottom-rightmost (dense) di-
agonal block of the matrix shown in figure 5 (also more promi-
nently colored blue in figure 6). Thus, multiplication with C−1

can be performed simply via forward and backward substitution.
• The inverses of the two subregions, K−1

11 and K−1
22 can be applied

recursively using the exact same decomposition and block-LDL
factorization described here, by splitting each 7×7×7 into two
7× 7× 3 subregions and a 7× 7× 1 connector as before. This
recurrence can be unfolded until we arrive at the (sixteen) 3×
3× 3 subdomains shown in figure 4. The Cholesky factors of
those sixteen blocks are exactly the top-sixteen (sparse) diagonal
blocks on the top-left of the Cholesky factorization in figure 5;
thus those submatrices can be readily inverted without recursion.

Figure 5: Sparsity of Cholesky factorization (with our optimal re-
ordering), shown with red and black colors. The memory footprint
of our proposed solver only includes the black-colored coefficients.

We note that the Cholesky factors of the Schur complement ma-
trices (C) that appear in deeper levels of this hierarchical solution
scheme are similarly harvested from the (dense) diagonal blocks of
the overall Cholesky factorization (highlighted in purple, green and
orange color in figure 6, immediately above the blue block at the
bottom-rightmost part which corresponds to the first hierarchical
subdivision). At the final level of this hierarchical solution process,
we need the inverses of the matrix blocks corresponding to the six-
teen 3× 3× 3 subdomains themselves. For those blocks, we em-
ploy directly their sparse Cholesky factorization, as seen in the top-
sixteen (dark blue colored) diagonal blocks in figure 6, and solve
using standard forward and backward substitution.

It would appear that the additional computation that this recur-
sive solution entails would render it prohibitively expensive. How-
ever, the stock Cholesky forward and backward substitution are
memory-bound by such a wide margin that our optimized recur-
sive solution can afford to execute a significantly larger amount of
arithmetic operations, while still being (barely, this time) bound by
the time required to stream the requisite matrix coefficients from
memory into cache. The not so obvious, but very significant, ben-
efit is that the entire working set of this solver is less than 800KB
per macroblock, allowing all subsequent memory accesses to oc-
cur exclusively in cache for every CPU core handling an individual
macroblock. Note that, although the original reordered Cholesky
factorization produces additional fill-in on the matrix entries col-
ored red in figure 5, our recursive substitution process only touches
a significantly sparser subset of entries (colored black), requir-
ing about 27% of the entries and 15% of the storage footprint of
the full, filled-in Cholesky (accounting for row/column indices of
structurally sparse blocks). In section 6 we provide the effective
memory bandwidth achieved by our macroblock solver, averaging
between 13-18GB/s on a 10-core Haswell-EP Xeon processor.

Figure 6: Our method reveals regular structures in the matrix spar-
sity pattern, exploiting them for vectorization. Same-color entries
in the off-diagonal blocks can be processed with SIMD instructions.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

Figure 7: An array of 9 kinematic spheres, arranged in an alternating pattern across a thin volumetric sheet, are pressed against it. The
limited thickness of this model would hinder applicability of stock geometric multigrid, in the absence of nonstandard coarsening strategies.

4.3. Vectorization

The sparse matrix data used in our method, as seen in figure 6, is
characterized by extensive regular and repetitive sparsity patterns
that can facilitate computation using SIMD instructions. We have
used color coding to indicate data used within a level of our hier-
archical solution scheme, and to highlight such patterns of regular-
ity. Those include the sixteen sparse Cholesky factors correspond-
ing to the interiors of the 3× 3× 3 subdomains (colored as dark
blue blocks, along the top-leftmost part of the matrix diagonal),
the dense Cholesky factors of Schur complements at deeper levels
(eight magenta, four green, two orange, and one cyan dense block,
spanning the rest of the block-diagonal region of the matrix), and
sparse submatrices on the block lower-triangular part of the matrix,
corresponding to entries of the original stiffness matrix that touch
an interface layer at a given level of the hierarchy and nodes on the
two subregions that the interface layer separates.

Opportunities for aggressive vectorization directly emerge from
such data regularities. For example, sparse forward and backward
substitution on all sixteen 3×3×3 subdomains can be done in tan-
dem, with 16-way SIMD parallelism (e.g., using two 8-wide AVX
instructions). Repetitive sparsity patterns in the lower-triangular
part of the matrix of figure 6 are used in vectorized matrix-vector
multiplication operations. The dense nature of the blocks along the
lower part of the block-diagonal allows fine-grain vectorization via
standard practices. Furthermore, even matrix operations that con-
nect the 15× 7× 7 interior node set with the boundary of the
macroblock, as the multiplication with matrices KΓiΓi , KΓiIi and
KIiΓi defined in the beginning of this section, can be vectorized by
splitting up such matrices in parts that correspond to the sixteen
3× 3× 3 macroblocks at the interior of the macroblock boundary.
Ultimately, about 96% of the requisite computations can accom-
modate 16-wide SIMD parallelism, and the majority of the remain-
ing operations offer at least 8-wide SIMD parallelism potential. We
have extensively leveraged these vectorization opportunities in our
optimized implementation based on AVX compiler intrinsics.

5. Justification of macroblock size choice

Our choice for utilizing macroblocks of dimension 16×8×8 was
motivated by a number of factors. First, we wanted to provide the
opportunity for at least 16-way SIMD-based parallelism, which

is a future-safe choice given the upcoming availability of CPUs
with the AVX-512 instruction set. The working set size associ-
ated with macroblocks of that size is conveniently approximately
800KB, which allows the entire macroblock solver to fit entirely in
cache, even if all cores of a typical modern Xeon processor are pro-
cessing independent macroblocks, in parallel. Using an even larger
macroblock size would allow the dimensionality of the interface to
be further reduced, but the increment in the working set would be
disproportionately large, due to the size of the next-level interface
(would be 15×1×7) which would, at that point, yield an unattrac-
tively large dense Schur complement matrix for that interface level.

6. Examples and performance evaluation

We visually demonstrate the applicability of our solver to a number
of simulation scenarios including constraint-driven deformations,
skinning animations and elastic models colliding with kinematic
rigid objects. We used a hexahedral finite element discretization
of corotated linear elasticity, with the standard adjustments for ro-
bust simulation in the presence of inverted elements [ITF04]. Given
that our method uses a direct solver at the macroblock level, we
opted to integrate the strain energy using the eight Gauss quadrature
points for each hexahedron, as opposed to the one-point quadrature
scheme that is often used [MZS∗11, PMS12]. This more accurate
quadrature scheme does not require explicit stabilization, and adds
no extra algorithmic effort in our solver other than a modest in-
crease in the matrix construction cost.

In figure 3, we demonstrate an armadillo model being deformed
as a result of specific lattice nodes animated as kinematic Dirich-
let boundary conditions. In order to incorporate Dirichlet boundary
conditions in the interior of a macroblock, we replace the equation
associated with any such node with an explicit Dirichlet condition
δxi = 0 (the value can be set to zero without loss of generality, since
equation (1) is solved for position corrections, which are zero for
constraint nodes that have been already moved to their target loca-
tions). We restore symmetry of the overall matrix by zeroing out
entries involving the Dirichlet node in the stencil of the elasticity
operator of any neighboring node (again, a safe operation as the
Dirichlet value is zero for the correction δxi). Similarly, any nodes
in a macroblock that are exterior to the simulated model are treated
as zero-Dirichlet conditions, to maintain a constant matrix structure
for all macroblocks.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

In figures 2 and 7, we demonstrate the compatibility of our
method with penalty-based collisions with kinematic objects. We
use an implicit representation for the colliding bodies to enable
fast detection of collision events between such bodies and embed-
ded collision proxies on the surface of our model. When such an
event occurs, a zero rest length penalty spring constraint is instanti-
ated connecting the offending point on the embedded surface to the
nearest point on the surface of the collision object. Finally, figures 1
and 8 show two examples of a human character animated using em-
bedded kinematic bone constraints. Skeletal motion data was drawn
from the CMU motion capture database (http://mocap.cs.cmu.edu).

6.1. Performance benchmarks - Comparison to CG

Table 1 provides runtime details for individual solver components.
The first two columns correspond to the models of figures 1 and 3,
and have been processed with our proposed macroblock solver. In
addition, we repeat the skinning simulation of figure 1 using this
time a highly optimized and parallelized matrix-free implementa-
tion of unpreconditioned Conjugate Gradients, borrowed from the
work of Mitchell et al [MCS15]. While using this matrix-free CG
solver, we consider two discretization alternatives: (a) a one-point
quadrature scheme, with explicit stabilization [MZS∗11, PMS12],
listed in the third column and (b) a more accurate 8-point quadra-
ture scheme matching the one in our macroblock solver (fourth
column). As mentioned, the quadrature scheme does not affect the
solve times of our method, once the matrix has been constructed;
the construction cost is included in the Newton iteration runtimes,
and was less than 10% of the overall runtime in all our experiments.
We observe that, in spite of the up-front factorization cost that our
method incurs, it typically stays within a factor of 2-3x of the cost
of the single quadrature point CG scheme, for the same number of
iterations. However, in our supplemental video we demonstrate that
the effect of as few as ten iterations of our macroblock scheme is
commensurate with 5-10x more iterations of the stock CG method.

Table 1: Runtime details on a 10-core Xeon E5-2687W CPU. The
benchmark in the first column is repeated in the last two columns
using stock CG, with one and eight quadrature points respectively.
Interface-Multiply is the multiplication with the Schur complement.

Human Armadillo Human Human

Solver Macro-
block

Macro-
block

CG
(1-QP)

CG
(8-QP)

Active Cells 286K 24K 286K 286K
Macroblocks 642 95 N/A N/A
Interface -
Multiply

27.6 ms
(17 GB/s)

4.36 ms
(16 GB/s)

N/A N/A

CG Iteration 33.3 ms 5.22 ms 18.8 ms 88.3 ms
Factorization 291 ms 88.0 ms N/A N/A
Newton
Iteration

10 CG 791 ms 166 ms 269 ms 958 ms
20 CG 1.29 s 244 ms 462 ms 1.84 s
50 CG 2.79 s 479 ms 1.07s 4.47 s

Note that if the more accurate quadrature scheme is employed, our
method outperforms the CG option even on a per-iteration basis.

6.2. Additional solver comparisons

We report some additional comparisons with other established nu-
merical algorithms or software packages. All our comparisons are
relative to the skinning example in the first column of Table 1.

Macroblock inversion via Cholesky/PARDISO As an alternative
to our optimized macroblock solver of section 4, one could choose
to directly compute and apply a stock Cholesky factorization per
macroblock. We tested this using the PARDISO library, which
yielded a factorization cost of 748ms (ours: 291ms) and a solve
time of 93ms via forward/backward substitution (ours: 20.9ms; part
of the Interface-Multiply cost). Solve time savings are due to our
reduced memory demands. Faster factorization time is attributed
to intrinsic knowledge about the constant sparsity pattern of each
block, allowing us to optimally vectorize over multiple blocks with-
out duplicating the data that captures their sparsity patterns.

Different solvers for Newton Step Three options were investi-
gated (a) Full Cholesky – We experimented with using a direct
(complete) Cholesky solve at each Newton step, via PARDISO.
The resulting Newton iteration cost was 31.8s, more than three
times the cost our method would require for 250CG iterations
(9.36s) and near-perfect convergence. However, our method hardly
needs that many CG iterations to achieve excellent Newton conver-
gence, and in the long run easily outperformed full Cholesky by
more than an order of magnitude. (b) Incomplete Cholesky PCG
– ICPCG performed very well in our examples, often requiring
half (or less) of our CG iterations for comparable convergence. It
is, however, in principle a serial algorithm. Our adequately opti-
mized (albeit serial) implementation required 7.23s to factorize the
preconditioner (ours: 291ms) and 422ms (ours: 33.3ms) for each
CG iteration. (c) Block Jacobi PCG – A parallelism-friendly alter-
native to ICPCG was to compute a Block Jacobi Preconditioner,
with block sizes comparable to our own macroblocks. Matrix en-
tries that straddle blocks were discarded, and a standard Cholesky
factorization of the resulting block-diagonal matrix computed via
PARDISO. Convergence of this option was generally comparable,
and at times slightly better than our solver. This parallel method re-
quired 1.24s for factorization (ours: 291ms) and yielded a CG iter-
ation cost of 183ms (ours: 33.3ms). Visual comparisons of all three
options to our technique are provided in the supplemental video.

7. Limitations and future work

The most important limitations of our present formulation are (a)
the restriction of our scheme to Cartesian lattice-based discretiza-
tions of elasticity, and (b) the explicit lack of support for self col-
lisions or other elastic interactions that would couple together dis-
joint parts of the mesh. We consciously limited our preliminary ex-
ploration to applications of macroblocks within a Newton-Raphson
iterative solution scheme. In principle, there would have been an
opportunity to also consider using macroblocks in the design of a
highly efficient box smoother for multigrid, or as a replacement of
the local optimization step in projective dynamics; we defer explo-
ration of those interesting threads to future work.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



Mitchell et al. / A macroblock optimization for grid-based nonlinear elasticity

Figure 8: An additional demonstration of a skinning simulation, driven by kinematic bones attached to the flesh via spring constraints.

Acknowledgements This work was supported by NSF grants
IIS-1253598, IIS-1407282, CCF-1423064, CCF-1533885.

References
[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:

Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (July 2014), 154:1–154:11. doi:10.1145/
2601097.2601116. 1

[DGW11] DICK C., GEORGII J., WESTERMANN R.: A hexahedral
multigrid approach for simulating cuts in deformable objects. IEEE
Transactions on Visualization and Computer Graphics 17, 11 (2011),
1663–1675. doi:10.1109/TVCG.2010.268. 2

[FWD14] FERSTL F., WESTERMANN R., DICK C.: Large-scale liquid
simulation on adaptive hexahedral grids. IEEE Trans. Visualization &
Computer Graphics 20, 10 (Oct 2014), 1405–1417. doi:10.1109/
TVCG.2014.2307873. 2

[GMS14] GAO M., MITCHELL N., SIFAKIS E.: Steklov-Poincarè Skin-
ning. In Eurographics/ ACM SIGGRAPH Symposium on Computer Ani-
mation (2014), Koltun V., Sifakis E., (Eds.), The Eurographics Associa-
tion. doi:10.2312/sca.20141132. 2, 4

[GW08] GEORGII J., WESTERMANN R.: Corotated Finite Elements
Made Fast and Stable. Faure F., Teschner M., (Eds.), VRIPHYS
’08, The Eurographics Association. doi:10.2312/PE/vriphys/
vriphys08/011-019. 2

[HLSO12] HECHT F., LEE Y. J., SHEWCHUK J. R., O’BRIEN J. F.:
Updated sparse Cholesky factors for corotational elastodynamics. ACM
Trans.on Graph. 31, 5 (2012), 123. doi:10.1145/2231816.
2231821. 2

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite elements
for robust simulation of large deformation. SCA ’04, Eurographics As-
sociation, pp. 131–140. doi:10.1145/1028523.1028541. 2, 7

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN B., SANOCKI T.:
Harmonic coordinates for character articulation. ACM Trans. Graph. 26,
3 (July 2007). doi:10.1145/1276377.1276466. 2

[JP99] JAMES D., PAI D.: ArtDefo: accurate real time deformable ob-
jects. In Proceedings of SIGGRAPH 99 (1999), pp. 65–72. doi:
10.1145/311535.311542. 2

[KCvO08] KAVAN L., COLLINS S., ŽÁRA J., O’SULLIVAN C.: Geo-
metric skinning with approximate dual quaternion blending. ACM Trans.
Graph. 27, 4 (Nov. 2008), 105:1–105:23. doi:10.1145/1409625.
1409627. 2

[MCS15] MITCHELL N., CUTTING C., SIFAKIS E.: GRIDiron: An
interactive authoring and cognitive training foundation for reconstruc-
tive plastic surgery procedures. ACM Trans. Graph. (2015). doi:
10.1145/2766918. 2, 8

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. doi:10.1016/j.
jvcir.2007.01.005. 1

[MTG04] MÜLLER M., TESCHNER M., GROSS M.: Physically-based
simulation of objects represented by surface meshes. CGI ’04, pp. 156–
165. doi:10.1109/CGI.2004.1309189. 2

[MZS∗11] MCADAMS A., ZHU Y., SELLE A., EMPEY M., TAMSTORF
R., TERAN J., SIFAKIS E.: Efficient elasticity for character skinning
with contact and collisions. ACM Trans. Graph. 30, 4 (July 2011), 37:1–
37:12. doi:10.1145/2010324.1964932. 1, 2, 3, 7, 8

[NPF06] NESME M., PAYAN Y., FAURE F.: Animating shapes at arbi-
trary resolution with non-uniform stiffness. VRIPHYS ’06, Eurograph-
ics. doi:10.2312/PE/vriphys/vriphys06/017-024. 2

[OH99] O’BRIEN J., HODGINS J.: Graphical modeling and animation
of brittle fracture. In Proc. of SIGGRAPH 1999 (1999), pp. 137–146.
doi:10.1145/311535.311550. 2

[PMS12] PATTERSON T., MITCHELL N., SIFAKIS E.: Simulation of
complex nonlinear elastic bodies using lattice deformers. ACM Trans.
Graph. 31, 6 (Nov. 2012), 197:1–197:10. doi:10.1145/2366145.
2366216. 2, 7, 8

[QV99] QUARTERONI A., VALLI A.: Domain decomposition methods
for partial differential equations, vol. 10. Clarendon Press, 1999. 2

[RJ07] RIVERS A., JAMES D.: FastLSM: Fast lattice shape matching
for robust real-time deformation. ACM Trans. on Graphics (SIGGRAPH
Proc.) 26, 3 (2007). doi:10.1145/1275808.1276480. 1, 2

[SB12] SIFAKIS E., BARBIC J.: FEM simulation of 3D deformable
solids: A practitioner’s guide to theory, discretization and model re-
duction. In ACM SIG. 2012 Courses (2012), SIGGRAPH ’12, ACM,
pp. 20:1–20:50. doi:10.1145/2343483.2343501. 3

[SSB13] SIN F., SCHROEDER D., BARBIC J.: Vega: Non-linear fem
deformable object simulator. Comput. Graph. Forum 32, 1 (2013), 36–
48. doi:10.1111/j.1467-8659.2012.03230.x. 2

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW R.: Finite
volume methods for the simulation of skeletal muscle. SCA ’03, pp. 68–
74. URL: http://dl.acm.org/citation.cfm?id=846276.
846285. 2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (Aug.
1987), 205–214. doi:10.1145/37402.37427. 2

[VBG∗13] VAILLANT R., BARTHE L., GUENNEBAUD G., CANI M.-P.,
ROHMER D., WYVILL B., GOURMEL O., PAULIN M.: Implicit skin-
ning: Real-time skin deformation with contact modeling. ACM Trans.
Graph. 32, 4 (July 2013), 125:1–125:12. doi:10.1145/2461912.
2461960. 2

[Wan15] WANG H.: A Chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph. 34, 6
(Oct. 2015), 246:1–246:9. doi:10.1145/2816795.2818063. 1

[ZSTB10] ZHU Y., SIFAKIS E., TERAN J., BRANDT A.: An efficient
multigrid method for the simulation of high-resolution elastic solids.
ACM Trans. Graph. 29, 2 (Apr. 2010), 16:1–16:18. doi:10.1145/
1731047.1731054. 1, 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

http://dx.doi.org/10.1145/2601097.2601116
http://dx.doi.org/10.1145/2601097.2601116
http://dx.doi.org/10.1109/TVCG.2010.268
http://dx.doi.org/10.1109/TVCG.2014.2307873
http://dx.doi.org/10.1109/TVCG.2014.2307873
http://dx.doi.org/10.2312/sca.20141132
http://dx.doi.org/10.2312/PE/vriphys/vriphys08/011-019
http://dx.doi.org/10.2312/PE/vriphys/vriphys08/011-019
http://dx.doi.org/10.1145/2231816.2231821
http://dx.doi.org/10.1145/2231816.2231821
http://dx.doi.org/10.1145/1028523.1028541
http://dx.doi.org/10.1145/1276377.1276466
http://dx.doi.org/10.1145/311535.311542
http://dx.doi.org/10.1145/311535.311542
http://dx.doi.org/10.1145/1409625.1409627
http://dx.doi.org/10.1145/1409625.1409627
http://dx.doi.org/10.1145/2766918
http://dx.doi.org/10.1145/2766918
http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://dx.doi.org/10.1016/j.jvcir.2007.01.005
http://dx.doi.org/10.1109/CGI.2004.1309189
http://dx.doi.org/10.1145/2010324.1964932
http://dx.doi.org/10.2312/PE/vriphys/vriphys06/017-024
http://dx.doi.org/10.1145/311535.311550
http://dx.doi.org/10.1145/2366145.2366216
http://dx.doi.org/10.1145/2366145.2366216
http://dx.doi.org/10.1145/1275808.1276480
http://dx.doi.org/10.1145/2343483.2343501
http://dx.doi.org/10.1111/j.1467-8659.2012.03230.x
http://dl.acm.org/citation.cfm?id=846276.846285
http://dl.acm.org/citation.cfm?id=846276.846285
http://dx.doi.org/10.1145/37402.37427
http://dx.doi.org/10.1145/2461912.2461960
http://dx.doi.org/10.1145/2461912.2461960
http://dx.doi.org/10.1145/2816795.2818063
http://dx.doi.org/10.1145/1731047.1731054
http://dx.doi.org/10.1145/1731047.1731054

