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Abstract

Simulation of the musculoskeletal system has important applications in biomechanics, biomedical
engineering, surgery simulation and computer graphics. The accuracy of the muscle, bone and tendon
geometry as well as the accuracy of muscle and tendon dynamic deformation are of paramount impor-
tance in all these applications. We present a framework for extracting and simulating high resolution
musculoskeletal geometry from the segmented visible human data set. We simulate 30 contact/collision
coupled muscles in the upper limb and describe a computationally tractable implementation using an
embedded mesh framework. Muscle geometry is embedded in a non-manifold, connectivity preserving
simulation mesh molded out of a lower resolution BCC lattice containing identical, well-shaped elements
leading to a relaxed time step restriction for stability and thus reduced computational cost. The muscles
are endowed with a transversely isotropic, quasi-incompressible constitutive model that incorporates
muscle fiber fields as well as passive and active components. The simulation takes advantage of a new
robust finite element technique that handles both degenerate and inverted tetrahedra.

Index Terms

Finite volume methods, constructive solid geometry, physically based modeling.

I. I NTRODUCTION

Simulation of anatomically realistic musculature and flesh is critical for many disciplines
including biomechanics, biomedical engineering and computer graphics where it is becoming
an increasingly important component of any virtual character. Animated characters must have
skin that deforms in a visually realistic manner. However, the complexity of the interaction of
muscles, tendons, fat and other soft tissues with the enveloping skin and our familiarity with

Fig. 1. Musculoskeletal model created from the visible human data set. Tendons are shown in pink. There are about 10 million
tetrahedra in the approximately 30 muscles depicted.



2

this type of motion make these animations difficult if not impossible to create procedurally. In
biomechanics and biomedical engineering, accurate descriptions of muscle geometry are needed
to characterize muscle function. Knowledge of such quantities as muscle length, line of action
and moment arm is essential for analyzing a muscle’s ability to create forces, produce joint
moments and actuate motion [32]. For example, many studies use knowledge of muscle lengths
[1] and moment arms [2] to analyze muscle function for improving diagnosis and treatment of
people with movement disabilities.

In order to create realistic flesh deformation for computer graphics characters, anatomy based
modeling techniques of varying resolutions are typically applied. These models are generally
composed of an underlying skeleton whose motion is prescribed kinematically (from motion
capture or traditional animation) and a model that transmits motion of the underlying skeleton
to tissue deformation. The model for this interaction can have varying levels of detail. For
example, [25] maps joint configurations to skin deformers that procedurally warp the surface of
the character. The work in [43] and [35] used anatomically based models of muscles, tendons and
fatty tissue to deform an outer skin layer. The deformation of the muscle and tendon primitives
was based on muscle characteristics such as incompressibility, but dynamic effects were not
included. An obvious improvement to this approach is to include dynamic effects based on muscle
mechanics as in [9], [22], [37], which incorporated theoretical muscle dynamic models (e.g. the
relation between force, length and velocity in muscle) using the equations of solid mechanics
to simulate muscle contraction. However in [9], [37], computational complexity restricted the
application of their techniques to only a few muscles at a time. [22] simulated more tissues in
the knee, but the dynamics were simulated quasi-statically ignoring the visually appealing effects
of ballistic motion and inertia.

Musculoskeletal simulations in biomechanics typically fall into two categories: simulations of
simple models for many muscles composing a large region of the body (e.g. the upper limb or
lower extremity), or highly detailed muscle models that can only be simulated a few muscles
at a time. Common muscle models compute accurate muscle moment arms and muscle/tendon
lengths, but only resolve the average muscle line of action [13], [18]. However, it is difficult to
represent the path of a muscle with complex geometry because it requires knowledge of how, as
joints move, the muscle changes shape and interacts with underlying muscles, bones and other
structures. These simplified models typically require the construction of elaborate “wrapping”
surfaces and “via points” to resolve contact with other muscles and bones in compensation for
simplifying muscles as piecewise linear bands. These simplified models of contact are difficult
to construct robustly, as they require an a priori knowledge of the contact environment that is
not always available. More detailed muscle models do not suffer from these difficulties, but are
burdened by computational complexity. Typical examples are [44] and [19] which used modern
nonlinear solid mechanics to recreate the stress and deformation, although only a few muscles
with simplified geometry were considered and the simulations were carried out quasi-statically
to avoid the stringent time step restrictions characteristic of explicit schemes.

We present a framework that can be used to create highly realistic virtual characters while still
allowing for biomechanically accurate simulation of large muscle groups. We present a pipeline
for creating musculoskeletal models from the segmented visible human data set that allows for the
creation of highly detailed models of muscle, tendon and bone. We demonstrate this by creating a
musculoskeletal model of the upper limb. Then we embed each high resolution muscle geometry
in a non-manifold, uniform simulation mesh. The embedding mesh is comprised of identical,
well conditioned elements thus significantly relaxing the time step restriction allowing us to avoid
quasi-static simulation. Since the elements in each mesh are identical, we only need to store the
material coordinates of a single undeformed tetrahedron per muscle as opposed to storing material
information for every element in the mesh. Contact is treated directly based on muscle geometry
as opposed to procedurally created, error prone wrapping surfaces. The inclusion of inertia forces
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while performing the simulations in [37] illustrated the importance of the tendonous connective
tissue networks that wrap muscle groups. In response to this phenomenon, we incorporate the
effects of these tissues in a contact/collision algorithm that works between the high-resolution
geometry and the low resolution simulation mesh.

II. RELATED WORK

[39], [38] simulated deformable materials including the effects of elasticity, viscoelasticity,
plasticity and fracture. Although they mentioned that either finite differences or the FEM could
be used, they seemed to prefer a finite difference discretization. Subsequently, [20] advocated
the FEM for simulating a human hand grasping a ball, and since then a number of authors have
used the FEM to simulate volumetric deformable materials.

[9] used the FEM, brick elements, and the constitutive model of [45] to simulate a few muscles
including a human bicep. Due to computational limitations at the time, very few elements were
used in the simulation. [43] built an entire model of a monkey using deformed cylinders as
muscle models. Their muscles were not simulated but instead deformed passively as the result
of joint motions. [35] carried out similar work developing a number of different muscle models
that change shape based on the positions of the joints. They emphasized that a plausible tendon
model was needed to produce the characteristic bulging that results from muscle contraction. A
recent trend is to use the FEM to simulate muscle data from the visible human data set, see e.g.
[46], [22], [14], [15].

In order to increase the computational efficiency, a number of authors have been investigating
adaptive simulation. [10] used a finite difference method with an octree for adaptive resolution.
This was later improved in [12] using a weighted finite difference integration technique (which
they mistakenly referred to as “finite volume”) to approximate the Laplacian and the gradient of
the divergence operators. [11] used FEM with a multiresolution hierarchy of tetrahedral meshes,
and [21] refined basis functions instead of elements.

III. M ODEL CREATION

Geometrically accurate musculoskeletal models are desired in graphics, biomechanics and
biomedical engineering. However, the intricacy of the human anatomy makes it difficult to
procedurally create models of the musculature and skeleton. As a consequence, researchers have
turned to volume data from actual human subjects as a source for geometry. One such source is
the visible human data set which consists of high resolution images of millimeter-spaced cross
sections of an adult male [41]. We use a segmented version of this data to create the muscle,
tendon and skeleton geometry for our simulations. Using the segmented anatomy information,
we first create level set representations of each tissue intended for simulation. Unfortunately,
the segmented data often contains imperfections or is unfit for creating a reasonable simulation
mesh. We repair each tissue using simple level set smoothing techniques (see e.g. [31]), and/or
CSG operations. A tetrahedralized volume is then produced for each muscle (including tendon),
and a triangulated surface is produced for each bone. Both of these are created using the implicit
surface meshing framework of [27], [7].

Once the muscle, tendon and bone geometries have been created, we encode necessary
additional information into each muscle representation including material heterogeneity (tendon
is stiffer than muscle and does not undergo active contraction) as well as spatially varying muscle
fiber directions. Additionally, the kinematic structure of the underlying skeleton must be created
to drive skeletal motion. Finally, boundary conditions are specified to attach muscle and tendon
to bone.
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A. Level Set Extraction

Due to the large amount of noise and occasional inaccuracies present in the segmented
data, creating our model begins with examining and fixing such problems. We rely on a dual
explicit/implicit representation of the muscle geometry to facilitate the repair process. We first
create a level set representation of each tissue we wish to simulate using the visible human
data. This data consists of gray-scale images of 1.0 mm axial slices of the entire body with
individual tissues and bones assigned different values. Information of this type naturally converts
to Heaviside descriptions of each individual tissue. The meshing algorithm we use to create the
explicit geometric representations (tetrahedralized volume or triangulated surface) as well as the
level set procedures we use to smooth noisy data require a signed distance function which we
generate using the fast marching method [40], [36].

After the level sets are generated, slice-by-slice contour sculpting is used to repair problem
regions. First, each slice of a generated level set is viewed graphically to check for and eliminate
errors that would otherwise interfere with either the anatomical accuracy of our model or the
algorithm for the subsequent meshing process. We then use basic level set smoothing techniques
such as motion by mean curvature (see e.g. [31]) to eliminate any further noise automatically.

B. Meshing Bone And Muscle

Once the level sets are free of the inaccuracies and noise present in the original data, we use
them to construct a triangulated surface representation of each bone and a tetrahedralized volume
representation of each muscle [27], [7]. The tetrahedral mesh generation algorithm begins by
partitioning all of space with a body-centered cubic (BCC) tetrahedral lattice, and extracting the
subset of the tetrahedra that intersect with the object volume defined by the level set. Then a
red green mesh subdivision algorithm is used to refine the initial mesh to an appropriate level of
detail using both curvature and surface information as refinement criteria. Extra care is taken with
elements near the boundary in order to obtain a well conditioned simulation mesh. Finally, using
either a mass spring or finite element model, the boundary nodes of the mesh are compressed
towards the zero isocontour of the signed distance function. For the triangulated surfaces used
for the rigid bodies this procedure is carried out with the surface of the BCC lattice.

C. Tendon and Bone Attachment Designation

A major flaw in the segmented data set is that a large amount of tendon tissue is absent. For
example, the segmented biceps data lacks any information about the distal tendon and its proximal
tendons are under-resolved. In order to add missing tendon tissue to each muscle mesh, we make
use of both explicit and implicit representations of each muscle. While explicit representations
allow for more efficient and accurate graphical rendering of objects, implicit representations
are advantageous for Boolean operations. Our method for regenerating missing tendon tissue
for a given muscle mesh makes use of simple CSG methods on graphically positioned tendon
primitives. After a set of tendon primitives is positioned in relation to a muscle mesh where
its missing tendon tissue should be, the union of the tendon primitives and the muscle mesh is
calculated and converted into a new level set (see figure 2). This new level set then undergoes
another iteration of the editing, smoothing, and meshing processes described above. Due to
the efficiency of the level set creation and tetrahedral meshing algorithms, the cost of this
second iteration is reasonable. The result of this step is an improved tetrahedralized volume
representation for each muscle that includes both the muscle tissue and all of its associated
tendon tissue.

To improve the accuracy of our model during simulation, it is necessary not only to include
tendons in the tetrahedron meshes, but also to differentiate between muscle and tendon tissue as
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Fig. 2. Musculotendon mesh creation using CSG to repair errors in the biceps tendons. Heterogeneous tendon tetrahedra are
selected using the triangulated surface primitive (large yellow cone in the fourth image). The rightmost image shows the finished
product.

well as to define muscle-bone attachment regions. Therefore, we define subregions within each
muscle mesh to represent muscle tissue, tendon tissue, and bone attachment regions. Tetrahedra
designated as muscle are influenced by muscle activations whereas those designated as tendon
remain passive during simulation. Furthermore, tendon tissue is an order of magnitude stiffer
than muscle tissue. Tendon often extends into the belly of certain muscles forming an internal
layer of passive tissue to which the active muscle fibers attach. This layer of connective tissue
is known as an aponeurosis and can play a large role in many muscle functions [33], [16]. We
take extra care to model this layer when selecting the regions of the muscle/tendon geometry
to designate as tendon. Additionally, we rigidly attach tetrahedrons in the origin and insertion
regions of each muscle mesh to their corresponding bones. Tetrahedrons that are designated as
attached to bone are used to set Dirichlet boundary conditions during simulations.

Our method for defining the subregions described above involves graphically selecting portions
of the mesh to be tendon or bone attachment tetrahedra leaving the remaining tetrahedra desig-
nated as muscle. In general, we use closed triangulated surfaces to select groups of tetrahedra
making use of anatomy texts for anatomical accuracy. However, a good initial guess can be
calculated by simply using a proximity threshold of the tetrahedra to a particular bone. We
correct this guess by growing regions initially selected based on mesh connectivity as well as
by graphical selection. See figure 3.

Fig. 3. Bone attachment process for the subscapularis and scapula. Constrained tetrahedra are shown in yellow, tendon tetrahedra
are shown in pink. Bone attachment regions are determined by proximity and from anatomy texts.
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D. B-spline Fiber Representation

Muscle tissue fiber arrangements vary in complexity from being relatively parallel and uniform
to exhibiting several distinct regions of fiber directions. We use B-spline solids to assign fiber
directions to individual tetrahedrons of our muscle simulation meshes querying the B-spline
solid’s local fiber direction at a spatial point corresponding to the centroid of a tetrahedron as
in [29].

B-spline solids have a volumetric domain and a compact representation of control points,qijk,
weighted by B-spline basis functionsBu(u), Bv(v), Bw(w):

F(u, v, w) =
∑

i

∑
j

∑
k

Bu
i (u)Bv

j (v)Bw
k (w)qijk

where F is a volumetric vector function mapping the material coordinates(u, v, w) to their
corresponding spatial coordinates. Taking the partial derivatives ofF with respect to one of
the three material coordinates∂F/∂u, ∂F/∂v, ∂F/∂w produces an implicit fiber field defined
in the material coordinate direction. In [29], one of these directions always coincided with the
local tangent of the muscle fiber located at the spatial position corresponding to the material
coordinates. The inverse problem of finding the material coordinates for a given spatial point
can be solved using numerical root-finding techniques to create a fiber query function

X(x) =
∂F(F−1(x))/∂m

‖∂F(F−1(x))/∂m‖
with m = {u, v, w} depending on the parameter chosen and the fiber directions normalized.
The functionX describes an operation that first inversely maps the spatial points back to their
corresponding material coordinates(u, v, w) and then computes the normalized fiber direction
at that point.

We created these B-spline solids based on anatomy texts, however working with anatomy
experts as in [29] or using fiber information from scanning technologies would improve accuracy.
Additionally, using a fiber primitive template as was done in [3] would also improve accuracy
and simplify the process.

E. Skeletal Motion

Bones are naturally articulated by ligaments and other soft tissues that surround them. How-
ever, we consider the inverse problem: a kinematic skeleton that drives the motion and contraction
of the muscles and tendons attached to it. The joint spaces used to create a realistic kinematic
structure involve intricate couplings of revolute and prismatic components resulting from the
geometric complexity and redundancy of the muscles, tendons and ligaments that articulate the
bones. Fortunately, there is much existing literature dedicated to the joint structures in the human
body. We turned to the results of [17] to create the kinematic structure of the upper limb. In
[17] the visible male was used to create a skeleton model of the right shoulder, elbow and wrist.
Anatomical landmarks were then used to identify joint centers and to set up local coordinate
frames for each of the bones. State of the art joint models with thirteen overall degrees of
freedom were used to describe the relative motion of the sternum, clavicle, scapula, humerus,
radius and ulna. Using the same virtual anatomy, we were able to directly incorporate their
results.

Additional work was done in [18] to create a muscle model in the upper limb based on
the Obstacle Set method for computing musculo-tendon paths, see figure 4 (left). This model
for muscle length and moment arm computation assumes constant cross-sectional stress and
simplifies the muscles to average lines of action. Basic geometric primitives like cylinders and
spheres are used as collision objects to compute the paths of muscles as they collide with bones
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Fig. 4. The leftmost figure shows the piecewise linear muscle models with wrapping surfaces to model muscle contact in
inverse dynamics calculations. Larger muscles have multiple contractile regions with individual activations and these must be
embedded in the tetrahedron meshes for simulation (rightmost figures).

and other tissues. With this infrastructure in place, we use an inverse dynamics analysis with the
results of [37] to compute activations for the muscles in the right upper limb. These techniques
work with both motion capture and traditional animation.

IV. F INITE VOLUME METHOD

A. Force Computation

The Finite Volume Method provides a simple and geometrically intuitive way of integrating
the equations of motion, with an interpretation that rivals the simplicity of mass-spring systems.
However, unlike masses and springs, an arbitrary constitutive model can be incorporated into
the FVM.

Fig. 5. FVM integration regions.

In the deformed configuration, consider dividing up the continuum into a number of discrete
regions each surrounding a particular node. Figure 5 depicts two nodes each surrounded by a
region. Suppose that we wish to determine the force on the nodexi surrounded by the shaded
regionΩ. Ignoring body forces for brevity, the force can be calculated as

fi =
D

Dt

∫
Ω

ρvdx =
∮

∂Ω
tdS =

∮
∂Ω

σndS

whereρ is the density,v is the velocity, andt is the surface traction on∂Ω. The last equality
comes from the definition of the Cauchy stressσn = t. Evaluation of the boundary integral
requires integrating over the two segments interior to each incident triangle. Sinceσ is constant
in each triangle and the integral of the local unit normal over any closed region is identically
zero (from the divergence theorem), we have∮

∂Ω1

σndS +
∮

∂Ω2

σndS +
∮

∂T1

σndS +
∮

∂T2

σndS = 0
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Fig. 6. Integration over a triangle.

where∂T1 and∂T2 are depicted in figure 6 (left).
More importantly, we have∮

∂Ω1

σndS +
∮

∂Ω2

σndS = −
∮

∂T1

σndS −
∮

∂T2

σndS

indicating that the integral ofσn over ∂Ω1 and ∂Ω2 can be replaced by the integral of−σn
over ∂T1 and ∂T2. That is, for each triangle, we can integrate over the portions of its edges
incident toxi instead of the two interior edges∂Ω1 and∂Ω2. Moreover, even if∂Ω1 and∂Ω2

are replaced by an arbitrary path inside the triangle, we can replace the integral over this region
with the integral over∂T1 and∂T2. We choose an arbitrary path inside the triangles that connects
the midpointsof the two edges incident onxi as shown in figure 6 (right). Then the surface
integrals are simply equal to−σn1e1/2 and−σn2e2/2 wheree1 ande2 are the edge lengths of
the triangles. Thus, the force on nodexi is updated via

fi+ = − 1
2
σ (e1n1 + e2n2) .

In three spatial dimensions, given anarbitrary stressσ, regardless of the method in which it
was obtained, we obtain the FVM force on the nodes in the following fashion. Loop through
each tetrahedron interpreting−σ as the outward pushing “ multidimensional force”. For each
face, multiply by the outward unit normal to calculate the traction on that face. Then multiply
by the area to find the force on that face, and simply redistribute one third of that force to each
of the incident nodes. Thus, each tetrahedron will have three faces that contribute to the force
on each of its nodes, e.g. the force on nodexi is updated via

fi+ = − 1
3
σ (a1n1 + a2n2 + a3n3) .

Note that the cross product of two edges is twice the area of a face times the normal, so we can
simply add one sixth of−σ times the cross product to each of the three nodes.

B. Piola-Kirchhoff Stress

A deformable object is characterized by a time dependent mapφ from undeformed material
coordinatesX to deformed spatial coordinatesx. We use a tetrahedron mesh and assume that
the deformation is piecewise linear, which impliesφ(X) = FX + b in each tetrahedron. For
simplicity, consider two spatial dimensions where each element is a triangle. Figure 7 depicts a
mappingφ from a triangle in material coordinates to the resulting triangle in spatial coordinates.
We define edge vectors for each triangle asdm1 = X1 −X0, dm2 = X2 −X0, ds1 = x1 − x0

andds2 = x2−x0. Note thatds1 = (FX1 + b)− (FX0 + b) = Fdm1 and likewiseds2 = Fdm2

so thatF maps the edges of the triangle in material coordinates to the edges of the triangle in
spatial coordinates. Thus, if we construct2 × 2 matricesDm with columnsdm1 anddm2 , and
Ds with columnsds1 and ds2, thenDs = FDm or F = DsD

−1
m . The matrixF is known as
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the deformation gradient and conveys all the necessary information to determine the material
response to deformation, since the translational component ofφ does not induce any stress. In
three spatial dimensions,Dm andDs are3× 3 matrices with columns equal to the edge vectors
of the tetrahedra. Note thatD−1

m can be be precomputed and stored for efficiency.

Fig. 7. Undeformed and deformed triangle edges.

Often, application of a constitutive model will result in a second Piola-Kirchoff stress,S,
which can be converted to a Cauchy stress viaσ = J−1FSFT whereJ = det(F). Using this
equality and the identityan = JF−T AN, we can write

fi+ = − 1
3
P (A1N1 + A2N2 + A3N3)

whereP = FS is the first Piola-Kirchhoff stress tensor, theAi are the areas of the undeformed
tetrahedron faces incident toXi and theNi are the normals to those undeformed faces.

Since theAi and Ni do not change during the computation, we can precompute and store
these quantities. Then the force contribution to each node can be computed asgi = Pbi, where
the bi are precomputed and the force on each node is updated withfi+ = gi. Moreover, we
can save 9 multiplications by computingg0 = −(g1 + g2 + g3) instead ofg0 = Pb0. We can
compactly express the computation of the othergi as G = PBm whereG = (g1,g2,g3) and
Bm = (b1,b2,b3). Thus, given anarbitrary stressS in a tetrahedron, the force contribution
to all four nodes can be computed with two matrix multiplications and 6 additions for a total
of 54 multiplications and 42 additions. A similar expression can be obtained for the Cauchy
stress,G = σBs whereBs is computed using deformed (instead of undeformed) quantities.
Unfortunately,Bs cannot be precomputed since it depends on the deformed configuration.

C. Comparison with FEM

Using constant strain tetrahedra, linear basis functionsNi, etc., an Eulerian FEM derivation
[5] leads to a force contribution of

gi =
∫

tet
σ∇Ni

T dv.

A few straightforward calculations lead to

G =
∫

tet
σD−T

s dv = σD−T
s v = σB̂s

using our compact notation. Here,v is the volume of the deformed tetrahedron andB̂s = vD−T
s .

Now considerDT
s Bs from the FVM formulation. Since the rows ofDT

s are edge vectors and
the columns ofBs are each the sum of three cross-products of edges divided by 6, we obtain a
number of terms that are triple products of edges divided by 6. Each of these terms is equal to
either 0 or±v, and the final result isDT

s Bs = vI. That is,Bs = vD−T
s = B̂s, and in this case
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of constant strain tetrahedra, linear basis functions, etc. (see e.g. [30], [28]), FVM and FEM are
identical methods.

D−T
s is the cofactor matrix ofDT

s divided by the determinant, and sinceDT
s is a matrix of

edge vectors, its determinant is a triple product equal to6v. That is,B̂s = vD−T
s computes the

volume twice even though it cancels out resulting in a cofactor matrix times1/6. Thus,Bs can
be computed with 27 multiplications and 18 additions, for a total of 54 multiplications and 42
additions to compute the force contributions using the Cauchy stress.

Muller et al. [28] point out that a typical FEM calculation such as in O’Brien and Hodgins [30]
requires about 288 multiplications. Instead, they use QR-factorization, loop unrolling, and the
precomputation and storage of 45 numbers per tetrahedron to reduce the amount of calculation
to a level close to our 54 multiplications. However, in the second Piola-Kirchhoff stress case that
they consider, we only need to store 9 numbers per tetrahedron (as opposed to 45). Moreover, in
the Cauchy stress case that they do not consider, it is not clear that their optimizations could be
applied without an expensive calculation to transform back to a second Piola-Kirchhoff stress.
On the other hand, using the geometric intuition we gained from FVM that led to the cancellation
of v (that other authors have not noted [30], [28]), we once again need only 54 multiplications
and this time do not need to precompute and and store any extra information at all.

D. Invertible Finite Elements

Motivated by our geometric FVM formulation, [23] introduced a strategy that allows one to
robustly treat inverted or degenerate tetrahedra via a newpolar SVDtechnique that expresses the
deformation gradient in a space that makes it a diagonal matrix. In this doubly rotated space, one
can readily extend any constitutive model into the degenerate and inverted regime in a fashion
that results in smooth force behavior that opposes degeneracy and inversion.

To extend constitutive models to degenerate elements, [23] makes use of the newly proposed
polar SVDof F = UF̂VT whereU and V are rotation matrices and̂F is a diagonal matrix.
The inverting elements framework is applied in the following fashion. First,VT rotates the
tetrahedron from material coordinates into a coordinate system where the deformation gradient
is conveniently a diagonal matrix. Similarly,UT rotates the tetrahedron from spatial coordinates
into this same space. Typically researchers work to find the polar decomposition that gives the
rotation relating material space to world space. Removing this rotation produces a still difficult
to work with symmetric deformation gradient. In contrast, the polar SVD gives two rotations,
one for the material space tetrahedron and one for the world space tetrahedron. After applying
these, the deformation gradient has a much more convenient diagonal form. In practice, the polar
SVD is used to find the diagonal deformation gradient, to apply the constitutive model and the
FVM forces in diagonal space in standard fashion, and then map the forces on the nodes back to
world space usingU. The beauty of working in a space that has a diagonal deformation gradient
is that it is trivial to extend constitutive models to work for degenerate and inverted elements.

We display the robustness of the inverting FVM algorithm which was developed from the
geometric FVM framework. An exceptionally soft torus is dropped to the ground and crushed
flat by its own weight. The Young’s modulus is then substantially increased causing it to jump
from the ground and into the air demonstrating that simulation can proceed despite large numbers
of inverted and degenerate elements. The results are shown in figure 8.

The simulation environment for large muscle groups can be considerably volatile. In regions
like the shoulder girdle, muscles are constantly in contact with other muscles, tendons and bones.
In addition, the kinematic skeleton subjects them to an extreme range of boundary conditions.
An additional complication comes from the errors in modeling the complex structure of the
glenohumeral and sternoclavicular joints that determine the motion of the clavicle, scapula and
humerus relative to the sternum. Errors inherent in modeling these joints can cause spurious
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Fig. 8. Deformable torus simulated with the inverting FVM. A torus with near zero strength collapses into a puddle. When
the strength is increased, the torus recovers.

configurations of the musculature that can cause tetrahedra in the computational domains involved
to invert. Perfectly recreating the joint kinematics in the region might alleviate these issues,
however it is prohibitively difficult. Rather, we employ the inverting FVM/FEM framework.
This algorithm allows elements to arbitrarily invert and return to more reasonable configurations
later in the simulation, enabling simulations to progress that would have otherwise ground to a
halt.

V. CONSTITUTIVE MODEL FORMUSCLE

Muscle tissue has a highly complex material behavior—it is a nonlinear, incompressible,
anisotropic, hyperelastic material and we use a state-of-the-art constitutive model to describe it
with a strain energy of the following form

W (I1, I2, λ, ao, α) = F1 (I1, I2) + U (J) + F2 (λ, α)

whereI1 andI2 are deviatoric isotropic invariants of the strain,λ is a strain invariant associated
with transverse isotropy (it equals the deviatoric stretch along the fiber direction),ao is the fiber
direction, andα represents the level of activation in the tissue.F1 is a Mooney-Rivlin rubber-like
model that represents the isotropic tissues in muscle that embed the fasicles and fibers,U(J)
is the term associated with incompressibility, andF2 represents the active and passive muscle
fiber response.F2 must take into account the muscle fiber directionao, the deviatoric stretch in
the along-fiber directionλ, the nonlinear stress-stretch relationship in muscle, and the activation
level. The tension produced in a fiber is directed along the vector tangent to the fiber direction.
The relationship between the stress in the muscle and the fiber stretch has been established
using single-fiber experiments and then normalized to represent any muscle fiber [45]. This
strain energy function is based on [42] and is the same as that used in [37].

This model does have some notable limitations. Muscle undergoes history dependent changes
in elasticity such as strain hardening and has a force/velocity relationship in addition to force/length
dependence [45], [34]. Additionally, we neglect any model for anisotropic shear behavior relative
to the fiber axis. Our model includes only what is necessary to produce bulk length based
contraction along the muscle fiber directions. Given the large number of colliding and contacting
muscles we wish to simulate, the effects of these phenomena on the bulk muscle deformation
are subtle at best. However, when focusing on more specific behavior in a more localized region
of muscle, e.g. non-uniform contraction of the biceps as in [33], it would be useful to add the
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effects of these phenomena. Note that our framework readily allows for a more sophisticated
constitutive model such as that proposed in [4].

The diagonalized FEM framework of [23] is most naturally formulated in terms of a first
Piola-Kirchoff stress. A stress of this type corresponding to the above constitutive model has the
form

P = w12F− w2F
3 + (p− pf )F

−1 + 4JccT (Ffm)fm
T

Jc = det(F)−
1
3 , Jcc = J2

c , I1 = JccC, λ =
√

fm
TCfm

w1 = 4Jccmatc1, w2 = 4J2
ccmatc2, w12 = w1 + I1W2

p = Klog(J), pf =
1

3
(w12Tr(C)− w2Tr(C2) + Tλ2)

Here,F is the deformation gradient,C = FTF is the Cauchy strain andfm is the local fiber
direction (in material coordinates).matc1 andmatc2 are Mooney-Rivlin material parameters and
K is the bulk modulus.T is the tension in the fiber direction from the force length curve (see
[45]). Typical values for these parameters are:

matc1 = 30000Pa (muscle), matc1 = 60000Pa (tendon),
matc2 = 10000Pa (muscle and tendon),
K = 60000Pa (muscle), K = 80000Pa (tendon),
T = 80000Pa.

This formula holds throughout both the muscle and tendon tetrahedra, however the tendons
are passive (no active stress). Note that tendon is considerably stiffer than muscle. Modeling
this inhomogeneity is essential for generating muscle bulging during contraction (as well as
for accurately computing the musculotendon force generating capacity). Also, large muscles
like the deltoid, trapezius, triceps and latissimus dorsi have multiple regions of activation. That
is, muscle contraction and activation is non-uniform in the muscle. In general, the effects of
varying activation within a muscle can be localized to a few contractile units in each muscle.
For example, each head of the biceps and triceps receive individual activations (see figure 4).

Fascia tissues wrap individual muscles and muscle groups and are made up of fibrous material
with a stiffness similar to that of tendon. These elastic sheaths hold the muscles together and
as a result keep the muscle near the underlying skeleton during motion. The stiffness of these
connective tissues must be incorporated into the muscle constitutive model. One approach is
to make each muscle inhomogeneously stiff near the muscle boundary (i.e. similar material
to tendon). However, we simply add an additional resistance to elongation in the constitutive
model to encourage resistance to stretching on the boundary of the muscles. This is done by
adding in an additional linearly elastic stress into the diagonalized form of the constitutive model
during elongation. The problematic effects of large rotations associated with linear elasticity
are naturally removed in the diagonalized setting, see [23]. Elongation is identified when the
diagonalized deformation gradient values are greater than 1.

VI. EMBEDDING FRAMEWORK

The human musculature is geometrically complex and creating a visually realistic model
requires many degrees of freedom. Our upper limb model has over thirty muscles made up of
over 10 million tetrahedra. The simulation of such a model is hindered by both its overall size
and the time step restriction imposed by the smallest tetrahedron in the mesh. To reduce the
computational cost, our system uses a dynamic Free Form Deformation embedding scheme. The
simulation mesh is created by overlaying a BCC lattice on the high resolution geometry (as in
[27], [7]). For each particle on the surface of the initial high resolution tetrahedralized volume,
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Fig. 9. Illustration of a topology-offending embedding scenario (left). Individual connected components of material within the
same element are assigned to distinct copies of the original (middle). Vertices on common boundaries of elements that exhibit
material continuity (indicated by arrows) are considered equivalent. Collapsing equivalent vertices leads to the final non-manifold
simulation mesh (right).

we compute its barycentric coordinates in the low resolution tetrahedron that contains it and use
these to update the high resolution geometry during subsequent simulation.

Our BCC embedding approach gives rise to several substantial benefits. The BCC grid size
we used led to a tenfold reduction in the size of the simulation mesh, from about ten million to
about one million tetrahedra. Most importantly, the time step restriction for stability was relaxed
by a factor of 25 owing to the regular structure of the BCC tetrahedra and the elimination of
poorly shaped elements. These combined facts enabled the full finite element simulation of the
whole upper limb musculature at rates of 4 minutes per frame on a single CPU Xeon 3.06Ghz
workstation. Substantial RAM savings are also achieved, since all simulation tetrahedra are
identical up to a rigid body transform eliminating the need to store the rest state matrix on an
individual tetrahedron basis. Only one rest state tetrahedron is stored per muscle.

The embedding process can potentially change the topology of the original high resolution
geometry, since the original connectivity of the input geometry is projected to the connectivity
of the embedding coarse tetrahedra. Cases where parts of the high resolution geometry attempt
to separate but cannot since they are embedded in the same coarse tetrahedron (see figure 9) are
particularly frequent in our musculoskeletal simulation, for example in the concavity between
the two heads of the bicep. To some extent, this change of topology is inevitable as we are
reducing the number of degrees of freedom. Nevertheless, we propose to limit the undesirable
topology changes by relaxing some constraints on the embedding mesh. In particular we allow it
to be non-manifold and to possess multiple copies of nodes corresponding to the same location
in space in a fashion similar to the “virtual node algorithm” of [26].

Consider a coverage of our high resolution geometry by a manifold tetrahedral mesh as
illustrated in figure 9 (left). We note that the fragment of the high resolution geometry that
is contained within each tetrahedron might consist of several disjoint connected components as
is the case in the two rightmost elements of our example. In order to avoid connecting such
disjoint material fragments by embedding them in the same tetrahedral element, we create a copy
of the original tetrahedron for each one of them as shown in figure 9 (middle). All tetrahedra
thus created are completely disjoint, in the sense that we assign a different copy of each vertex
of the original mesh to each duplicate tetrahedron that contains it. We subsequently assign each
connected material fragment within an original tetrahedron to a different one of its newly created
copies.

In the second phase of our algorithm, we rebuild the connectivity of our mesh by collaps-
ing vertices on adjacent tetrahedra that should correspond to the same degree of freedom. In
particular, when two of the newly created tetrahedra exhibit material continuation somewhere
across their common face, their corresponding vertices are identified. Such pairs are indicated
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Fig. 10. Muscle simulations without fascia (left) and with fascia (right) show the effects of inertia forces in the absence of
connective tissue. Note, for example, the spurious separation of muscles in the forearm (left).

with double arrows in figure 9 (middle). For each corresponding pair of vertices on the common
boundary of two materially contiguous tetrahedra, we collapse the two vertices onto a single
one using a union-find data structure for the vertex indices. The resulting tetrahedron mesh is
non-manifold in general, as illustrated in figure 9 (right).

After our mesh generation process we project the fiber directions, inhomogeneities (tendon
material) and boundary conditions (origins and insertions) from the high resolution mesh to
the coarse simulation mesh. Using a BCC covering of space as our generator mesh provides
for an efficient implementation as most point location or tetrahedron intersection queries can be
performed in constant and linear time respectively. We note that in our current implementation the
mesh generation is a static process performed prior to the beginning of the simulation, although
the described technique extends to a dynamic context if the topology of our input geometry is
changing in time.

VII. FASCIA AND CONNECTIVE TISSUES

Skeletal muscles are contained in a network of connective tissue, much of which is fascia, that
keeps them in tight contact during motion. Without modeling these constraints, dynamic models
will have difficulties with ballistic motion and exhibit spurious separation as shown in figure
10. Our fascia model enforces a state of frictionless contact between muscles. It is similar in
spirit to [24], [8], [6] which all used “sticky” regions in one sense or another to create (possibly
temporary) bonds between geometry in close proximity.

The fascia framework works in the context of the embedding techniques presented in section
VI. First, we find all intersections between the high resolution muscle surface and the edges
of the BCC simulation mesh and label these embedded nodes. The primitives in our fascia
model are line segments (links) that connect each embedded node to its closest point (anchor)
on the high resolution surface of each nearby muscle. Links between each embedded node and
all its neighboring muscles within a certain distance are initially created and their anchors are
maintained as the closest points of the corresponding muscle surfaces during simulation. Each
time step, the link corresponding to the closest anchor is selected as the active one and dictates
the contact response.

Every time step, the fascia links are used to adjust the BCC mesh. Each embedded node has
a positionxemb and velocityvemb which can be compared to the positionxa and velocityva of
its anchor. Ideally, we need the positions and velocities along the normal direction to the surface
at the anchor position to match closely. Thus, we compute a new desired position and velocity
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Fig. 11. Simulation of muscles in the upper limb.

for the embedded point:

~x′
emb = ~xemb + α[(~xa − ~xemb) · ~N]~N

~v′
emb = ~vemb + β[(~va − ~vemb) · ~N]~N.

The embedded particle and the anchor should optimally meet halfway withα = β = .5, although
we cannot move either of these points since they are both enslaved by their embedding BCC
lattices. Thus, we first compute the desired position and velocity changes for all embedded
particles and map these to the BCC mesh in a second step. The anchor end of each link does
not inflict any correction on the neighboring muscle as that effect is accomplished by the links
originating on that particular muscle. We found values ofα = .1 and β = .5 to work well in
practice and attenuate them as the length of a link surpasses a given threshold.

In the second step we map the desired state of the embedded nodes to the BCC mesh. For
each node on the BCC mesh, we look through all its edges to find embedded nodes, and change
the position and velocity of this BCC node using the average desired change recorded by the
embedded nodes. See [26] for more details.

Figure 10 shows a comparison of a simulation with and without fascia. The effects of the
connective tissues and the problems that inertia forces can cause in their absence are evident in
the muscles of the forearm that wobble around, unnaturally separating from the bone.

VIII. S IMULATING SKELETAL MUSCLE

We demonstrate the strength of our pipeline with a series of skeletal animations of the upper
limb (see figure 11). The bones in the shoulder and the arm are animated through a series of key-
frames and thirty muscles are simulated with FVM. Inverse dynamics were used with the results
of [37] to compute muscle activations at each one of the key-frame poses in the animation. The
activations obtained were interpolated at key-frames (just as for the bone positions) throughout
the simulation.

IX. CONCLUSIONS ANDFUTURE WORK

Unfortunately, computational complexity and limitations in existing algorithms limit the scope
and accuracy of musculoskeletal models in both graphics and biomechanics. In computer graph-
ics, the emphasis is on the visual nature of the musculature and particularly the effect that it
has on the skin. As a result, models in the field have focused mainly on generating plausible
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muscle geometry at the expense of other quantities. However, muscle geometry, fasicle length,
stress, force generating properties, etc. are all coupled together. As technology and algorithms
improve and demands for realism are met in both graphics and biomechanics, the models used
for examining the respective quantities will become more and more similar. Our framework is
a step in this direction.

The presented framework allows for the creation of highly detailed geometry as well as
for realistic anisotropies and heterogeneities. Additionally, realistic dynamic deformations are
produced from a transversely isotropic muscle constitutive model. The computational burden of
simulating large muscle groups is ameliorated by our embedding framework while preserving
high resolution geometry for rendering. The volatile simulation environment, inherent in the
complex coupling of intricately articulated rigid bodies and dozens of contacting deformable
objects, is handled by the extremely robust diagonalized FEM. In addition, our fascia model
both robustly recreates the effects of the connective tissues that surround the muscles as well as
efficiently resolving the unique contact environment inherent in the musculoskeletal system.

However, many aspects of the pipeline could be improved. More realistic muscle constitutive
models that include the force/velocity relationship, time dependent elasticity changes noted in
[34] as well as anisotropic shear behavior relative to the fiber axis as in [4], [3] can be used
when examining more specific phenomena on a smaller scale such as nonuniform contraction
of the biceps.

While the geometry of the musculoskeletal system extracted from the segmented visible human
is very well resolved, the tendon/aponeurosis and fiber information could be improved with the
aid of scanning technologies or anatomy experts. In the future, subject specific models would be
desirable using segmented data from MRI and CT. However, the resolution of the visible human
data set is still greater than those that are attainable with scanning technologies. Thus, given
the additional difficulty of segmenting the scanned data, a reasonable alternative approach is to
use the model created from the visible human data set and to deform (or morph) it to match a
specific subject or body type using anatomical landmarks similar to [15].
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