
Simulation of Complex Nonlinear Elastic Bodies using Lattice Deformers
Taylor Patterson

University of Wisconsin-Madison
Nathan Mitchell

University of Wisconsin-Madison
Eftychios Sifakis

University of Wisconsin-Madison

Figure 1: Anatomic simulation with skin, deformer lattice and embedded muscles shown. Left: Muscles inactive, Right: Muscles fully flexed.

Abstract

Lattice deformers are a popular option for modeling the behavior
of elastic bodies as they avoid the need for conforming mesh gen-
eration, and their regular structure offers significant opportunities
for performance optimizations. Our work expands the scope of cur-
rent lattice-based elastic deformers, adding support for a number
of important simulation features. We accommodate complex non-
linear, optionally anisotropic materials while using an economical
one-point quadrature scheme. Our formulation fully accommodates
near-incompressibility by enforcing accurate nonlinear constraints,
supports implicit integration for large time steps, and is not sus-
ceptible to locking or poor conditioning of the discrete equations.
Additionally, we increase the accuracy of our solver by employing
a novel high-order quadrature scheme on lattice cells overlapping
with the model boundary, which are treated at sub-cell precision.
Finally, we detail how this accurate boundary treatment can be im-
plemented at a minimal computational premium over the cost of a
voxel-accurate discretization. We demonstrate our method in the
simulation of complex musculoskeletal human models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: nonlinear elasticity, incompressibility, cut-cell methods

Links: DL PDF

1 Introduction

Simulation of elastic deformable models is ubiquitous in computer
graphics and remains a vibrant area of research. Algorithmic tech-

niques for deformable body simulation, pioneered by Terzopoulos
et al [1987] have attained a significant level of maturity, leading
to broad adoption in visual effects, games, virtual environments
and biomechanics applications. However, numerous theoretical
and technical challenges remain. Research efforts often empha-
size improved computational performance for cost-conscious in-
teractive applications. Simulation of complex materials and con-
cerns about accuracy and fidelity, especially in biomechanics appli-
cations, place additional strain on simulation techniques. Finally,
ease of use and deployment in production environments is an im-
portant trait that scholarly research work needs to be sensitive to.
Our paper proposes a grid-based simulation technique with a num-
ber of original components that enhance performance and paral-
lelism, natively accommodate complex materials (including skin,
flesh and muscles) while offering the simple and familiar front-end
of a lattice deformer for easy integration into an animation pipeline.

Lattice-based volumetric deformers are popular components in both
physics-based and procedural animation techniques. In the case of
physics-based simulation, one of their key advantages is that they
avoid having to construct a simulation-ready conforming volume
mesh, which is a delicate preprocessing task often requiring su-
pervision and fine-tuning. Another crucial benefit is that the reg-
ularity of such data structures enables aggressive performance op-
timizations as vividly demonstrated by shape matching techniques
[Rivers and James 2007]. Cartesian lattices have also been lever-
aged to accelerate performance in physics-based approaches, albeit
predominantly for simple models such as linear or corotated elastic-
ity [Müller et al. 2004; Georgii and Westermann 2008; McAdams
et al. 2011]. Prior graphics work, however, has not demonstrated
such aggressive performance gains from lattice-based discretiza-
tions when highly nonlinear, anisotropic or incompressible materi-
als are involved. In part, this is attributed to the fact that simulation
of complex materials commands an increased level of attention to
issues of robust convergence and reliable treatment of incompress-
ibility. Mature solutions to these concerns have predominantly been
demonstrated in the context of specific discretizations (e.g. explicit
tetrahedral meshes) where regularity of data structures, compact-
ness of memory footprint and parallelization/vectorization poten-
tial were not inherently emphasized. Furthermore, as applications
requiring the use of complex materials are also likely to empha-
size geometric accuracy, they often opt for conforming mesh dis-
cretizations due to their superior performance in capturing intricate
boundary features, even if their computational cost is higher.

http://doi.acm.org/10.1145/2366145.2366146
http://portal.acm.org/ft_gateway.cfm?id=2366146&type=pdf

We propose a lattice-based formulation that jointly addresses the
aforementioned challenges. Our method accommodates complex
nonlinear materials, including incompressible and anisotropic vari-
ants, without sacrificing robustness or performance. Intricate, ir-
regular model geometries are accommodated by treating boundary
cells at sub-element precision. Nevertheless, this is performed in
a way that preserves regularity of data structures and at a mini-
mal performance premium over voxel-accurate discretizations. We
demonstrate a multithreaded and vectorized solver on complex
musculoskeletal simulations of human anatomy. Our contributions
include:

• A robust method for handling materials with any degree of
incompressibility, based on a mixed variational formulation.
Specific to our approach is support for true nonlinear volume
preservation constraints instead of simplified approximations.

• A novel second order accurate, yet efficient and vectorizable
quadrature scheme for volume integrals, enabling a sub-voxel
accurate discretization of elasticity at the model boundary.

• A defect correction procedure for solving the sub-voxel accu-
rate discrete elasticity equations while practically paying only
the cost necessary for a voxel-accurate discretization.

• A new data organization scheme for storing state variables and
intermediate solver data, facilitating aggressive SIMD accel-
erations and lock-free, load balanced multithreading.

The technical portion of our paper is structured as follows: In sec-
tion 2 we detail how the discrete form of the governing equations
is obtained and explain our treatment of incompressibility. In sec-
tion 3 we replace complex integrals in the discrete equations with
simpler numerical expressions, better suited for computer imple-
mentation; this section introduces our sub-voxel accurate treatment
of boundaries. In section 4 we solve the nonlinear discrete equa-
tions using a high-order defect correction procedure and a symmet-
ric indefinite Krylov solver for the linearized system. Section 5
lists several crucial implementation considerations, including our
SIMD- and thread-optimized data organization scheme. We note
that we shall defer the discussion of relevant existing research until
later in our technical exposition, where such contributions can be
more appropriately contrasted with our proposed approach.

2 Elasticity and discretization

We start by reviewing the physical principles that govern the mo-
tion of an elastic deformable body. Let φ : Ω→R3 be the defor-
mation function which maps a material point ~X = (X,Y, Z) to its
deformed location ~x=(x, y, z)=φ(~X), and F(~X)=∂φ(~X)/∂ ~X
denote the deformation gradient. In order to simulate the deforma-
tion of a body with a specific material composition, we need a quan-
titative description of how this material reacts to a given deforma-
tion. For hyperelastic materials this is derived from a strain energy
density function Ψ(F) which can be integrated over the entire body
to measure the total energy E[φ] =

∫
Ω

Ψ(F)d ~X . In these expres-
sions φ(~X) is an arbitrary deformation field; however, for numer-
ical simulation we only encode the deformation map via discrete
values ~xi = φ(~Xi) sampled at prescribed locations { ~Xi}i=1...N .
Using those, we reconstruct discretized versions of the deformation
field, the deformation gradient and the elastic energy, as follows:

φ(~X;x) =
∑
i ~xiNi(~X) (1)

F(~X;x) = ∂φ(~X;x)/∂ ~X (2)

E(x) =
∫

Ω
Ψ(F(~X;x))d ~X (3)

In the definitions above, x = (~x1,..., ~xN) is a vector containing
all nodal degrees of freedom and conveys the state of our discrete
model. The symbol Ni(~X) denotes the interpolation basis func-
tions associated with each node ~Xi. In our approach those will be
trilinear interpolating basis functions, associated with the vertices
of a cubic lattice as detailed in section 4. For our subsequent discus-
sion we will not restrict ourselves to a particular material model. In-
stead, we will treat Ψ(F) as a placeholder for any material-specific
strain energy definition. Specific energy formulas for common ma-
terial models are provided in the supplemental technical document.
Note that both the deformation gradient F(~X;x) as well as the
energy density Ψ(F(~X;x)) are spatially varying functions (of the
material location ~X). This should be contrasted with tetrahedral
discretizations where such quantities are constant on each element,
as a consequence of the linear basis functions used in that setting.
In any case, once a discrete energy E(x) has been defined, the dis-
crete nodal forces are readily computed as ~fi=−∂E/∂~xi.

The remainder of this section addresses certain adjustments to the
discrete energy definition (3) including modifications to performed
approximations and a reformulation of the discrete state variables.
Our objective is to support a spectrum of materials from compress-
ible to highly-incompressible, accommodate true nonlinear volume
preservation constraints and avoid locking or poor numerical con-
ditioning problems that often stem from incompressible materials.

2.1 Quasi-incompressibility

We model response to volume change using the formulation re-
ferred to as quasi-incompressibility. In this approach, instead of en-
forcing incompressibility as a hard constraint we append a penalty-
like volume preservation term to the definition of the deformation
energy, with a tunable stiffness that allows a range of compressible
to highly incompressible behaviors. The energy density function
has the general form Ψ(F) = Ψ0(F)+κM2(F)/2, where M(F)
measures the deviation from a volume-preserving configuration and
κ is the stiffness of the incompressibility constraint which is related
(or identified) with material properties such as the bulk modulus
or the second Lamé coefficient (λ). For example, linear elasticity
defines M(F) = tr(F−I) which seeks to make the displacement
field divergence free. Corotated elasticity uses M(F) = tr(Σ−I)
(where F = UΣVT is the SVD of F) essentially enforcing that the
average of principal stretch ratios is equal to one. Both measures
provide an adequate approximation of volume change in the small
strain regime, but become very inaccurate under large deformation
(see Figure 2) . Thus, certain models (e.g. Neohookean elasticity)
use the true volume change ratio J = det(F) = det(Σ) and define
M(F)=log(J) orM(F)=J−1, properly enforcing that the prod-
uct of principal stretch ratios remains close to one. Although we
recommend the use of the latter model types, we seek to accommo-
date any definition of M(F) as even the less accurate formulations
may be quite acceptable in appropriate deformation scenarios.

For discretization we superimpose a Cartesian lattice on the refer-
ence model shape Ω, naturally defining a partitioning Ω =∪Ωk of
the elastic domain into sub-domains Ωk=Ω∩Ck within each lattice
cell Ck. No restriction on the shape of Ω is imposed. Thus, each
sub-domain Ωk is either an entire cell of our cubic lattice (for cells
fully interior to the deforming model) or a fractional cell when Ck
overlaps with the model boundary. The discrete energy can also be
split into a sum of local terms E(x) =

∑
k Ek(x), integrated over

the respective Ωk. We define the energy of each cell as follows:

Ek :=
∫

Ωk
Ψ0(F)d ~X + 1

2
κWkM

2
(Ωk) (4)

where Wk :=
∫

Ωk
d ~X and M(Ωk) := 1

Wk

∫
Ωk
M(F)d ~X (5)

Figure 2: Simulation of corotated (top) and neohookean (bottom)
materials at high Poisson’s ratio (ν = .498). The corotated model
loses more than 50% of the original volume due to its inaccurate in-
compressibility term. The neohookean model stays within .1% of its
original volume, with less than 1% volume variation per element.

Note that the volumeWk of Ωk is simply h3 if Ωk is a fully interior
cell. The liberties we took in this formulation should be apparent if
we examine the second term of equation (4) : instead of integrating
the squared term M2(F) over Ωk, we first compute an average M
of the constraint measureM(F) and proceed to integrate the square
of this average. We do so in order to mitigate locking; a continuous
material may be expected to be incompressible at any scale, how-
ever, our discrete deformation field φ(~X;x) is only a product of
interpolation. Thus, even if the total volume of Ωk is exactly pre-
served, it is possible that interior locations may exhibit small local
expansions or contractions that cancel each other out. Integrating
the square of the measureM(F) and using a high stiffness κ for this
volume penalty would unnecessarily force continuous volume con-
servation at any interior point of Ωk, rather than asking that Ωk re-
mains incompressible on the aggregate. The consequence is a para-
sitic stiffening of the material (locking) even on deformation modes
that preserve the total volume. One can verify that the approxima-
tions reflected in equation (4) are sound; under refinement both the
energy and resulting forces converge (to second order) to the re-
spective continuous quantities . Finally we clarify using equation
(4) does not automatically eliminate locking. Although this works
well with our trilinear lattice elements, certain other discretizations
(e.g. linear tetrahedra) would necessitate further modifications.

Accurate volume change penalization For those material mod-
els that use the local volume change ratio J = det F in M(F)
we propose an optional modification which can penalize volume
change even more accurately. For these materials we can write
M(J) for the volume change measure, and we modify our defi-
nition for the average measure M(Ωk) as

M(Ωk) := M(J) = M(1
Wk

∫
Ωk
Jd ~X) (6)

Equation (6) formulates the incompressibility energy penalty based
on the aggregate volume change, while the original formulation
of equation (5) averages out the penalty itself over Ωk. We note
that this optional modification is not a prerequisite for locking re-
silience. In the following sections, we detail how either definition
forM(Ωk) can be easily incorporated into our discrete formulation.

2.2 Mixed formulation

Although the actions of section 2.1 prevent locking, numerical sim-
ulation of near-incompressible materials is still hindered by poor
conditioning of the governing equations. In the incompressible
limit (κ → ∞) the energy of equation (4) is dominated by the
M2(F) term. Thus, there is great discrepancy in the stiffness as-
sociated with the incompressibility term, compared to the nominal
elastic stiffness that volume-preserving modes are subject to. As an
unfortunate consequence, the convergence of iterative algorithms
(e.g. Conjugate Gradients) is significantly decelerated. We treat
this problem by adopting a mixed position/pressure discretization,
avoiding problematic conditioning even at the incompressible limit.

We introduce a new state variable, in addition to the deformation
~x=φ(~X): we refer to this as a (pseudo-)pressure p(~X). Discretely,
we represent the pressure field as piecewise constant on each cell,
associating a single value pk with each Ωk. We now consider the
alternative energy expression Ê(x,p) =

∑
k Êk(x, pk). Here we

denote the set of all cell pressures with p = (p1, . . . , pM) and:

Êk(x, pk) :=

∫
Ωk

[
Ψ0(F) + αpM(F)− α2p2

2κ

]
d ~X

=

∫
Ωk

Ψ0(F)d ~X +Wk

[
αpkM(Ωk)− α2p2

k

2κ

]
(7)

where α is an arbitrary constant. This modified energy expression
has the following important properties: First, while E(x) is ex-
pected to be generally convex (the deformation energy has a global
minimum, although local maxima or saddle points may be present)
the modified energy Ê(x,p) is concave with respect to p, due to
the negative sign of the term−α2p2/(2κ). Our second observation
is that E(x) and Ê(x,p) have the same critical points: by differ-
entiating equations (4) and (7) we can show that when ∂Ê/∂p = 0

is satisfied, then ∂E/∂x = ∂Ê/∂x. Thus, if ∂Ê/∂p = 0, the dis-
crete forces computed by either energy are identical. This relation
has an intuitive consequence in the context of a quasistatic (steady-
state) simulation: find a configuration x such that the elastic forces
are at equilibrium f(x) = 0, or equivalently, the energy E(x) is
minimized. In this setting, if one finds a saddle point (x∗,p∗) for
the modified energy Ê(x,p), then x∗ is a critical point (generally
a minimum) for E(x) and thus a static equilibrium configuration.

These observations make it possible to compute discrete forces as
f̂i = ∂Ê(x,p)/∂~xi and simply append ∂Ê/∂p = 0 to the gov-
erning equations arising from this force definition; the physical re-
sponse of the material will be identical to that computed from the
original formulation of section 2.1. The practical benefit of this for-
mulation is that it is, numerically, very resilient to high incompress-
ibility; where setting κ→∞ in the original formulation would yield
a very stiff energy, the expression of equation (7) remains well con-
ditioned even in the limit case (where the quadratic pressure term
would simply vanish in a smooth fashion). Lastly, we adopt the no-
tation q=−∂Ê/∂p which we call a “pressure force” in analogy to
f̂ =−∂Ê/∂~xi, i.e. the “positional” force due to Ê. We also write:

Ψ̂(F, p) = Ψ0(F) + αpM(F)− α2p2/(2κ) (8)

as an alternative augmented energy definition including p as a state
variable. Equation (7) follows directly by substituting the energy
definition (8) into equation (3), without any further approximation.
Finally, we note that the specific value of α has no impact on the
computed solution, provided that discrete equations are solved to
reasonable precision. But, if solvers with low accuracy are used
(e.g. CG with few iterations), large α values will prioritize volume
conservation, while small values promote smooth approximations.

Relation with existing approaches Our formulation draws in-
spiration from the rich applied mathematics literature on mixed fi-
nite element methods [Brezzi and Fortin 1991; Arnold 1990] which
includes many references to near-incompressible elasticity as a tar-
get domain. The most relevant graphics work [Zhu et al. 2010]
also employs a pressure-based mixed formulation, yet is explic-
itly limited to linear and corotated materials. Furthermore, their
formulation is based on finite-differences and voxel-accurate only.
Our formulation is given at the energy level, spans arbitrary mate-
rials and can leverage finite element techniques to yield symmet-
ric, sub-voxel accurate discretizations. In contrast with solutions
on tetrahedral meshes [Irving et al. 2007] we handle nonlinear vol-
ume constraints and need not presume any implicit or semi-implicit
time integration scheme. Deformation constraints have also been
tackled via constrained dynamics [Goldenthal et al. 2007] and non-
conforming discretizations [English and Bridson 2008]. We move
away from incompressibility as a hard constraint, and we treat ma-
terials with any degree of incompressibility in a uniform fashion.

3 Quadrature and boundary treatment

Equations (4) and (7) are already discretized (i.e. they are fully de-
fined by the discrete state variables) but not in a form that facilitates
direct implementation, due to the presence of continuous integrals
in their formulas. This is trivial for tetrahedral discretizations, as
the integrands are constant on each element. Although one might
similarly envision computing such integrals analytically for our tri-
linear elements, this is not a practical option for nonlinear materi-
als since the integrand is a complex multivariate expression. Even
for linear elasticity, analytic integration would be cumbersome for
boundary cells, where Ωk has an irregular shape, and is not a perfect
cube. Thus, we use properly structured numerical quadrature rules,
for practical evaluation of these integrals. An m-point quadrature
rule would take the form

∫
Ωk
fd ~X ≈ Wk

∑m
i=1 wif(~Xi), for ap-

propriately chosen weights wi (adding up to one) and quadrature
points { ~Xi}mi=1 ⊂ Ωk. Using this rule, we can approximate:∫

Ωk
Ψ0(F)d ~X ≈Wk

∑
wiΨ0(F(~Xi))

M(Ωk) ≈
∑
wiM(F(~Xi))

From the theory of finite element methods [Hughes 1987] it is
known that trilinear interpolating functions are capable, in princi-
ple, of discretizations that converge to the continuous solution with
second-order accuracy, i.e. with an error that diminishes likeO(h2)
on a grid with spacing h. In this section we present discretization
approaches based on (a) a second-order quadrature method which
is expected to retain O(h2) solution accuracy and (b) a first-order
quadrature scheme combined with a stabilization technique. Using
the latter approach limits the observed accuracy of our scheme to
O(h), i.e. first order; however this less accurate (yet inexpensive)
quadrature is ultimately leveraged in section 4 only for the purpose
of accelerating the numerical solution of the second-order scheme.

3.1 Second order method

We propose a novel numerical quadrature scheme which achieves
second-order accuracy (i.e. it integrates exactly polynomials of
degree up to 2) on arbitrarily integration domains. For refer-
ence, we highlight one of the options that is broadly used for con-
forming hexahedral meshes: the 8-point Gauss quadrature scheme
achieves second-order accurate integration on (skew) hexahedra,
and is actually third-order accurate on axis-aligned rectangular par-
allelepipeds. Unfortunately, this approach is not easily adapted to
integration domains that are not hexahedral, such as the fractional

Figure 3: A 2D illustration of our boundary quadrature. In each
boundary cell 3 quadrature points (4 in 3D) are selected in a way
that they match the moments of the respective material fragment.

cells Ωk covering the boundary of the deforming model. In con-
trast, our method achieves second order with just four quadrature
points, for any shape of the domain of integration.

Our quadrature rule will be second order accurate if and only if it
integrates exactly all monomials XpY qZr with 0 ≤ p+q+r ≤ 2.
Thus, we must have

∫
Ωk
XpY qZrd ~X = Wk

∑4
i=1 wiX

p
i Y

q
i Z

r
i

for all 0 ≤ p+q+r ≤ 2. This is equivalent to the matrix equation:

∫
Ωk


1 X Y Z
X X2 XY XZ
Y XY Y 2 Y Z
Z XZ Y Z Z2

d ~X=Wk

4∑
i=1

wi


1 Xi Yi Zi
Xi X2

i XiYi XiZi
Yi XiYi Y 2

i YiZi
Zi XiZi YiZi Z2

i

 (9)

In other words the 4 points ~X1, . . . , ~X4, when viewed as a discrete
distribution, must match all first- and second-order moments of the
continuous distribution of points ~X ∈ Ωk. The top leftmost entry
of this matrix equation further ensures that the quadrature weights
will be a partition of unity. Equation (9) illustrates a procedure for
generating the four quadrature points; the matrix on the left-hand
side (which we symbolize as C) is symmetric and positive definite
matrix which can be precomputed as a one-time preprocessing step.
In our implementation we use Monte-Carlo integration to compute
the relevant moments of fractional cells Ωk. Then, equation (9) can
be written as W−1

k C = MMT , where

M =

 1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4


±
√
w1

±√w2

±√w3

±√w4

 (10)

In fact, given any symmetric factorization W−1
k C = MMT , we

can always bring the matrix M into the form of equation (10), by
simply pulling the first row of M into the diagonal of the right factor
in (10), and scaling the columns accordingly. Then, the weights
can be obtained by squaring the diagonal entries ±√wi, and are
guaranteed to sum to one by virtue of equation (9). At the same
time, the coordinates of the quadrature points can be read from the
the left matrix factor of equation (10).

It thus appears that the quadrature points can be computed once any
symmetric factorization of W−1

k C becomes available; this can be
obtained via the Cholesky method, or the SVD among other op-
tions. However, we need to address an important issue: it is not
guaranteed that, for a given factorization, the points computed from
(10) will be interior to Ωk; in fact, they could be located arbitrarily
far away from it. Nevertheless, if four quadrature points that satisfy

equation (9) and are interior to Ωk do exist, they will be associ-
ated with a different factorization W−1

k C = NNT . We can show
that if two 4 × 4 matrices M and N satisfy MMT = NNT , then
M = NQ, where Q is an orthogonal matrix. Thus, we begin with
any factorizationW−1

k C = MMT (e.g. Cholesky), and proceed to
sample the space of 4×4 orthogonal matrices Q from which differ-
ent matrices N can be obtained, providing different choices of can-
didate quadrature points. Although we do not provide a theoretical
proof, our practical experience indicated that it is always possible
to find four quadrature points that satisfy the stated constraints for
any convex Ωk, such that the four points are interior to Ωk (in fact,
we found that it is possible to also find equally-weighted points, in
this case). Even in the case where Ωk is not convex, our experi-
ence shows that we can easily find four quadrature points that are,
at least, interior to the lattice cell containing Ωk (see Figure 3).

We use the quadrature rule constructed in this fashion to evaluate
all integrals introduced in the previous section. For interior cells
Ωk which are perfect cubes, the selection of points can be made
just once, and reused for all such entire cells; a possible choice of
quadrature points that have equal weights (wi = 1/4) are given
below, with the domain of integration being the cube [−1, 1]3:

(

√
2

3
,

√
1

3
, 0), (–

√
2

3
,

√
1

3
, 0), (0, –

√
1

3
,

√
2

3
), (0, –

√
1

3
, –

√
2

3
)

Should the formulation of equation (6) be used, one may opt to use
8-point Gauss quadrature to compute J as the integrand is com-
posed of monomials XpY qZr with max{p, q, r} ≤ 2, which will
be integrated exactly with the Gauss method. In our implementation
we used our 4-point quadrature even for this case, as we observed
a discrepancy of less than 0.1% between the J computed by either
rule, even for cases of severe deformation. Finally, we note that
in cases where voxels in our embedding lattices had less than a 2%
coverage in material, we chose to omit these voxels altogether (as is
visible in Figure 1), and associate surface points embedded in them
with neighboring voxels (which had greater material coverage) us-
ing trilinear weights extending slightly beyond the [0, 1] range. This
had practically no effect on the simulated deformation, yet helped
improve the numerical conditioning of our discrete systems.

3.2 First order method

We also implemented a first-order accurate method using a one-
point quadrature rule placed at the center of the cell containing each
Ωk, in a fashion similar to [McAdams et al. 2011]. In addition, all
cells intersected by the deforming body are treated as if they were
fully covered with material, essentially modeling an approximation
to Ω which has been quantized at voxel precision.Although not as
accurate as the second-order treatment previously described, this
approach yields a simpler, less computationally expensive imple-
mentation. This is attributed to both the regularity of computation
(same quadrature scheme for all cells), as well as the fact that frac-
tional cells are treated as whole, preventing conditioning issues.In
section 4 we illustrate how we use this first-order discretization as a
building block for a numerical solver of the second-order accurate
scheme, achieving both performance and accuracy.

As previously observed [McAdams et al. 2011] a single-point
quadrature is normally unstable, due to the fact that certain oscilla-
tory deformation modes are invisible to the discrete energy thus for-
mulated; notably this is not an issue with our second-order quadra-
ture, since any stress-inducing deformation mode that is invisible
at the location of a certain quadrature point (due to cancellation)
will still be visible and penalized at one or more of the remaining
quadrature points. McAdams et al [2011] suggested a stabilization
scheme, based on the separation of the energy density for corota-
tional elasticity into a term that corresponds to a Laplace operator,

Figure 4: A thin-walled elastic tube is compressed and twisted.
Top: An 8×8×80 voxel accurate simulation under-resolves the
thinness of the walls and fails to allow intricate corrugations. Mid-
dle: A voxel-accurate simulation at 16×16×160 resolution recov-
ers deformation detail. Bottom: Our second-order method captures
detailed deformation behaviors even at coarse lattice resolutions.

plus a residual term accounting for the remainder of the corotational
response. We also employ a stabilization step, which can be consid-
ered an extension of their approach, but state it in a way that allows
its use with any material energy density function. Specifically, we
add to the energy density Êk a stabilization term Ekstab defined as

Ekstab(x) = µ

∫
Ck

[
‖F(~X;x)‖2F − ‖F(~Xc;x)‖2F

]
d ~X

where ~Xc is the location of the cell center and µ is the first Lamé pa-
rameter, which is either inherently present in many material models
or easily approximated from their specific parameters. We compute
the integral exactly over the entire cell Ck containing Ωk; in fact,
the nature of the integrand is such that 8-point Gauss quadrature
performs an exact integration. The final result of the integration can
be shown to be a quadratic, convex function of the nodal degrees of
freedom, and thus expressed by Estab(x) = µh3xTKk

stabx, where
the constant matrix Kstab is block diagonal (across the X,Y, Z co-
ordinates), symmetric and positive semi-definite. We proceeded to
perform a Taylor analysis of this stabilization term, revealing that

Ekstab(x)≈

(∥∥∥∥∥∂2~φ(~Xc)

∂X∂Y

∥∥∥∥∥
2

+

∥∥∥∥∥∂2~φ(~Xc)

∂X∂Z

∥∥∥∥∥
2

+

∥∥∥∥∥∂2~φ(~Xc)

∂Y ∂Z

∥∥∥∥∥
2)

O(h5)

Thus, this term penalizes the large mixed partial derivatives of ~φ
which are associated with oscillatory deformations that are invisi-
ble to the unmodified one-point quadrature scheme. Since this term
scales proportionately to O(h5), it is equivalent to an O(h2) per-
turbation of the energy, and vanishes rapidly under refinement.

Relation to prior work There is significant prior graphics re-
search on the topic of resolving simulation properties of embed-
ded models with sub-element precision near boundaries [Nesme
et al. 2006; Nesme et al. 2009; Kim and Pollard 2011] while others
have investigated absorbing boundary detail and anisotropy into the
constitutive model for boundary elements [Kharevych et al. 2009].
Sub-voxel accurate discretizations have been popular for fluids an-
imation [Guendelman et al. 2005; Batty et al. 2007; Wojtan and
Turk 2008], often in the context of solid-fluid coupling. Our use
of a non-conforming lattice-derived basis also parallels the work of
Chuang et al [2009] who discretize a surface PDE using a spline
FEM basis over a non-conforming 3D lattice. There is also ex-
tensive computational physics literature on second or higher order
accurate techniques for finite difference, finite element or XFEM
discretizations on Cartesian grids [Fedkiw et al. 1999; Almgren
et al. 1997; Daux et al. 2000]. Our original contribution is the new

Figure 5: Left: A 3D bow-tie model is bent, and simulated with the first order one-point quadrature scheme. Significant refinement is needed
for convergence to the continuous behavior. Right: Using our second-order quadrature scheme, the correct asymptotic behavior is reached
even on coarse resolutions. [Note: This example uses trilinear (not tricubic) interpolation to reconstruct the embedded object geometry.]

numerical quadrature scheme which can compute the boundary in-
tegrals to second order accuracy on arbitrary domains Ωk, while
only requiring four quadrature points (in 3D). To contrast our novel
approach with established variants, we note that XFEM methods
routinely define quadrature rules by re-tessellating the boundary re-
gion. Other methods (see e.g. [Hellrung et al. 2012]) leverage the
divergence theorem to evaluate such integrals exactly on polyhedral
approximations of Ωk, yet such approaches are significantly more
cumbersome and impractical for nonlinear materials. Finally, our
stabilization treatment for the first-order approach clearly draws in-
spiration from [McAdams et al. 2011], and our treatment is very
similar (although not identical) for corotational materials. How-
ever, our method extends naturally to arbitrary nonlinear models.

4 Linearization and numerical solution

We now focus on the numerical solution of the discretized govern-
ing equations. For this exposition we focus on quasistatic simu-
lation of elasticity, i.e. we generate a sequence of steady-state de-
formations that result from the kinematic positional constraints im-
posed at every frame of animation. In a conventional setting, the
equation defining the quasistatic solution at each frame is simply
f(x) = 0, stating that all nodal elastic forces needs to be zero at
equilibrium. However, in light of the mixed formulation introduced
in section 2, the equilibrium equation is replaced by the system

f(x,p)=0 and q(x,p)=0. (11)

We use a Newton-Raphson method to generate an iterative solution
method for this nonlinear system of state variables x and p. After
k steps of this iteration, we linearize f and q around the current
approximation of the solution (xk,pk) to obtain:[
f(xk+δx,pk+δp)
q(xk+δx,pk+δp)

]
≈
[
f(xk,pk)
q(xk,pk)

]
+

[
∂f
∂x

∂f
∂p

∂q
∂x

∂q
∂p

] [
δx
δp

]
where the partial derivatives are computed at (xk,pk). Requesting
that f and q approximate zero after corrections δx, δp have been
applied yields the Newton-Raphson update equation:

−

[
∂f
∂x (xk,pk)

∂f
∂p (xk,pk)

∂q
∂x (xk,pk)

∂q
∂p (xk,pk)

]
︸ ︷︷ ︸

K(u
k
)

[
δx
δp

]
︸ ︷︷ ︸
δu

=

[
f(xk,pk)
q(xk,pk)

]
︸ ︷︷ ︸

g(u
k
)

(12)

where we denote the combined state vector by u= (x,p) and the
combined force vector by g=(f , q). Using the definitions of f and
q as the negative gradients of E(x,p) with respect to position and
pressure, respectively, the stiffness matrix K(uk) can be written:

K(uk) =

[
(∂2E/∂x2)(xk,pk) (∂2E/∂x∂p)(xk,pk)

(∂2E/∂x∂p)(xk,pk) (∂2E/∂p2)(xk,pk)

]

This indicates that K(uk) is a symmetric matrix. Taking into con-
sideration equation (7) we also infer that K(uk) is generally ex-
pected to be indefinite. Thus, we employ the Symmetric Quasi-
Minimal Residual (QMR) method [Freund and Nachtigal 1994], a
Krylov-subspace solver for symmetric indefinite systems. At the
end of each Newton-Raphson iteration we incorporate the com-
puted correction to obtain xk+1←xk+δx and pk+1←pk+δp.

High-order defect correction In section 3 we detailed two
quadrature methods for computing boundary energy integrals. De-
pending on the specific choice of method there will be different
formulas for the combined force g and combined stiffness K. Let
us denote by g1,K1 the force and stiffness definitions resulting
from the first-order quadrature of section 3.2 and let g2,K2 be
their second-order counterparts according to section 3.1. When us-
ing the QMR method to solve equation (12) we only need to eval-
uate g once, in order to generate the right hand side; in contrast,
the stiffness matrix K is used once per QMR iteration, thus dom-
inating the computational cost of the solution process. Solving the
equilibrium problem to sub-voxel precision would normally require
solving the version K2(uk)δu = g2(uk). Instead, we employ a
high-order defect correction procedure [Trottenberg et al. 2001] by
solving a modified Newton system with K1 on the left-hand side:

K1(uk)δu = g2(uk) (13)

At first, such a substitution may appear unjustified. However, it
can be shown that if the spectral radius ρ

(
I−K−1

1 K2

)
is less

than one, then repeated applications of the defect correction itera-
tion (13) will converge to the solution of the higher-order nonlinear
system g2(u) = 0. When dealing with discretizations of elliptic
problems (such as our mixed formulation of elasticity) this spec-
tral radius criterion is expected to hold true (it can be shown to do
so in simple cases, e.g. when K is the Laplace or linear elasticity
operator). The price one has to pay for the convenience of using
a lower-order operator in a defect correction procedure is that the
speed of convergence for Newton-Raphson typically degrades from
quadratic to linear; this is very well tolerated in graphics applica-
tions, especially since the typical practice of terminating Krylov
solvers after a fixed maximum number of iterations would typically
result in the same speed compromise in the first place. In our ex-
periments, we encountered no issues with using defect correction
in the Newton-Raphson process, other than a very modest increase
(less than 50%) in the number of Newton iterations required.

5 Implementation

Trilinear elements and gradients We start by deriving a concise
expression for the deformation gradient F(~X;x). We use the no-
tation { ~Xi1i2i3}i1,i2,i3∈{0,1} for the eight vertices of a given cell

with ~Xi1i2i3= ~X0+(i1, i2, i3)h. Their respective interpolation basis
functions are Ni1i2i3(~X) =

∏
k(ξk)ik (1 − ξk)1−ik where ~ξ(~X)=

(ξ1, ξ2, ξ3)=(X−X0, Y−Y0, Z−Z0)/h are the trilinear coordinates
of ~X . Partial derivatives of the interpolating functions are readily
computed as ∂jNi1i2i3(~X)=(−1)1−ij

∏
k 6=j(ξk)ik (1− ξk)1−ik .

From this point, we shall refer to the vertices of a specific cell sim-
ply as ~X1... ~X8, and N1(~X)...N8(~X) for the respective trilinear
basis functions, with the understanding that we know how to relate
to the prior indexing convention. By equations (1,2) the deforma-
tion gradient at a location ~X∗ is F(~X∗;x) =

∑
i ~xi∇Ni(~X∗)

T =

B(x)G(~X∗)
T where B(x) = [~x1 ~x2 . . . ~x8] ∈ R3×8 is the

cell shape matrix. The matrix G(~X∗) ∈ R3×8 with Gij(~X∗) =

∂iNj(~X∗) will be referred to as the gradient matrix at ~X∗. Note
that for any material point ~X∗, G(~X∗) can be precomputed

Force computation We mimic the elastic force derivation from
McAdams et al [2011] and write Hk(x, pk) = [~f1

~f2 . . . ~f8] for
the 3 × 8 matrix containing all nodal elastic forces in a cell Ωk.
If { ~Xi}mi=1 are the m quadrature points used for integration, with
associated weights {wi}mi=1, the force matrix Hk is assembled as:

Hk(x, pk) = −Wk

∑
i wiP̂(F(~Xi;x), pk)G(~Xi)

where P̂(F, p) = ∂Ψ̂(F, p)/∂F = P0(F) + αpQ(F).

In this last expression P̂ is the modified 1st Piola-Kirchhoff stress
tensor, associated with our mixed formulation. P0 = ∂Ψ0(F)/∂F
is the stress component that excludes the incompressibility term,
and Q=∂M(F)/∂F is the gradient of the volume measureM(F).
Finally, the pressure force qk is given by:

qk(x, pk) = − ∂Êk
∂pk

= αWk(αpk/κ−
∑
i wiM(F(~Xi;x))

Force differentials The QMR solver used to solve equation (12)
does not require the matrix K(uk) to be explicitly constructed, as
long as its action on an input vector (δx, δp) can be evaluated.
The result of this implicit matrix-vector multiplication are the force
differentials δf and δq respectively. We perform this matrix-free
operation on an element-by-element basis, adding the contribution
of each Ωk to the aggregate differentials. Once again the force dif-
ferentials can be collectively computed as δHk(δx, δpk;x, pk) =

[δ ~f1 δ ~f2 . . . δ ~f8], along with δqk(δx, δpk;x, pk) as follows:

δHk(δx, δpk;x, pk) = −WkδP̂(δF, δpk; F(~Xc;x), pk)G(~Xc)

δqk(δx, δpk;x, pk) = αWk(αδpk/κ−Q(F(~Xc;x)) : δF)

where δP̂(δF, δp; F, p) = T (F, p) : δF + αδpQ(F),

and δF =B(δx)G(~Xc)
T .

in this expression, the fourth order tensor T = ∂2Ψ̂/∂F2 is the
stress derivative that we would obtain from equation (8) if p was
simply treated as a constant value. We refer the reader to [Teran
et al. 2005] for a discussion of how this tensor can be constructed
via the SVD for isotropic materials. Also, note that due to our use
of the defect correction iteration, only a single quadrature point (the
cell center ~Xc) was used in the equations above.

Definiteness fix A number of authors [Teran et al. 2005;
McAdams et al. 2011] have emphasized the necessity to address the
possible indefiniteness of the stiffness matrix ∂f/∂x for nonlinear
materials. In our case, since we do not employ Conjugate Gradi-
ents as these methods do, the definiteness of the stiffness matrix is
not a strict requirement. However, we observed that, in the absence

of such modification, the Newton-Raphson procedure would some-
times converge to local minima, or even unstable force equilib-
rium configurations, which were seen as perfectly acceptable saddle
points by our QMR algorithm. This issue was alleviated by per-
forming a version of definiteness fix similar to the previously men-
tioned approaches. In particular, if we consider the original energy
definition E(x, µ, κ) (prior to the introduction of pressures), the
stiffness matrix is defined as Kµ,κ = −∂2E(x, µ, κ)/∂x2, where
we explicitly included a reference to two (representative) material
parameters µ, and κ. Following the methodology of [Teran et al.
2005], we compute a modified stiffness matrix K̂µ,κ by projecting
K to its positive definite part. However, in order to avoid problem-
atic conditioning, in case this positive definite correction has added
a term proportional to the (very high in incompressible materials)
parameter κ, we compute the following correction instead:

Kcorr = K̂µ,κ∗ −Kµ,κ∗

where κ∗ is a thresholded value of the incompressibility penalty,
corresponding to a Poisson’s ratio in the range of ν ≈ 0.3 − 0.4.
Subsequently, we add the correction term Kcorr to the top-left block
of matrix K(uk) in equation (12). We observed excellent perfor-
mance with this adjustment, which was fully adequate for all our
academic and biomechanics examples. Similar to the defect cor-
rection procedure, this modification does not affect the computed
solution, only changes the iterative procedure that converges to it.

Muscles and constraints Similar to the muscle model suggested
in Lee et al [2009], we add an additional term Ψmuscle to the defor-
mation energy, in order to capture the contribution of contractile
muscles. This term is defined as:

Ψmuscle(F) = Ψmuscle(λ(F)), where λ = ‖F~w‖2
where ~w is the muscle fiber direction. Thus, λ measures the along-
fiber elongation or compression. The corresponding Piola stress is:

P(F) = T (λ)F~w~wT

where T (λ) is the muscle tension, specified by a Hill-type force-
length relationship. As muscles are also sub-voxel features, the
muscle-related component of the energy Ψmuscle also requires a
specific quadrature scheme. However, since this is not the only
component of the energy, and stabilization is already handled by the
term modeling the isotropic response of flesh, we only use a single
quadrature point, placed at the centroid of the muscle volume within
each cell. For the first-order approximation used in the defect cor-
rection procedure, we shift this quadrature point to the center of the
cell, as with the other components of elasticity. Finally, bone at-
tachments for our skeleton-driven simulations are handled via soft,
embedded spring constraints as in [McAdams et al. 2011].

Dynamics Our formulations have so far been presented in the
context of a quasistatic time evolution scheme. Nevertheless, our
method extends naturally to implicit or semi-implicit time integra-
tion scenarios. As an example, we briefly outline the modifications
necessary for combining our method with a fully implicit Backward
Euler integration scheme, similar to the one detailed by Sifakis and
Barbič [2012]. Due to our mixed formulation, the auxiliary pressure
variable p as well as its time derivative ṗ need to be maintained as
state variables. The Backward Euler scheme is formulated as:

xn+1 = xn + ∆tvn+1 (14)
pn+1 = pn + ∆tṗn+1 (15)
vn+1 = vn + ∆tM−1 [f(xn+1,pn+1) +

+fd(x
n+1,pn+1;vn+1, ṗn+1)

]
(16)

0 = q(xn+1,pn+1) (17)

Here, M is the mass matrix, and superscripts denote time steps. We
define the term fd according to a Rayleigh damping model as:

fd(x,p;v, ṗ) := γδf(x,p; δx← v, δp← ṗ)

where γ is the Rayleigh damping coefficient. Since the system of
equations (14) through (17) is nonlinear as a whole, we solve it
using an iterative Newton-Raphson procedure. Linearizing around
an approximation xn+1

k ,pn+1
k ,vn+1

k , ṗn+1
k of the state variables at

the end of the timestep (the k-th iterate of the Newton procedure),
we obtain the equations:

1
∆t2

M∆x −
(
1 + γ

∆t

)
δf(xn+1

k ,pn+1
k ; ∆x,∆p) =

= M(vn− vn+1
k) + f(xn+1

k ,pn+1
k) + fd(xn+1

k ,pn+1
k ;vn+1

k , ṗn+1
k)

and −
(
1 + γ

∆t

)
δq(xn+1

k ,pn+1
k ; ∆x,∆p) = q(xn+1

k ,pn+1
k)

This is a symmetric indefinite linear system of equations that can be
solved with QMR or another appropriate solver, in a similar fashion
as the system associated with our prior quasistatic time evolution.
We can easily verify that these equations reduce to the quasistatic
ones at the limit ∆t→∞. Once the corrections ∆x,∆p have been
computed, we proceed to update the state variables as xn+1

k+1 ←
xn+1
k + ∆x, pn+1

k+1 ← pn+1
k + ∆p, vn+1

k+1 ← vn+1
k + ∆t−1∆x

and ṗn+1
k+1 ← ṗn+1

k + ∆t−1∆p.

Data organization By far, the most computationally expensive
component of our technique is the force differential calculation,
which occurs once at every QMR iteration. We are also confronted
with a complex challenge if we choose to leverage parallelism and
SIMD capabilities in modern processors: our models have irregular
shapes only partially cover the embedding lattice, making optimal
parallel iterators difficult to construct. In addition, we are faced
with a data dependency issue: Computation, as currently structured
is conducted on a cell-by-cell basis; however, the results of this
computation f and q are stored on both cells and nodes, and we can
have different (neighboring) cells that need to accumulate forces on
the same common node, giving rise to dependencies and synchro-
nization issues.

In order to streamline the force differential computation and gener-
ate the best conditions for parallelism and vectorization, we propose
a new data organization scheme for our state variables and interme-
diate data. Our approach is illustrated in figure 7. We conceptu-
ally subdivide our 3-dimensional domain into blocks of 23 voxels
each. Note that not all such voxels will participate in the grid, as
some blocks near object boundaries will contain inactive voxels.
However, due to the small size of the 23-sized blocks, the number
of voxels included in all blocks that contain active voxels will be
minimally larger than the number of active voxels. Prior to any
computation (e.g. force differential calculation), we copy all nodal
information from a grid-based array into a flat array of blocks, du-
plicating any shared values as necessary. Of course, this step entails
creating multiple copies of data, but is not as expensive as if a sep-
arate copy of all nodal data was made for every individual voxel
(the practical data overhead is < 3x for this scheme, compared to
8x for a replication of all nodes for all cells). The cost of this data
duplication is reduced by the fact that additional simulation meta-
data (such as pressures c, material parameters, the matrix Q, pre-
computed stress derivatives and Singular Value/Polar decomposi-
tions, if needed) which are conceptually cell-centered can be stored
persistently in a flattened array of blocks. Once this translation
is completed, fully balanced multi-threading is possible by simply
subdividing the processing of this flattened array across computing
threads. Within each thread, we leverage the 23 multiplicity of each
block to compute differentials with SIMD instructions. The blocks
of nodal and cell data are first copied from the heap-allocated flat

Figure 6: Runtimes of our human body simulation examples, in
seconds. All times are in seconds, reported on an Intel Core i7-
2600 CPU and include the use of AVX instructions. (Note: The last
column reflects an 8-thread execution, but only on 4 physical cores,
via hyperthreading.)

arrays onto a stack-allocated copy. Then, we perform a final separa-
tion of cell and node data, creating one fully separate copy for each
of the 8 voxels. Note that this operation does not incur memory
bandwidth expense, since this local stack-allocated copy (typically
less than 6− 8KB in size) is expected to be cache-resident for the
duration of the computation. We have leveraged the AVX instruc-
tion set of the Sandy Bridge architecture to process all 8 voxels of
the block simultaneously. Upon completion of the local compu-
tation, the entire process is reversed: the voxel-specific forces are
accumulated into nodal forces for the entire block (i.e. 8 sets of
8 nodal forces are accumulated into the 27 nodal force variables
of the containing block) and copied to the flattened array of block
data. Lastly, in a scatter/accumulate step, the forces from the flat-
tened block array are added back onto the grid; naturally, this step
requires attention to ordering to avoid data dependencies, but this
very specific task is significantly easier to manage.

6 Examples

We demonstrate the use of our system in soft-tissue musculoskeletal
simulations using the material model and parameters presented in
[Lee et al. 2009]. Figure 1 depicts a keyframed walking sequence,
where the deformation of flesh, skin and muscles was generated by
our technique. As our focus was not on the derivation of realis-
tic muscle activation sequences, we demonstrated just the two ex-
treme cases in our simulations: all muscles being inactive (the pas-
sive component is still present), or all muscles contracted to maxi-
mum activation. Two discretization resolutions were used: a lattice
with a grid size of 10mm, yielding a lattice with approximately
101K voxels, and a coarser one with grid size 20mm containing
approximately 13.5K voxels. Note that, for comparison with tetra-
hedral discretizations, our high-resolution grid would be compara-
ble (in number of degrees of freedom) with a tetrahedral discretiza-
tion containing about 500K − 600K tetrahedra. The supplemental
submission video demonstrates additional motion sequences, and
highlights instances where our use of a sub-voxel accurate method
results in much pronounced muscle definition, and enables bending
and folding of flesh near skin creases. Figure 6 reports the run-
time cost on a 4-core Sandy Bridge CPU. Please note that the times
given for full frames, or full Newton-Raphson iterations are highly
variable and depend on the complexity of the simulated model; the
numbers given here were characteristic of our specific simulations.

As previously noted by Zhu et al. [2010] reconstructing the embed-
ded object surface using trilinear interpolation from lattice nodes
yields visible grid artifacts due to discontinuous gradients at voxel
boundaries. Consequently, our examples employed tricubic inter-

polation [Lekien and Marsden 2005] to generate the embedded ob-
ject surface for rendering, with the exception of Figure 5 where
standard trilinear interpolation was used, to demonstrate this effect
and emphasize that the trilinear basis is still capable of rapid con-
vergence under refinement when coupled with a sub-voxel accurate
quadrature scheme.

7 Limitations and future work

Our proposed approach sought to bridge the feature sets of embed-
ded lattice deformers and conforming discretizations. There is a
number of aspects, however, in which our lattice-based approach
remains less versatile than conforming meshes. Explicit tetrahedral
models offer direct control over their nodal degrees of freedom,
for the purposes of contact/collision resolution and enforcement of
kinematic constraints. Although it would be possible to handle such
tasks to a certain extent via embedding and soft constraints [Sifakis
et al. 2007] within a lattice deformer, such hybrid treatments may
compromise the regularity of our data structures and affect perfor-
mance accordingly. In addition, although our method is able to
resolve boundary geometry at sub-voxel resolution, the use of an
implicitly defined embedding lattice restricts its ability to resolve
small scale topology. Examples of this limitation would be face
models where the two would effectively be tied together, if spanned
by the same lattice cell, or fingers in human models that cannot
move independently unless separated by a layer of whole voxels.
It is relatively straightforward to leverage adaptivity in conforming
discretizations, while lattice-based discretizations require nontrivial
modifications to be effective and functional in an adaptive setting.

Our method handles the discretization of boundary equations (or
Neumann conditions in PDE terminology) with sub-voxel preci-
sion, and would justifiably be considered a “second order” dis-
cretization with respect to free boundary treatment. We note how-
ever that Dirichlet conditions (i.e. kinematic constraints) are not
currently handled to second order (sub-voxel) accuracy. Instead,
we either specify kinematic constraints directly on lattice nodes,
or implement soft embedded kinematic constraints via spring at-
tachments. Techniques do exist for the embedded enforcement
of Dirichlet conditions in ways that preserve second-order conver-
gence [Hellrung et al. 2012] but they have not been exhaustively
tested or even demonstrated in graphics applications. Our paper
has focused on quasi-static (equilibrium) simulation and omitted
collision detection/processing in its current form. The methodol-
ogy would be expected to extend trivially to dynamic simulation,
subject to careful determination of mass and damping properties
near boundaries. Collision processing however merits special at-
tention in future work; although penalty-based collision handling
can be used, this treatment could affect the convergence behavior
of numerical solvers, and compromise the regularity of the parallel
data structures we employ. Self-collisions would introduce non-
local forces which would need to be handled separately from our
SIMD-optimized data organization methodology.

Additionally, a notable suboptimal trait of our current approach
(and a promising thread for future development) is the fact that
the Krylov methods we employ to solve the discrete equations are
not the best solvers one could use for this purpose. Solvers (or
preconditioners) based on multigrid or domain decomposition prin-
ciples [Quarteroni and Valli 1999; Trottenberg et al. 2001] have
demonstrated excellent potential for near-linear scalability on ellip-
tic problems (such as elasticity) and are very well suited for parallel
execution. In addition some of our techniques, such as the high-
order defect correction procedure, originated from multigrid theory
and achieve their ideal efficiency in that context.

Our use of Krylov subspace solvers is associated with another im-

portant limitation: The cost per iteration in a solver such as QMR
is partly attributed to the computation of force differentials, while
a fraction of execution time is spent on streaming vector opera-
tions, such as constant scaling, vector additions and inner product
computations. In many of our tests, these memory bandwidth in-
tensive streaming operations became a performance bottleneck af-
ter the force-related computations had been aggressively optimized
via vectorization and multithreading. In the test runs documented
in Figure 6 we observed that in a parallel 4-core execution most
computational kernels (and certainly the streaming vector opera-
tions in QMR) were constrained by memory bandwidth. Although
it may be possible to increase scalability by further optimizing our
implementation for memory bandwidth, we believe that this issue
would be addressed more appropriately by moving towards multi-
grid or domain decomposition solvers (or preconditioners) which
provide greater flexibility for trading CPU load for reduced band-
width demands. As an example, we point to the work of McAdams
et al. [2010] who demonstrated parallel speedup in excess of 8× on
a multigrid-preconditioned Krylov solver. Lastly, our implementa-
tion focused on multicore desktop platforms, but we did not demon-
strate a GPU port; a proper port and analysis is left to future work.

Acknowledgements

We would like to thank Ben Recht for many insightful discussions
and his valuable feedback on our numerical quadrature scheme.

References

ALMGREN, A., BELL, J., COLELLA, P., AND MARTHALER, T.
1997. A Cartesian grid projection method for the incompress-
ible Euler equations in complex geometries. SIAM Journal on
Scientific Computing 18, 5, 1289–1309.

ARNOLD, D. N. 1990. Mixed finite element methods for elliptic
problems. Computer Methods in Applied Mechanics and Engi-
neering 82, 1-3, 281–300.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans-
actions on Graphics (SIGGRAPH Proceedings) 26, 3 (July).

BREZZI, F., AND FORTIN, M. 1991. Mixed and hybrid finite
element methods. Springer-Verlag: New York.

CHUANG, M., LUO, L., BROWN, B. J., RUSINKIEWICZ, S., AND
KAZHDAN, M. 2009. Estimating the Laplace-Beltrami operator
by restricting 3D functions. In Proceedings of the Symposium on
Geometry Processing, 1475–1484.

DAUX, C., MOES, N., DOLBOW, J., SUKUMAR, N., AND BE-
LYTSCHKO, T. 2000. Arbitrary branched and intersecting cracks
with the extended finite element method. International Journal
for Numerical Methods in Engineering 48, 12.

ENGLISH, E., AND BRIDSON, R. 2008. Animating developable
surfaces using nonconforming elements. In ACM Transactions
on Graphics (SIGGRAPH Proceedings), vol. 27, 66.

FEDKIW, R., ASLAM, T., MERRIMAN, B., AND OSHER, S. 1999.
A non-oscillatory eulerian approach to interfaces in multimate-
rial flows (the ghost fluid method). Journal of Computational
Physics 152, 2, 457–492.

FREUND, R., AND NACHTIGAL, N. 1994. A new Krylov-subspace
method for symmetric indefinite linear systems. In Proceedings
of the 14th IMACS World Congress on Computational and Ap-
plied Mathematics, IMACS: New Brunswick, NJ, 1253–1256.

+

Figure 7: A 2D illustration of our simulation data structures. Left: Nodal (deformation) data stored on a grid. Middle: On demand, nodal
data is copied to an array of 2d-sized blocks and combined with cell-based data which are persistently stored in arrays of blocks. Right: Nodal
and cell-centered data for a single block are copied to a stack-allocated structure, and duplicated for each voxel for SIMD computation.

GEORGII, J., AND WESTERMANN, R. 2008. Corotated finite ele-
ments made fast and stable. In Proceedings of the 5th Workshop
On Virtual Reality Interaction and Physical Simulation.

GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M.,
AND GRINSPUN, E. 2007. Efficient simulation of inextensible
cloth. In ACM Transactions on Graphics (TOG), vol. 26, 49.

GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW, R.
2005. Coupling water and smoke to thin deformable and rigid
shells. ACM Transactions on Graphics (SIGGRAPH Proceed-
ings) 24, 3, 973–981.

HELLRUNG, JR., J. L., WANG, L., SIFAKIS, E., AND TERAN,
J. M. 2012. A second order virtual node method for elliptic
problems with interfaces and irregular domains in three dimen-
sions. Journal of Computational Physics 231, 4, 2015–2048.

HUGHES, T. 1987. The Finite Element Method: Linear Static and
Dynamic Finite Element Analysis. Prentice Hall.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Vol-
ume conserving finite element simulations of deformable mod-
els. ACM Transactions on Graphics (SIGGRAPH Proc.) 26, 3.

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN,
M. 2009. Numerical coarsening of inhomogeneous elastic ma-
terials. ACM Trans. on Graphics (SIGGRAPH Proc.) 28, 3, 51.

KIM, J., AND POLLARD, N. 2011. Fast simulation of skeleton-
driven deformable body characters. ACM Transactions on
Graphics (TOG) 30, 5, 121.

LEE, S.-H., SIFAKIS, E., AND TERZOPOULOS, D. 2009. Com-
prehensive biomechanical modeling and simulation of the upper
body. ACM Transactions on Graphics 28, 4, 1–17.

LEKIEN, F., AND MARSDEN, J. 2005. Tricubic interpolation in
three dimensions. Journal of Numerical Methods and Engineer-
ing 63, 455–471.

MCADAMS, A., SIFAKIS, E., AND TERAN, J. 2010. A parallel
multigrid Poisson solver for fluids simulation on large grids. In
Proceedings of the 2010 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, 65–74.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity for
character skinning with contact and collisions. ACM Transac-
tions on Graphics (SIGGRAPH Proceedings) 30, 4, 37.

MÜLLER, M., TESCHNER, M., AND GROSS, M. 2004.
Physically-based simulation of objects represented by surface
meshes. In Proc. Computer Graphics International, 156–165.

NESME, M., PAYAN, Y., AND FAURE, F. 2006. Animating shapes
at arbitrary resolution with non-uniform stiffness. In Eurograph-
ics Workshop in Virtual Reality Interaction and Physical Simu-
lation (VRIPHYS).

NESME, M., KRY, P., JEŘÁBKOVÁ, L., AND FAURE, F. 2009.
Preserving topology and elasticity for embedded deformable
models. In ACM Transactions on Graphics (SIGGRAPH Pro-
ceedings), vol. 28, 52.

QUARTERONI, A., AND VALLI, A. 1999. Domain decomposition
methods for partial differential equations, vol. 10. Clarendon
Press.

RIVERS, A., AND JAMES, D. 2007. FastLSM: fast lattice shape
matching for robust real-time deformation. ACM Transactions
on Graphics (SIGGRAPH Proc.) 26, 3.

SIFAKIS, E., AND BARBIČ, J., 2012. FEM simulation of 3D
deformable solids: A practitioner’s guide to theory, discretiza-
tion, and model reduction. ACM SIGGRAPH 2012 Courses.
http://www.femdefo.org/.

SIFAKIS, E., SHINAR, T., IRVING, G., AND FEDKIW, R. 2007.
Hybrid simulation of deformable solids. In Proc. of ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim., 81–90.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005. Ro-
bust quasistatic finite elements and flesh simulation. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation, ACM, 181–190.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. Computer Graphics (Proc.
SIGGRAPH 87) 21, 4, 205–214.

TROTTENBERG, U., OOSTERLEE, C., AND SCHULLER, A. 2001.
Multigrid. San Diego: Academic Press.

WOJTAN, C., AND TURK, G. 2008. Fast viscoelastic behavior with
thin features. In ACM Transactions on Graphics (SIGGRAPH
Proc.), vol. 27, ACM, 47.

ZHU, Y., SIFAKIS, E., TERAN, J., AND BRANDT, A. 2010. An
efficient multigrid method for the simulation of high-resolution
elastic solids. ACM Transactions on Graphics (TOG) 29, 2, 16.

