Physical Simulation for Animation and Visual Effects:
Parallelization and Characterization for Chip
Multiprocessors

Christopher J. Hughes! Radek Grzeszczuk® , Eftychios Sifakis®;
Daehyun Kim{ Sanjeev Kumari Andrew P. Selle?; Jatin Chhugani!
Matthew Holliman; Yen-Kuang Chent

fMicroprocessor Technology Labs, Intel

Nokia Labs Stanford University

christopher.j.hughes@intel.com

ABSTRACT

We explore the emerging application area of physics-based-s
lation for computer animation and visual special effects.péar-
ticular, we examine its parallelization potential and cluéerize its
behavior on a chip multiprocessor (CMP). Applications iis ttho-
main model and simulate natural phenomena, and often direct
sual components of motion pictures. We study a set of threk-wo
loads that exemplify the span and complexity of physicalusam
tion applications used in a production environment: fluichain-
ics, facial animation, and cloth simulation. They are cotapan-
ally demanding, requiring from a few seconds to several tB&to
simulate a single frame; therefore, they can benefit gréatty the
acceleration possible with large scale CMPs.

Starting with serial versions of these applications, wealtelize
code accounting for at least 96% of the serial execution,ttare
geting a large number of threads. We then study the most si@en
modules using a simulated 64-core CMP.

For the code in key modules, we achieve parallel scaling »f 45
50x, and 30x for fluid, face, and cloth simulations, respetyi
The modules have a spectrum of task granularity and lockéxg b
havior, and all but one are dominated by loop-level paialiel

1. INTRODUCTION

In designing future generations of microprocessors, ititcal
that we consider the requirements of future workloads. Gae k
emerging workload domain is computer animation throughsphy
ical simulation. Physical simulation applications modeimplex
natural phenomena, such as ocean waves crashing on a share, o
flag waving in the wind by means of numerical simulation of ghy
ical laws. Physical simulation can be used in a variety dirsg
such as weather prediction, movie special effects, and atenp
games. Modeling different natural phenomena requires erskyv
set of techniques, algorithms, and data structures, madtiggical
simulation both complex and general.

This paper focuses on physical simulation intended foraliza-
tion (e.g., the output can be rendered for inclusion in fesfilms).
The goal of these applications is to recreate the visual rexqee
of a human observing a natural phenomenon. This leads to an em
phasis on visual plausibility and simulation efficiencyheat than
100% accuracy in modeling all intermediate phenomena. €rher
fore, for the majority of phenomena simulated, the applicettar-
get the scale and level of detail that is perceivable by a imuotea
server. This typically excludes physical phenomena happest

Many modules operate on streams of data. In some cases, modé&ither the microscopic level (e.g., molecular dynamicsesk @vo-

ules iterate over their data, leading to significant temiplareal-
ity. This streaming behavior leads to very high on-die andnma
memory bandwidth requirements. Finally, most modules Hittie
inter-thread communication since they are data-pardilela few
require heavy communication between data-parallel ojoerst

Categories and Subject Descriptors: C.1.4 [Parallel Architec-
tures]; J.2 [Physical Sciences and Engineering]: Physics

General Terms: Performance, Measurement.

Keywords: CMP, physical simulation, characterization, paralleliza
tion.

*Work done while at Intel.

Permission to make digital or hard copies of all or part o$ thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

ISCA' 07, June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/000&5..00.

lution) or beyond our everyday experience macroscopid (evg.,
planetary scale phenomerta).

The applications we study are based on the PhysBAM package
from Stanford [9], which is used by several special effeats #m
production companies, including Industrial Light and Mzgiand
Pixar®). This class of physical simulation workloads has received
little attention from the architecture community outsidegooups
working on high performance computing. It is extremely dadia
ing in terms of computation and memory requirements. Thisesa
the workloads a challenging target for future as well asentrar-
chitectures. Furthermore, these workloads are likelyysars of
future computer games and other mass-market applications.

Itis highly desirable to accelerate our workloads by a lameunt.
On areal machine described in Section 3.1 our workloadsftake
5 to 188 seconds to process a single frame. Acceleration loy-an
der of magnitude or more can enable improved accuracy and mod
eling of new effects. It may even enable some of them to become
interactive or real-time applications.

All major microprocessor vendors are now offering chip riault
processors (CMPs), also called multi-core processors. »fyect
the number of cores on CMPs to increase steadily for the deres

1While phenomena at these extreme scales are often depiateation pictures, they
are typically procedurally and artistically renderedheatthan simulated.

able future, so that CMPs capable of executing applicatiems of
times faster than today’s uniprocessors are on the hori&rch
CMPs would provide exactly the acceleration opportunitgdesl
for production-quality physical simulation applications

However, for an application to harness the computation powe
of such a CMP, it must effectively utilize multiple thread2aral-
lelization of a large code base as used by production-guathiysi-
cal simulation applications is not trivial, especially vahtbe target
parallel scalability is tens of threads.

Our contributions are:

1. We have parallelized three state-of-the-art real-wortdiuction-
quality physics applications that represent and span the-ph
ical simulation problem space: fluid dynamics [4], human
face animation [11, 12, 15], and cloth simulation [1, 2]. Our
parallelization goal was to achieve performance scalingpup
at least 64 threads.

2. We provide a detailed characterization of the key modules
of our applications using real-world inputs via simulatimin
a CMP with 64 cores. Our characterization focuses on the
parallel behavior of the applications, including theirgdbe
scalability and synchronization behavior. We also examine
their memory behavior, including the working sets and inter
thread communication. Our key findings are:

The modules have parallel scaling on 64 threads of at least
23x. Our modules see significant performance benefits with an in-

creasing number of threads up to at least 64 threads. We texpec

even higher performance on 128 threads or beyond for all it o
module. For the portions of the applications covered by #ae k
modules, we achieve parallel scaling on 64 cores of 45x, &0d,
30x for fluid, face, and cloth simulations, respectively.

Most modules are parallelized via data-level parallelismFor
most modules, the primary data structures are a representt
the physical system being simulated. The modules typiqaghy
form their computation by iterating over the data structurdo
parallelize these modules, we partition the data strugiLee split
the loop), with each partition defining a parallel task. Safthese
modules are not purely data parallel and require lockingg|mar-
tition boundaries. For others, we replicate data arountitjoar
boundaries to avoid locking.

The best serial algorithm does not always lead to the best par
allel algorithm. While the initial implementation of a key module
in fluid simulation used one algorithm, our best paralldica of
the module uses an alternative algorithm. The alternasv&ro
slower when serial, but has significantly more thread-lpazhl-
lelism, and so is 116% faster with 64 threads.

Some modules are dominated by small parallel regionsShese
regions are entered often enough to account for a largeoporti
of the applications’ execution time, so their scalabilisyimpor-
tant. However, being small makes these modules sensititasko
scheduling overheads and barrier cost.

Load imbalance reduces parallel scaling for many modules.

Few modules have high inherent inter-thread communica-
tion. While six modules have a large fraction of their L1 misses
to shared data, false sharing is the source for two of thase, a
barrier synchronization is the source for another two. Hu bof
inter-thread communication is largely intentional, simeea priori
assumed it would limit scalability (in many cases we avoidith
redundant computation).

Most modules are streaming. Many of the modules perform
numerical operations on vectors, matrices, and/or elesieatspa-
tial representation of the problem (i.e., a grid or mesh)is Téads
to a streaming access pattern. Some modules repeatediynstre
over their data structures (e.g., iterative solvers),iteatb a large
amount of temporal locality. In those cases, the last-Ipest
thread working set size also decreases with an increasimipeu
of threads, due to our use of partitioning for paralleliaati

Some modules have high on-die and off-die bandwidth us-
age. Many of the streaming modules also perform relativelydittl
computation per element per invocation or iteration. Th&itts in
high bandwidth usage. Five modules have on-die communitati
to-computation ratios of at least one byte per ALU operatand
three have off-die ratios exceeding 0.5 bytes per ALU ojpamat
Since CMPs have a large number of threads sharing both the on-
die and off-die interconnects, those must provide high idith
or this will limit the scalability of these applications.

2. APPLICATIONS

Our applications are derived from the physical simulatianks
age called PhysBAM, developed at Stanford [9]. The package i
cludes techniques for solving a variety of physics-basedating
problems such as fluids, rigid bodies, and deformable solitie
code base has more than 150,000 lines of code. It has not been
hand-coded with single-instruction-multiple-data (SlMibstruc-
tions.

We have chosen to study three physical simulation appdioati
that are representative of and span the space of physiestbam-
puter animation: computational fluid dynamics using a peatevel-
set method, facial simulation using the finite element meétlamd
cloth simulation using a mass-spring system. Each is reptas
tive of the state-of-the-art in its respective domain. Fégli shows
example output frames from the applications, using theweeld
inputs that we use in this study. Face and cloth simulaticlude
similar collision detection modules. For cloth simulationllision
detection is a key part of the application. However, for faiceu-
lation it is only a minor part of the application, and is siggantly
simpler computationally than for cloth simulation. Thenef, we
disable the collision detection part of face simulation.

The applications we study are thematically similar to otimer
merical computing and physical simulation codes from paplénch-
mark suites such as SPLASH-2 [17] and SPEC CPU2006 [13].
However, our target applications are quite different inpgcand
context from these other codes. This leads to fundamerdfbyr-
ent domains, governing equations, algorithms, and cortipotd

9 of our 14 modules have more than 10% load imbalance when run behavior. The unique requirements of a special effectsymtozh

with 64 threads. This is due to variance in task size and teo fe
tasks. The modules that suffer from load imbalance wouldrinc
significant overheads (e.g., redundant computation) tease the
number of tasks — we believe we have chosen reasonable timdeo
between load imbalance and parallelization overhead.

Two modules have high parallelization overhead from lock-

ing. These modules use locking to protect small operations in a

tight loop, leading to high parallelization overheag60%). How-
ever, the locks have little contention, so this does not chparallel
scalability.

environment typically dictate specific choices of theaatand al-

gorithmic formulations which substantially limit the olegp with

other implementations of numerical computing techniques.
We next describe each of our applications.

2.1 Fluid Simulation

Simulated water volumes are key elements in an increasimg nu
ber of feature films, making fluid simulation (a.k.a., congtignal
fluids dynamics, or CFD) very common in the special effeatisi#
try today. Our fluid simulation application uses the incoegsible

Face simulation

Fluid simulation

Cloth simulation

Figure 1: Sample output frames for our applications.

Navier-Stokes equations to describe the evolution of a lnddya-
ter with a free surface (as opposed to a fluid confined to aiglatirt
container). The equations of flow are discretized on a Carte3D
grid using a finite difference formulation. The fluid-air entace
is represented by a signed distance function, defined onatine s
grid and updated using the particle level-set method [4f 3im-
ulation pipeline employs techniques such as the semi-loaiga
method [14] for velocity advection, the solution of a Porssgua-
tion for making the velocity field divergence free using aqore
ditioned conjugate gradient (PCG) algorithm, and the usthef
fast marching method [10] and fast sweeping method [18] der r
initialization of the signed distance function.

2.2 Face Simulation

S. Other

o 1007 S. Other g P. Other S. Other
I (F;.LOther AVIF P. Other
= 75+ MLe CG AV
s AP HI
2 5o FSM = CPL
3 UPBS
S 25t PCG UPBS AF
B CG
] .

Fluid Face Cloth

Figure 2: Execution time breakdown for each application.

3. PARALLELIZATION

Face simulation animates an anatomical model of a human face The applications we study are all computationally demagéin

driven by the action of facial musculature and the motionhef t
jawbone [11, 15]. A time sequence of muscle activation \&lue
and kinematic parameters for the jaw motion is provided patin
The Finite Element Method is used in conjunction with an aatau
muscle constitutive model to define forces on a tetrahedeshm
discretization of the flesh. The application assumes tratalda-
cial motion exhibits negligible ballistic or inertial effts. It thus
animates the face model as a sequencseafly states. Each state
is defined solely by muscle activation values and the positib
the cranium and jawbone. Such a state is efficiently compuited
a quasistatic solver which uses Newton-Raphson iteratiotet
termine the steady state as the solution to a nonlinearrysfe
equations.

2.3 Cloth Simulation

Cloth simulation animates the time evolution of a deforreabl
surface having the material properties of a fabric sheee dbth
surface deforms under the influence of external forces ssighea-
ity or forced stretching, internal forces such as the elasponse
to tensile stress, shearing, and bending, and reacts tsion#l with
itself or elements of the environment. The deformable deim-
plemented as a mass-spring system where the simulatiaoleart
are connected into a triangle mesh. The simulation mesh-is en
dowed with a network of spring elements aligned with all exiged
all triangle altitudes. Bending elements provide addaidiorces
that resist change in dihedral angles formed by adjacertglés.

Each time step of the deformable object evolution consikts o
a forward time integration followed by collision resolutil, 2].
We employ a semi-implicit Newmark integration scheme ttrsssu
explicit integration for position updates and implicitals for ve-
locity updates. A collision resolution algorithm then dageand
attempts to resolve collisions of the cloth with itself ohet ob-
jects that were caused by the integration step. Collisidaatien
is accelerated using a topological hierarchy of boundingbeon-
structed every few frames. Should the collision resolufah the
integration-collision loop is repeated with a reduced tstep.

on a real system described in Section 3.1 they take on avé&gje
14, and 5 seconds to process a single frame for fluid, face, and
cloth simulations, respectively. Since they will all behéfom a
large performance boost, we parallelize the applicatitargeting
a large-scale CMP (i.e., one with tens of cores). Given the af
the code base, we have not parallelized 100% of the applitati
but we have come close enough 96% for all applications — see
Section 3.1) to demonstrate that this is achievable. In stases,
our parallelization impacts the output values. This is ptaiae
as long as the approximations are still visually realistibus, we
visually checked the results to verify acceptable output.

We profiled the serial applications on a real machine to sélec
most expensive modules as targets for parallelizationti®es.1).
We then parallelized those modules, as described in Se@i@rto
3.5, targeting a large scale CMP. We discuss only the mostrexp
sive subset of the modules we parallelized. After parakigion,
we measured the performance of and characterized thistsoibse
modules using simulation since no large scale CMP is cuyrent
available (Sections 4 through 7).

3.1 Selecting Representative Modules

We took the conventional approach to parallelizing largdeco
bases: prioritize the modules of each application and letizd
them in decreasing order of importance. Therefore, we fist p
filed each application to determine the most expensive nesdul
a serial execution.

For profiling, we used a real 4-way In@Xeon™ 3.0GHz sys-
tem, with 16GB of DDR2-3200 and 3-levels of cache on each pro-
cessor: 16KB L1, 1MB L2, and 8MB L3. Maximum memory
bandwidth is 6.4GB/s. 1/O is minimal for all three applicats
on this system. For each application, we ran long enough tw-am
tize any warmup effects and also to average out input-degregnd
behavior.

Figure 2 shows the breakdown of the execution time of each ap-
plication. We label the key modules (i.e., the most expensives)
that we will focus on for the rest of this paper. For all threeleca-

tions, the key modules make up more than 75% of the applitatio
execution time. We also indicate the aggregate time takethdy
other parallelized modules with “P. Other” and the remajrég-
gregate serial modules as “S. Other.” The serial modulesrak
only 3%, 1%, and 4% of the execution time for fluid, face, amdicl
simulations, respectively. Further, almost all of the aemodules
are easily parallelizable (e.g., array copy operationkg modules
that are not easily parallelizable account for less thafo0oi the
execution time. The exception is a kd-tree building moduleldoth
simulation, which accounts for 2% of the execution time. Ideer,
kd-tree building has been shown to be parallelizable [6].

3.2 Parallelization Framework

The applications were parallelized using the fork-join @ldé,
8, 16] in which the program consists of alternating serial paral-
lel sections. This model is attractive because it allowstorstart
with a serial program and selectively parallelize the mostfifable
portions of the program until satisfactory performancecisieved.

We use a task queue model to parallelize all modules. A par-
allel section of the program is specified as a list of tasks ¢ha
be executed concurrently. The tetask denotes a parallel unit of
work. In our infrastructure, a task is specified as a funcgiomter
together with its arguments. To scale to N cores, the prodrasn
to expose at least N tasks. If the execution time of all thkstase
roughly the same, it might be sufficient to expose exactly $ksa
However, if the task sizes vary significantly, the paralégtioon has
to be broken into enough tasks to avoid load imbalance.

We implemented distributed task queues with work steakmng,
effective and widely used task scheduling technique. Weroped
the implementation so that it was efficient even for smaksand
a large number of threads. We have benchmarked our implement
tion against Cilk [5], TBB [16], and OpenMP [8] to make suratth
our implementation was efficient.

3.3 Fluid Simulation Modules

Many of the fluid simulation modules operate on a 3D uniform
grid representing the space being simulated. To paralelizse
modules, we typically partition the grid into cubes, eachtaming
a small number of grid cells. In some cases, the cubes arpénde
dent, and in others we require locking to protect reads aitéswo
grid cells along partition boundaries.

Advect Particles (AP). The particle level-set method utilizes a
dual representation of the fluid-air interface in order tpiove ac-
curacy and minimize volume loss. Weightless marker padielre
seeded on either side of the zero isocontour of the signéaindis
function corresponding to the fluid-air interface. Thosetipkes
are advected along with the fluid and are used to correct tyeesh
of the interface as encoded by the signed distance funcfitr
AP module uses the second order Runge-Kutta integraticenseh
to advance these particles with their underlying fluid vities. It
iterates over the simulation grid, using the informatioraiesmall
3D window around each grid cell to update the positions of the
particles it contains. For parallelization, we partitidwe tgrid into
cubes, and operate on the particles in each cube indepgndent

Construct Levelset (CL). CL rasterizes rigid bodies that interact
with the grid so that their effect on fluid evolution can be gaited.
CL operates by iterating over the simulation grid and indéapng

a signed distance value from the surface of the object ugiag t
object’s kinematic state and its own signed distance reptation

in its reference position and orientation. For parallelora we
partition the grid into cubes, and operate on each indepeilyde

Fast Sweeping Method (FSM) The signed distance function re-
ceives updates and corrections to ensure that the zeronisero
accurately tracks the fluid-air interface. However, awaynfrthe
zero level set, the signed distance property may be vioksetre-
sult of these corrections. The Fast Sweeping Method [18jésl tio
re-initialize the level-set values to restore the signestiagice prop-
erty without perturbing the location of the zero isocontolihas
three phases of operation on each cube of the simulation tiped
firstinitializes each grid cell, the second performs swemges each
cube in all eight different diagonal directions to propa&gaterface
information, and the final to flag cells far from the interfadeor
parallelization, we use duplication of cells around thertaries of
the cubes to make the cubes completely independent. Sinitie mu
ple sweeps may be performed simultaneously on a single oube,
use locking to protect the grid cells.

Modify Levelset Using Escaped Particles (MLe) During the evo-
lution of the fluid volume, the dual representation of thediair
interface might become inconsistent; that is, particles tiad pre-
viously been marked as belonging to the fluid side of the fater
might have crossed over to the air region according to theesig
distance function, and vice versa. MLe uses the informdtiom
the particles in the vicinity of each grid cell to update thgned
distance function in each cell. Fine grain locking is emphlbyo
guard updates at the boundaries of cubes.

Preconditioned Conjugate Gradient (PCG) Our fluid simula-
tion models an incompressible fluid (i.e., the volume remaion-
stant). To enforce incompressibility, velocity updatesstnmain-
tain a “divergence free” property. This is accomplisheatigh a
projection operation that involves the solution of a Paissqua-
tion. The system matrix is sparse, symmetric, and positefe d
inite, allowing the use of a fast conjugate gradients (CGyeso
Furthermore, PCG uses an Incomplete Cholgslegonditioner to
substantially accelerate convergence of CG. PCG involwesgaird
and backward substitution, matrix-vector multiplicatiand vector
dot products. For parallelization, we employ a red-blaakder-
ing scheme [7]. This breaks the matrix into a set of red blacic
black blocks, where blocks of the same color are indepenafent
each other. This obviates the need for fine-grained lockirtea
cost of slightly slower convergence.

3.4 Face Simulation Modules

Parallelization of all modules used in our Finite Elementsi
lation framework is based on a static partitioning of theidation
mesh. Tetrahedra and edges at the boundaries of partitiags m
span nodes belonging to two or more partitions. In this cafsdl a
copy of each such element is given to each partition. Thimieli
nates the need for locking at the expense of repeated cotiguuta

Update Position Based State (UPBS)UPBS uses an iterative
Newton-Raphson algorithm to find the steady state of the simu
lated mesh as the solution to a nonlinear system of equations
each iteration, this system is approximated by a symmetrit a
positive definitdinear system. The UPBS kernel precomputes the
matrix of this system. The sparsity structure of this maafiews

its storage in two one-dimensional arrays, respectivedgxed by
node and edge indices in our mesh. The aggregate matrix is the
sum of the contribution of each element (tetrahedron) innoesh.
We circumvent output dependencies by duplicating tetnehadd
edges in the simulation mesh that span nodes assigned eoeditf
partitions. We then iterate over the (overlapping) setsethhe-
dra assigned to each partition, computing their contrimgito the

global matrix and distributing them to the entries corresjing to
the nodes and edges of each tetrahedron.

Add Velocity Independent Forces (AVIF). While UPBS com-
putes the matrix of the linear system arising from the Newton
Raphson algorithm, the AVIF module computes the right haael s
of that system. The module iterates over the elements ofiour s
ulation mesh, reading the positions of their vertex nodescam-
puting a force contribution to each of those four nodes. kshibn
similar to UPBS, each partition processes all elementscihatiain

at least one node owned by the particle, but only writes the result-
ing forces on those nodes owned by the partition.

Conjugate Gradient (CG). This module employs the conjugate
gradient algorithm to solve the sparse linear system adsenbly
modules UPBS and AVIF. The fundamental operations perfdrme
by this module include a sparse matrix-vector multiplicatus-

ing the matrix precomputed by UPBS and several streaming op-

erations. As a result of the information duplication by URB®
system matrix is encoded in two flat arrays that are accessad i
sequential fashion to perform matrix-vector multipliceti Global
reductions necessitate two barriers per iteration of terdghm.

3.5 Cloth Simulation Modules

Parallelization of some modules in our cloth simulatiomfea
work is based on a static partitioning of the simulation me#n-
ilar to the partitioning of the tetrahedron mesh describe&eéc-
tion 3.4. The set of nodes in our simulation mesh is partitbn
between different tasks, and edges and triangles that arpasti-
tion boundary are duplicated between the correspondirtgipas.

Update Position Based State (UPBS)Following the explicit po-
sition update for the cloth particles at each time step, reg¢y®-
sition dependent properties such as length and orientafiedge
springs or endpoint locations for altitude springs can kec@m-
puted to accelerate subsequent modules requiring forc@utam
tion. These are all properties of the simplices used in tiiaitien

of forces (edges, triangles, and triangle pairs) and trainputa-
tion is parallelized by simple partitioning of the respeetsimplex
sets.

Conjugate Gradient (CG). The employed iterative Newmark in-
tegration scheme calls for the solution of a symmetric, tp@sdef-
inite system to determine the velocity updates for the cfmh
ticles at each time step. The matrix of this linear systenmhés t
sum of three matrices, corresponding to the different ingtfiorces
(edge springs, altitude springs, and bending elementsidered
for cloth simulation. These are sparse matrices, havingeron
entries only for pairs of indices corresponding to partidleat are
connected by a force, i.e., belonging to the same edge gtean
or adjacent triangle pair in our cloth mesh. For parall¢iora the
cloth mesh is statically partitioned, as described earlibe overall
system matrix is not explicitly partitioned; instead eaabsimparti-
tion implicitly stores possibly duplicated matrix elemesufficient
for computing the action of the matrix on the particles it swithe
rest of the CG algorithm consists of streaming operationshen
particle velocities, such as vector multiply-and-adds dotdprod-
ucts. Global reductions necessitate three barriers petie.

Add Forces (AF). Computation of elastic forces is needed for the
explicit parts of the Newmark scheme and as a part of the @kpli
solver. For parallelization, the mesh is partitioned. Facteforce

defined on a simplex, the positions or velocities of its noales
used to determine forces on the same particles. Each tagdswri
the forces it computes only for the particles it owns.

Hierarchy Intersection (HI) . Collision detection and handling are
based on proximity detection of geometrical features ofsingau-
lation mesh (i.e., points, edges, and triangles). Proyimiteries
are performed using bounding box hierarchies. Intersgdtivo
bounding box hierarchies efficiently provides a pruned $eto-
didate interacting feature pairs from the correspondiladuies sets.
Algorithmically, this is equivalent to the traversal of aerwith

a maximum branching factor of four. This tree has a maximum
height oflog(IV), where N is the number of features considered.
However, the tree is typically sparse, with an expected rarmb
O(N) nodes, out of the®(N?) maximum nodes allowed by its
branching factor. For parallelization, a dynamic partitig is em-
ployed. The tree is traversed in a breadth-first fashiorl argiven
number of independent subtrees has been identified. Thieseeas!
are subsequently traversed in parallel, with their respecesults
merged at the end.

Create And Prune Lists (CPL). HI returns an unordered list of
potentially interacting feature pairs. Before furthergessing, this
list has to be reordered into a list of interactions for eaxivid-
ual feature. Furthermore, geometrically adjacent feat(eeg., a
triangle and its vertices) will always be registered as iy
interacting, however such results are false positives liwvban be
pruned. For parallelization, the unordered list of featoad's is
partitioned and dispatched to different tasks, which use dimin
locking to register the interaction with each of the two iiveal fea-
tures. A second sweep partitions the set of features an@g@dsdo
prune their interaction lists of the false positives.

Adjust Velocity (AV) . Following the identification of interacting
feature pairs, the particles of the simulation mesh aresseijlin
response to the detected collision. Each adjustment amdant
reading the positions and velocities of the involved p&tiand
correcting their velocities to account for collisions. Tdw@ustment
is applied in a Gauss-Seidel fashion; thus, any correctioa fea-
ture pair will influence the correction performed on subsedjly
processed pairs. An ordered list of feature pairs is paniil into
contiguous sublists, which are dispatched to differergdts. Fine
grain locking is used to guard reading and writing to paesdhat
are shared among feature pairs processed by differentithrea

4. CHARACTERIZATION METHODOLOGY

Since no large scale CMP is available for us to experimerit,wit
we use cycle-accurate simulation to measure performane@af
characterize the parallelized workloads. However, thedpeed of
cycle-accurate simulation forces us to make some practicates.
Simulating a full multi-frame run, or even one entire frarokpne
of our applications is infeasible. Therefore, we simul&ie $et of
most expensive modules (i.e., those described in SectioB@he
modules are too expensive to simulate in entirety; howeesuch
modules are iterative and have uniform behavior acrosatiters.
Therefore, for modules too expensive to completely sineylate
simulate a representative iteration.

Since we only simulate a single invocation of each module, we
take care to pick an invocation from a representative areésting
frame. For fluid simulation, we model a ball falling into a aub
container partially filled with water. We choose a frame safier
the ball hits the surface, and model the space using a 158¢000

—1f{ Bi-directional ring\}— L2
64B wide/direction Bank 1
1 cycle/stop
40 stops/direction
2 components/stop

32KB L1 Data Cache
4 ways, 64B lines, 3 cycles
Stride prefetcher

1MB L2 Bank Data Array
8 ways, 64B lines, 8 cycles

—

2-wide, in—order issue CR
2k entry gshare branch pre

L2 Tag + Directory
4 cycles

o

16 outstanding requests/bank 3.7B/cycle/banl

Memory
280 cycles

Figure 3: Simulated system.

grid. For face simulation, we model a person speaking a seete
We choose a frame where the person is in the middle of a word,
and model the face with 370K tetrahedra. For cloth simutatice
model a rectangular piece of cloth interacting with a sofitlese.

We choose a frame where the cloth is in contact with the sphere
and model the cloth with a 103x61 mesh.

We take care to simulate each of our modules in the context of
the full application. Thatis, we ensure that the input tdeaodule
is real and representative of the inputs that the moduleradkbive
in a full, multi-frame run. We also take care that the caclagest
is close to what it would be when the module is run as part of the
full application. We fast forward through the full applieat (i.e.,
we simulate the architectural state, but not the microgechiral
state) until we reach the module of interest, and then beagiper-
formance simulations. In cases where cache warming isnesjui
we begin performance simulation early enough to ensuretltieat
appropriate data is touched before the module starts. sett@ses,
we discard the timing and other statistics from the warmujpge
keeping only those from the module of interest.

We use a cycle-accurate, execution driven CMP simulator for
our experiments. This simulator has been validated agagadt
systems and has been extensively used by our lab. Figurex&sho
our system configuratioh.

cache line also holds the directory information for thaelif.e.,
state and sharing vector). The ring has 40 stops, each ohviais
two components connected to it (i.e., core or L2 cache barthg.
ring stops have no extra buffering, so messages alreadyeaint
have priority over those entering the ring — messages onittige r
are guaranteed to go forward each cycle.

We assume a very high main memory bandwidth so that we
do not artificially limit the scalability of the modules. Had?2
bank has 16 MSHRs, and can submit a request to memory ev-
ery cycle. This gives an aggregate main memory bandwidti®of 5
bytes/cycle®

5. INSTRUCTION MIX AND EXECUTION

TIME BREAKDOWN

Table 1 gives the instruction mix and breakdown of execution
time for single-threaded runs of our modules. All three of ap-
plications are floating-point intensive, but some indidtionodules
are dominated by integer computation (FSM, AV, and CPL). FSM
spends much of its time manipulating a heap, while AV and CPL
have many branches.

The second part of the table shows the instruction throughpu
in instructions per cycle (IPC), and also the fraction ofcetesn
time from the three primary performance bottlenecks: fatelfls,
ALU stalls, and memory stalls. ALU and memory stalls are egcl
spent waiting for a result from an ALU or memory instructioes
spectively. Many of the ALU instructions in our modules avad
latency floating-point ones. Memory instructions also takgtiple
cycles, even for an L1 hit. Since the core we model is in-qQoler
formance is sensitive to instruction latencies. FSM, A\ &PL
also suffer from a significant fraction of fetch stalls duéhtod to
predict, data-dependent branches — branch mispredicites are
20%, 17%, and 20%, respectively.

6. PARALLEL CHARACTERISTICS

6.1 Parallelization Overhead

Parallelization overhead is the difference between thegien
time of the original serial version of the cod&g, and the one
thread execution of the parallel version of the cdfle, More pre-
cisely, parallelization overhead is definedfagsT—S x 100%. Fig-
ure 4 shows the parallelization overhead for each of the ilesdcan
a real machine.

Parallelization overhead comes from several sourcest, Hies
code has to be modified to expose the parallel tasks in the pro-
gram (Section 3.2). The overhead from this is usually fasriyall
(task queuing overhead for one thread in Table 2). Secooking

We model a 64-core CMP, where each core is in-order and has neeqs to be introduced in some modules to ensure mutual-exclu
a private L1 data cache, and all processors share an L2 cachesjon when performing updates to shared data structureso@se,

Each L1 cache has a hardware stride prefetcher [3]. Thetphefie
adapts how far ahead it prefetches — if it detects that it tfulty
covering memory access latency, it issues prefetchesefadit.
The cores are connected with a bi-directional ring. The lcheds
broken into 16 banks and distributed around the ring. A gosshe
line can exist in only one L2 bank according to an addressihgsh
function (XORs the most significant bits with the least siigaint).
Inclusion is enforced between the L1s and L2. Coherencedaatw
the L1s is maintained via a directory-based MSI protocotHda2

WWe also ran experiments on a simulator that includes simoulatf a full operating
system. The parallel scaling results from that simulater\ary close to those we
present here. However, that simulator does not give asle@iaformation as the one
used here.

during a single threaded execution, there is no contentiothe
locks and the locking overheads are entirely due to theuiostms
to acquire and release locks. FSM, AV, and CPL incur significa
locking overheads (Table 2). In AV, each critical sectioguiees
acquiring multiple locks (typically four). The standarchaique
to avoid deadlocks when acquiring multiple locks is to sloeth so
that there is a total ordering on lock acquires. The para#igbn
overhead in AV is primarily due to sorting and locking. Figal
some modules have to perform extra work to exploit paratheli
In FSM, the grid is partitioned into overlapping tiles toosii them
to be processed in parallel. The overlapped regions areegsed

#L2 banksX#L2 MSHRs/bankXxline size
memory latency

8 Memory bandwidth =

Instruction Mix Execution Time Breakdown
Modules Branch Int FP Memory IPC Fetch | ALU Memory
Fluid AP 4% 22% | 25% 49% 0.81 3% 24% 32%
CL 5% 30% | 30% 34% 1.00 7% 33% 8%
FSM 10% 43% | 7% 40% 0.85 [10% 32% 15%
MLe 6% 45% | 18% 32% 0.59 4% 17% 48%
PCG 9% 38% | 15% 38% 0.61 3% 31% 32%
Face AVIF 10% 27% | 24% 39% 0.57 7% 17% 47%
CG 1% 18% | 29% 52% 0.94 1% 22% 24%
UPBS 8% 34% | 23% 35% 0.91 8% 25% 18%
Cloth | CG 2% 17% | 23% 58% 0.90 1% 30% 23%
UPBS 4% 19% | 29% 48% 0.61 3% 28% 26%
AF 2% 16% | 23% 59% 0.89 1% 27% 25%
AV 14% 57% | 7% 23% 1.09 15% 12% 15%
CPL 15% 63% | 3% 19% 0.82 13% 14% 26%
HI 11% 35% | 11% 43% 0.60 9% 36% 24%

Table 1: Instruction and execution time breakdown for singke-thread runs. For execution time, we show the IPC and the peentage
of time taken by fetch stalls, ALU stalls, and memory stalls.

Number Execution Serial Section(s) Parallel Section(s)
Modules of Time Execution Parallelism No. of Tasksy Load Overheads
Threads (M Cycles) Time Type Imbalance | Task Queue Locks
Fluid AP 1 1937.66 0.00 % Nested Loop 3000 - 0.05 % -
64 34.19 0.02 % 3000 7.83 % 3.65 % -
CL 1 848.11 0.00 % Nested Loop 4708 - 0.13% -
64 14.98 0.06 % 4708 1.43% 10.18 % -
FSM 1 1799.67 0.02 % Nested Loop 125, 1000, 125 - 0.01 % 3.12%
64 32.58 2.46 % 125, 1000, 125 9.61 % 1.29 % 3.06 %
MLe 1 942.67 0.00 % Nested Loop 2 x 1500 - 0.09 % 0.95 %
64 17.97 0.17 % 2 x 1500 12.57 % 6.81 % 1.55%
PCG 1 254.47 0.01 % Loop 4 x1,4x 414,833 - 0.19 % -
64 6.19 0.41 % 4x 64,4x 414,833 | 1431% 11.98 % -
Face AVIF 1 759.51 0.00 % Loop 1 - 0.00 % -
64 16.99 0.17 % 64 20.29 % 0.27 % -
CG 1 16904.88 0.06 % Loop 406 x 1 - 0.00 % -
64 323.52 10.35 % 406 x 64 3.68 % 3.82% -
UPBS 1 7073.99 0.00 % Loop 1 - 0.00 % 0.00 %
64 146.91 0.02 % 64 14.00 % 0.03 % 0.19 %
Cloth | CG 1 56.25 0.11 % Loop 26x 1 - 0.03 % -
64 2.09 5.09 % 26 x 64 15.57 % 25.96 % -
UPBS 1 22.34 0.15 % Loop 3x1 - 0.03 % -
64 0.62 6.20 % 3 x 64 10.18 % 12.93 % -
AF 1 9.05 0.23 % Loop 6x1 - 0.04 % -
64 0.39 5.47 % 6 x 64 17.00 % 31.83 % -
AV 1 107.02 0.00 % Loop 1 - 0.01 % 8.80 %
64 2.44 0.12 % 64 24.74 % 2.02% 9.96 %
CPL 1 44.05 0.13% Loop 2,1571 - 0.02 % 11.75%
64 0.98 6.32 % 64, 1571 8.75 % 12.11 % 8.69 %
HI 1 84.13 0.25% Tree 1026, 1 - 0.56 % -
64 2.77 8.28 % 1026, 64 21.60 % 19.11 % -

Table 2: Parallel characteristics of the modulesi This column shows the number of tasks in different parallel gctions in the module.

[Modules T 2ndlevel | Fits? [3rdlevel [Fits?]

| 196

| Fluid N = grid steps/dimension
2007 AP Streaming
= ’{:‘ CL Streaming
9 o - 3
= ;15& FSM N7 T Maybe |
N & MLe Streaming
=3 N
% < 1007) N PCG N3 | Maybe ” N3 ‘ Maybe
< g i Face N = # of tetrahedra
501
ao < - AVIF Streaming
—
o ﬁ © o[] © © o o © ,:" CG % | Yes ” % ‘ Maybe
L 4 s o Ol O OOV L > i I UPBS Streaming
< O o 3‘ %LJ <>(O g0 <TG Cloth N'= # of triangles
Fluid = =) =) Cloth = # of potential collisions (typically on the order of N
ul ace ot CG & | Yes & | Yes
. . . UPBS Streaming
Figure 4: Parallelization overhead for each module shown as AF N v
the percentage increase in execution time for a single-theeled ~ - =
. = S
run of the parallel code versus the serial code. The measure- P £ Yos
ments reported in this table were obtained from an entire ap- O g Yes
plication run on a real machine (see Section 3.1). Consequigy) L

the numbers in this table can be compared only qualitatively

with the numbers in Table 2. Note that the locking overhead on _Table s: Per thread working set size growth as a function of
today’s CPUs are significantly higher than what we expect in input size and number of threads (P), and whether the working
future CMPs set is expected to fit in a reasonable size on-die cache. Wonkj

sets that trigger high on-die traffic in our simulated systemare
highlighted light gray. Working sets that additionally tri gger

multiple times (once on behalf of each tile to which that oegi high off-die traffic are highlighted dark gray.

belongs). This incurs significant overhead.

For FSM, the original algorithm had bad scaling and was re- The |oad imbalance in a parallel section is a function of thg-v
placed by a completely different algorithm. To do interfacep- ability of the size of the tasks as well as the number of tagke(
agation in fluids, the original serial code used the Fast Maze in the table). The lower the variability, the fewer tasksrageded to
Method (FMM) [10]. However, FMM is not scalable to a large gptain good load balance. Unfortunately, as the numberstbtis
number of threads (we see only 20.8x on 64 threads). Conse-jncreased, the parallelization overhead (Section 6.1pases. For

quently, an alternative technique called Fast Sweepingtef18] those modules that perform redundant computation arourti pa
was employed. FSM is 30% slower than FMM for one thread but tjon houndaries (see Section 3), the parallelization aetgrows
has much better scalability (54.5x on 64 threads). quickly with the number of tasks. For these, we minimize then
. ber of tasks at the cost of significant load imbalance.

6.2 Scalability

Figure 5 shows the scalability of the parallel version fdrtlaé Task Queuing Table 2 shows the overhead of task queuing in the
modules. Most modules show fairly good scaling behavior. different modules. For some modules, this overhead is lang@4

We now look at the reasons why these modules do not deliver threads. In our implementation of task queues, all tasks foar-
linear scaling. allel region are enqueued before we enter the region (hqueues

are serial code). Therefore, if the number of tasks is largaa
Serial Sections Amdahl’s law dictates that the scalability of a the parallel region is small, the enqueue overhead is |&gelter-
module is bound by the size of its serial sections. For imstan native implementation of task queues might reduce this ahelro
if 1% of the execution time on a one thread run is serial, iitBm task queue overheads.

the scaling of the module to about 39 on 64 threads. Table®sho In addition to the reasons listed above, parallel scalinglss
that the size of the serial sections in the various modulessaison- affected by the memory behavior. This is covered next.

ably small. For the one thread runs, the serial code accdants

much less than 1% of execution time for all modules. 7. MEMORY BEHAVIOR

We now examine the memory behavior of the key modules. For
Locking. Table 2 shows the overhead of grabbing locks to access each module, we characterize the working set sizes, théeoand
shared data in the different modules. In every case, thergck off-die bandwidth usage, the effectiveness of prefetchamgl the
overhead does not increase with the number of threads. fdhis i data Sharing behavior. Our ana|ysis is inspired by an an;;d’yﬂ]e
cates that there is little contention on the locks and thatdlok- SPLASH-2 benchmark suite [17].
ing is not a significant factor to the scalability of these miled. .
This is because the overhead to access an uncontended Istymo 7.1 Working Sets

impacts the parallelization overhead (Section 6.1) andscaling. The cache miss rate versus cache size curve can providetus wit
Note that the locks used to implement the task queuing are ac-insight into how much temporal locality each module has, e w
counted for separately as part of task queuing overhead é&ew). as how effective caches will be at reducing bandwidth usadeet

next level of the memory hierarchy.
Load Imbalance. Table 2 shows the load imbalance on 64 threads A knee in such a curve is commonly referred to as a working set
for the modules. For some modules, the load imbalance igwelia size. A working set is a group of data objects with similar penal
large, making this one of the primary limiters of parallehlétg. locality. Having a cache at least as large as a working seiges

o
i

=) % i 3 g 8 o
° 7 ~ A g o ©
O 48 3 3 3 <
(] <~ o
& 13 : :
d [=] - =]
6 32 -] 15 19 — 2]
©
= 16
<
D_ oC: P« o Cs [SRom %y P ey Py Py P Py %y P
£ £ i — o N o N
Cores —»"‘Nvmgga ‘-‘quggg "‘Nvmggg F‘quggg P‘Nvmsgg "‘quggg HN‘“"E%@ “‘quggg ‘-‘quggg HNvmggg "‘quggg "Nvmggg HNV“’E%% F‘quggg
AP CL FSM MLe PCG | AVIF CG UPBS | CG UPBS AF AV CPL HI
Fluid Face Cloth

Figure 5: Parallel scaling for each module. Note that the exaution time is normalized to the execution time of the parakl version
running on one thread. This was done to emphasize the scalirtgend of the parallel version. To obtain speedups over the sl
version, the data in this graph has to be combined with the dat in Figure 4.

a significantly lower miss rate than having a cache just sntiban
the working set. Depending on how large the reduction in maits
is, and the characteristics of the cache hierarchy, thisnesylt in
a significant bandwidth reduction and/or a performance todos
to lowered average memory access latency.

Typically, applications have multiple working sets be@ds-
ferent data structures in the application have differemiperal lo-
cality. Also, a parallel application’s working set sizesyniz a
function of the number of threads. For example, an appbaoati
could keep significant per-thread state that inflates ones efark-
ing sets.

threaded run of CL, the second-level working set is compased
the tasks in the task queue. AV makes a single pass over d list o
collisions involving up to four nodes each in the cloth me$he
second-level working set is the group of nodes involved illtiple
collisions. HI performs a tree traversal, so its seconeileworking

set is the entire tree (or subtree for each task, for mulgatied
runs).

Impact of Problem Size Since bandwidth usage (and latency to
a lesser extent) is dependent on whether working sets fitattbe,
it is important to understand how the working set sizes camgh
if the problem size changes. Table 3 shows, for the modulgs th

Our Inputs . Figure 6 shows cache miss rate versus cache size for are not strictly streaming, how the second and, if apprégrithe

our modules for two different scenarios. First, we run eaciluhe
with a single thread, using a 256MB, 32-way L2 cache. We et th
L1 associativity to 32 and vary its size from 16KB to 256MB- Al
though not shown, all modules except UPBS-face have a évst-|
working set that is less than 16KB that consists primarilgtaick

— for UPBS-face itis between 16KB and 32KB. Next, we run each
module with 64 threads using the same L1 and L2 configurations
except that we only vary the L1 size from 16KB to 4MB-or both
scenarios, we disable the hardware prefetcher since itnaidk the
working set sizes.

Five modules do not have clearly defined second-level wgrkin
sets (AP, MLe, AVIF, UPBS-face, and UPBS-cloth). These are
largely streaming modules. That is, they touch each dataesiein
their primary data structures a number of times in quick ession
and then do not touch it again. The miss rates in the muléatied
case are somewhat higher for MLe and UPBS-cloth. For the for-
mer, the parallelization decreases the spatial locality, far the
latter, the module is small enough that some cold missesto pe
thread state drive up the miss rate slightly.

The other nine modules have clearly defined second-levek-wor
ing sets. Most of these modules also stream through their pri
mary data structures, but do so repeatedly. This createsrka wo
ing set the size of the entire primary data structures fosthgle-
threaded runs. Since most modules partition their primata d
structures for parallelization, for multi-threaded rumgst (but not
all) have working set sizes of abogf/mary date structurcs size,
FSM, PCG, CG-face, CG-cloth, AF, and CPT all fall into thiseza
gory.

The three remaining modules, CL, AV, and Hl, all have second-
level working sets, but not from repeated streaming. Fosihgle-

4We stop at 4MB because we enforce inclusion between the Ldd.anand the
aggregate capacity of the L1s at 4MB is 256MB, the size of the L

third level working sets grow with the problem size and numbe
of threads. It also highlights the working sets that trigbagh
bandwidth usage in our simulated system (discussed furif&sc-
tion 7.2). The bandwidth usage of the non-highlighted meslus
not expected to have a significant dependence on the prolitem s
for reasonable cache sizes. Thus, we focus only on the glghbli
entries.

Individual algorithms employed within these applicati@as in
principle be used with various input sizes. However, it ipamant
to note that the end application often limits the range ofmiregful
problem sizes. Adequate resolution of the physical phemanbe-
ing modeled typically mandates a minimum problem size. @n th
other hand, an arbitrary increase in resolution and contglex a
simulation may render certain algorithmic choices suloalj or
even call for a different simulation method altogether. Téege
of reasonable problem sizes is especially strict for facikition
and is most flexible for fluid simulation. We have taken thi®in
account in determining whether a working set will fit into asen-
able on-die cache in Table 3, and also in the following disitus

PCG’s and CG-face’s last level working sets for our inputs ar
larger than our L2; thus, a larger input (higher resolutioid @r
more tetrahedra, respectively) will not change the banthwics-
age. For PCG, simulating a lower resolution grid may allog th
working set to fit in a reasonable on-die cache. We have atso si
ulated PCG with a grid with about an eighth of the resolutiébn o
our default input (the smallest reasonable resolution). tikig in-
put, the total working set size drops to about 4MB. Thus, foalt
inputs, the off-die bandwidth usage of PCG may be much smalle
than reported here. As mentioned, for CG-face, simulatévgef
tetrahedra is not a practical option. Reducing the elemaunttcin
the model would result in unnatural motion due to under{tggm
of the muscle action and create problems for collision ditec

n
o

< AP—-Fluid CL-Fluid FSM—-Fluid UPBS-Face AV—-Cloth
a6
9
(.51.2
-
0no.s
R
o4 ¥
3 k
0.0
3833333838333 3363¢°33%33353¢°%z333838¢8°3%333¢3
N N N o N N N N ~N N
5 -
S MLe-Fluid AVIF-Face CG-Cloth UPBS-Cloth AF-Cloth
St
)
(lu 3
- — —
n 2 < _\
€1
3 _
0
E¥3 I3 EEiGIIIREEIGIEIREEIGIEIAEEIGIEIG
N N N o N N N N N N
10 -
S PCG-Fluid CG-Face CPL-Cloth HI-Cloth
< 8
) 1 thread
=6
— \
0 4
) ¥
€ \\; AN 64 threads
9o
3§ 33338383333 383¢33283383¢83333¢
N N N o N N N N

Figure 6: L1 miss rate as a function of cache size. For all expinents, we use a 256MB, 32-way L2, and use a 32-way L1 of vanyg

size. We show results for a single-threaded run, varying thé 1 size
size for each core from 16KB to 4MB.

For the other modules with high bandwidth usage, we do not
expect a change in problem size to significantly alter thiidie
bandwidth usage because the working sets should alwaygéiain
sonable sized on-die caches. CG-cloth and HI have relptioal
off-die bandwidth usage because of this, although CG-slath-
die bandwidth usage is sensitive to the size of the coresafari
caches. AF’s high off-die bandwidth usage is due to cold esiss
and so is not affected by the working set fitting in cache.

7.2 On-Die and Off-Die Traffic

We next examine the amount of on-chip and off-chip data com-
munication. This provides further insights into the memioephav-
ior of our key modules, as well as into the bandwidth requéets
of a system that targets our applications. Bandwidth, botldlie
and off-die, is a critical resource in scalable CMPs sinoeust be
shared amongst a potentially large number of threads. A taodu
will only continue to scale if sufficient bandwidth is avdila. We
consider only data communication because the number aaa&iz
coherence messages are dependent on the coherence pastdcol
implementation. Data traffic comprises the vast majoritpaind-
width usage in our system.

On-die traffic. Figure 7 shows the communication-to-computation
ratio for on-die separated into three components: useéiépshes,

from 16KB to 256MB, and for a 64-thread run, varying the L1

useless prefetches, and demand accesses (includes skigba/e
include both integer and floating point computation as AL@rap
tions because some modules have significant integer cotigyuta

Most modules’ communication-to-computation ratios ara-re
tively insensitive to the number of threads. There are tvimary
effects that we expect to impact the ratios as the numbereats
scales. First, the ratios may decrease as the per-thre&ithgsets
shrink. The only module where this effect is pronounced is CL
which matches our expectations from Figure 6. Second, tiesra
may increase as inter-thread communication rises with enreas-
ing number of threads. A number of modules see this effect, an
we examine it more closely later (see Section 7.3).

Five modules have high on-die bandwidth usagel(byte/ALU
op) for 64 threads, PCG, CG-face, CG-cloth, AF, and HI. Taioed
the on-die bandwidth usage, one might consider increabimd 1
cache size. Our results in Figure 6 indicate that this wouwllgh h
three of the five high-bandwidth modules, CG-face, CG-clatid
AF. However, increased L1 size would not provide much benefit
for PCG or HI because they have high inter-thread communitat

Prefetching. Prefetching into the L1s can also affect the on-die
bandwidth usage. Overly aggressive prefetching will inseethe
bandwidth usage by fetching data that is not used. Furtheray
evict useful data that needs to be re-fetched. Figure 7 stimt/or

4 [] Useful prefetches M Useless prefetches E2 Demand accesses
8-3
2 58
s %
02T
g
S R
@1 g
Cores —»7°v°883 TTA0S TTA0d TTA0d 0D Y0 TTA0d TTA0d 0D TTA0d TTA0d TTA0d
AP CL FSM MLe PCG | AVIF CG UPBS CG UPBS AF AV CPL HI
Fluid Face Cloth

Figure 7: On-die data traffic shown as bytes per ALU operation The traffic is broken down into usefully prefetched data, uglessly
prefetched data, and data from demand accesses (includesitabacks).

all modules, the hardware prefetcher creates little usqdesfetch
traffic. The figure also shows that for the modules with highdsa
width requirements (except for HI), most of the data comroami
tion is from useful prefetches.

Our hardware stride prefetcher is most effective for mosluligh
high spatial locality and predictable access patterns. refoee,
modules that touch large structures in a streaming mantidven-
efit most. Many of our modules have a streaming access pattern
therefore, most modules with the highest bandwidth usasyesale
the highest fraction of their data successfully prefetched

Memory Traffic . Figure 8 shows the data traffic between the shared
L2 and main memory, as a communication-to-computatioro rati
separated into reads and wrifes.

The off-die memory traffic for the modules follows similartpa
terns as for on-die traffic. The off-die communication-tovputation
ratios are very insensitive to the number of threads beciaise
thread communication is on-die, not off-die, and becausectis
limited constructive and destructive sharing in these resfu

PCG, CG-face, and AF have high off-die bandwidth usage in ad-
dition to the previously discussed high on-die bandwidtges On
the other hand, CG-cloth has extremely low off-die bandivig-
age because the entire data set for this iterative modulin fitee
L2 cache. CL and FSM see a similar effect. Also, the off-dietha
width usage for HI is dramatically lower than the on-die hessa
most of its on-die traffic is related to inter-thread comneation.

The off-die bandwidth usage of some of the modules is so high,
especially for PCG, that it is likely to limit parallel scality on
most current and near-future systems. On our simulate@rsyst
assuming a 3GHz clock, PCG uses an average of 64GB/s of main
memory bandwidth for 64 threads. The average bandwidtheusag
for each of the applications is significantly lower than trealp
bandwidth usage. However, the scaling of a worst-case reaxud
limit the scaling of an entire application if insufficientimwidth is
available.

7.3 Data Sharing

Figure 9 shows the on-die data communication-to-compartati
ratios broken down into four components: non-shared reaufs f
the L2 to an L1, shared reads from the L2 to an L1, cache-thecac

5Dirty data left in the L2 at the end of each module is not codrae being written
back to memory.

SConstructive sharing is when a thread brings a line into aesheache and is sub-
sequently used by another thread; this can greatly reddedieofraffic. Destructive
sharing is when two or more threads are contending for the s&tin a cache — this
results in additional conflict misses.

transfers, and writes from an L1 to the L2. We distinguisiwieen
shared and non-shared reads from by examining the sharig ve
tor on every L2 access — if another L1 has its sharing bit set, w
classify the access as shared, otherwise, non-shared.

Many of the modules are dominated by non-shared reads from
the L2 and writes to the L2, indicating little data sharinghist
is expected, since most modules partition their primara gétuc-
tures, and each partition is touched by only one thread. Mexye
six modules have large fractions of their traffic from shadeth
(CL, FSM, PCG, CG-cloth, AF, and HI). There are three primary
sources for the data sharing in these modules.

First, PCG and FSM have true inter-thread communication due
to differences in partitioning across parallel sectionsaflis, these
modules contain multiple parallel sections, and do notitpamt
their data consistently across all sections. Thereforepime sec-
tions an element will belong to thread A's partition, whifedthers
it will belong to thread B’s. FSM has additional sharing o
its largest section multiple threads may simultaneoushraie on
a given partition.

Second, CL, FSM, and HI exhibit significant false sharing. CL
and FSM update a 3D array partitioned into cubes. Cube bound-
aries may not be aligned on cache line boundaries, triggéaise
sharing. HI keeps some per-task state laid out in a 1D arrgy. U
dates to this state trigger false sharing.

Third, CG-cloth and AF have very small parallel regions (Eae
ble 2). The barrier cost is significant for these modules wihen
number of threads is large. Accesses to the shared variagbes
ciated with the barriers grows with the number of threadgldy
becoming a large fraction of the on-die traffic. CG-face danu
tion, UPBS-cloth, and CPL have similar patterns, but theyless
pronounced since their parallel regions are larger.

8. CONCLUSIONS

We have studied a set of applications that span the important
emerging workload domain of physical simulation for congpain-
imation and visual effects: fluid, face, and cloth simulatid hese
are all computationally demanding, and therefore can befneifin
large speedups. To provide these speedups, we paralldtiesd
applications for a large-scale CMP. We cover code that atdsou
for at least 96% of the serial execution time for all threeliapp
tions, and identified that at least 99.9% of the time is peliaible
with reasonable effort. We identified and characterizedntiost
important modules in each application.

7This false sharing does not impact performance signifigastl we did not alter the
data structure.

2 [] Reads from memory Mvrites to memory
g
515+
|
<
B 17
Q
>
m 0.5+
[——— [EEEENEE]
Cores > 583 293 283 83 283 S8 283 283 83 283 =2 283 283 293
AP CL FSM MLe PCG | AVIF CG UPBS CG UPBS AF AV CPL HI
Fluid Face Cloth

Figure 8: Main memory data bandwidth usage shown as bytes peALU operation. The traffic is broken into reads and writes.

pn] Non-shared reads from L2 EShared reads from L2 M to $ transfers Wiites to L2
o
)
D37
2
B2T
9 m % W
> m
mi1-—r+

AP MLe PCG | AVIF

CG UPBS
Face

Figure 9: On-die data traffic shown as bytes per ALU operation The traffic is broken down into reads of non-shared data fromthe
L2 to L1, reads of shared data from the L2 to L1, cache-to-cach transfers (L1 to L1), and writebacks from the L1s to the L2.

For the code representing key modules, we achieve paradel s

(6]

ing of 45x, 50x, and 30x for fluid, face, and cloth simulations

respectively. The modules have a spectrum of parallel tesh-g

(7]

ularity and locking behavior, and all but one are dominatgd b
loop-level parallelism. Many modules operate on streantcatd,
sometimes iterating over them, leading to significant teralplo-
cality. This streaming behavior leads to very high on-dié arain
memory bandwidth requirements. Finally, most modules fittie
inter-thread communication since they are data-pardilela few
require heavy communication between data-parallel ojperat

Acknowledgments

We would like to thank Bob Liang and Pradeep Dubey for helping
to start this effort, Victor Lee and Anthony Nguyen for thagsis-

tance with the simulation infrastructure, and Ron Fedkinaftcess
to PhysBam. We would also like to thank our shepherd, Michael

Taylor, and the anonymous reviewers for their helpful femith

9.

REFERENCES

[1] R.Bridson, R. P. Fedkiw, and J. Anderson. Robust TreatroCollisions,

(2]

3

[4

[5

]

Contact, and Friction for Cloth AnimatioCM Transactions on Graphics,
21(3):594-603, July 2002.

R. Bridson, S. Marino, and R. Fedkiw. Simulation of Clioth With Folds and
Wrinkles. In2003 ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, pages 28-36, Aug. 2003.

T.-F. Chen and J.-L. Baer. Effective Hardware-Basedaefetching for
High-Performance ProcessotBEE Trans. on Computers, 44(5):609-623,
1995.

D. P. Enright, S. R. Marschner, and R. P. Fedkiw. Anima@émd Rendering of
Complex Water SurfaceA\CM Transactions on Graphics, 21(3):736—744, July
2002.

M. Frigo, C. E. Leiserson, and K. H. Randall. The Implenaion of the Cilk-5
Multithreaded Language. IRroc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 1998.

(8]
]
[10]

[11]

[12]

[13
[14

[15

[16
[17]

[18]

W. Hunt, W. R. Mark, and G. Stoll. Fast kd-tree Constrantivith an Adaptive
Error-Bounded Heuristic. IRroc. of the 2006 |EEE Symp. on Interactive Ray
Tracing, 2006.

T. lwashita and M. Shimasaki. Block Red-Black Orderingtiod for Parallel
Processing of ICCG Solver. Iroc. of the 4th Intl. Symp. on High Perf.
Computing, 2002.

OpenMP Application Program Interface, May 2005. Version 2.5.

PhysBAM package. http://graphics.stanford.edfgdkiw.

J. A. SethianLevel Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Detémation of Facial
Muscle Activations from Sparse Motion Capture Marker DAaM
Transactions on Graphics, 24(3):417-425, Aug. 2005.

E. Sifakis, A. Selle, A. Robinson-Mosher, and R. Fedi8imulating Speech
with a Physics-Based Facial Muscle Model. In M.-P. Cani ar@Brien,
editors,ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA),
2006.

SPEC CPU2006. http://www.spec.org/cpu2006/.

J. Stam. Stable Fluids. Proceedings of SGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, pages 121-128,1808.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robusasjstatic finite elements
and flesh simulation. 12005 ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pages 181-190, July 2005.

Intel ® Thread Building Blocks Reference, 2006. Version 1.3.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptee 8PLASH-2
Programs: Characterization and Methodological Consiibers. InProc. of the
22nd Annual Intl. Symp. on Computer Architecture, 1995.

H. Zhao. A Fast Sweeping Method for Eikonal Equatidvisthematics of
Computation, 74:603-627, 2005.

