
Physical Simulation for Animation and Visual Effects:
Parallelization and Characterization for Chip

Multiprocessors

Christopher J. Hughes†, Radek Grzeszczuk‡
∗

, Eftychios Sifakis§∗,
Daehyun Kim†, Sanjeev Kumar†, Andrew P. Selle§∗, Jatin Chhugani†,

Matthew Holliman†, Yen-Kuang Chen†

†Microprocessor Technology Labs, Intel ‡Nokia Labs §Stanford University
christopher.j.hughes@intel.com

ABSTRACT
We explore the emerging application area of physics-based simu-
lation for computer animation and visual special effects. In par-
ticular, we examine its parallelization potential and characterize its
behavior on a chip multiprocessor (CMP). Applications in this do-
main model and simulate natural phenomena, and often directvi-
sual components of motion pictures. We study a set of three work-
loads that exemplify the span and complexity of physical simula-
tion applications used in a production environment: fluid dynam-
ics, facial animation, and cloth simulation. They are computation-
ally demanding, requiring from a few seconds to several minutes to
simulate a single frame; therefore, they can benefit greatlyfrom the
acceleration possible with large scale CMPs.

Starting with serial versions of these applications, we parallelize
code accounting for at least 96% of the serial execution time, tar-
geting a large number of threads. We then study the most expensive
modules using a simulated 64-core CMP.

For the code in key modules, we achieve parallel scaling of 45x,
50x, and 30x for fluid, face, and cloth simulations, respectively.
The modules have a spectrum of task granularity and locking be-
havior, and all but one are dominated by loop-level parallelism.
Many modules operate on streams of data. In some cases, mod-
ules iterate over their data, leading to significant temporal local-
ity. This streaming behavior leads to very high on-die and main
memory bandwidth requirements. Finally, most modules havelittle
inter-thread communication since they are data-parallel,but a few
require heavy communication between data-parallel operations.

Categories and Subject Descriptors:C.1.4 [Parallel Architec-
tures]; J.2 [Physical Sciences and Engineering]: Physics

General Terms: Performance, Measurement.

Keywords: CMP, physical simulation, characterization, paralleliza-
tion.

∗Work done while at Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

1. INTRODUCTION
In designing future generations of microprocessors, it is critical

that we consider the requirements of future workloads. One key
emerging workload domain is computer animation through phys-
ical simulation. Physical simulation applications model complex
natural phenomena, such as ocean waves crashing on a shore, or a
flag waving in the wind by means of numerical simulation of phys-
ical laws. Physical simulation can be used in a variety of settings
such as weather prediction, movie special effects, and computer
games. Modeling different natural phenomena requires a diverse
set of techniques, algorithms, and data structures, makingphysical
simulation both complex and general.

This paper focuses on physical simulation intended for visualiza-
tion (e.g., the output can be rendered for inclusion in feature films).
The goal of these applications is to recreate the visual experience
of a human observing a natural phenomenon. This leads to an em-
phasis on visual plausibility and simulation efficiency rather than
100% accuracy in modeling all intermediate phenomena. There-
fore, for the majority of phenomena simulated, the applications tar-
get the scale and level of detail that is perceivable by a human ob-
server. This typically excludes physical phenomena happening at
either the microscopic level (e.g., molecular dynamics or cell evo-
lution) or beyond our everyday experience macroscopic level (e.g.,
planetary scale phenomena).1

The applications we study are based on the PhysBAM package
from Stanford [9], which is used by several special effects and film
production companies, including Industrial Light and Magic R© and
Pixar R©. This class of physical simulation workloads has received
little attention from the architecture community outside of groups
working on high performance computing. It is extremely demand-
ing in terms of computation and memory requirements. This makes
the workloads a challenging target for future as well as current ar-
chitectures. Furthermore, these workloads are likely precursors of
future computer games and other mass-market applications.

It is highly desirable to accelerate our workloads by a largeamount.
On a real machine described in Section 3.1 our workloads takefrom
5 to 188 seconds to process a single frame. Acceleration by anor-
der of magnitude or more can enable improved accuracy and mod-
eling of new effects. It may even enable some of them to become
interactive or real-time applications.

All major microprocessor vendors are now offering chip multi-
processors (CMPs), also called multi-core processors. We expect
the number of cores on CMPs to increase steadily for the foresee-

1While phenomena at these extreme scales are often depicted in motion pictures, they
are typically procedurally and artistically rendered, rather than simulated.

able future, so that CMPs capable of executing applicationstens of
times faster than today’s uniprocessors are on the horizon.Such
CMPs would provide exactly the acceleration opportunity needed
for production-quality physical simulation applications.

However, for an application to harness the computation power
of such a CMP, it must effectively utilize multiple threads.Paral-
lelization of a large code base as used by production-quality physi-
cal simulation applications is not trivial, especially when the target
parallel scalability is tens of threads.

Our contributions are:

1. We have parallelized three state-of-the-art real-worldproduction-
quality physics applications that represent and span the phys-
ical simulation problem space: fluid dynamics [4], human
face animation [11, 12, 15], and cloth simulation [1, 2]. Our
parallelization goal was to achieve performance scaling upto
at least 64 threads.

2. We provide a detailed characterization of the key modules
of our applications using real-world inputs via simulationof
a CMP with 64 cores. Our characterization focuses on the
parallel behavior of the applications, including their parallel
scalability and synchronization behavior. We also examine
their memory behavior, including the working sets and inter-
thread communication. Our key findings are:

The modules have parallel scaling on 64 threads of at least
23x. Our modules see significant performance benefits with an in-
creasing number of threads up to at least 64 threads. We expect
even higher performance on 128 threads or beyond for all but one
module. For the portions of the applications covered by the key
modules, we achieve parallel scaling on 64 cores of 45x, 50x,and
30x for fluid, face, and cloth simulations, respectively.

Most modules are parallelized via data-level parallelism.For
most modules, the primary data structures are a representation of
the physical system being simulated. The modules typicallyper-
form their computation by iterating over the data structures. To
parallelize these modules, we partition the data structure(i.e., split
the loop), with each partition defining a parallel task. Someof these
modules are not purely data parallel and require locking along par-
tition boundaries. For others, we replicate data around partition
boundaries to avoid locking.

The best serial algorithm does not always lead to the best par-
allel algorithm. While the initial implementation of a key module
in fluid simulation used one algorithm, our best parallelization of
the module uses an alternative algorithm. The alternative is 57%
slower when serial, but has significantly more thread-levelparal-
lelism, and so is 116% faster with 64 threads.

Some modules are dominated by small parallel regions.These
regions are entered often enough to account for a large portion
of the applications’ execution time, so their scalability is impor-
tant. However, being small makes these modules sensitive totask
scheduling overheads and barrier cost.

Load imbalance reduces parallel scaling for many modules.
9 of our 14 modules have more than 10% load imbalance when run
with 64 threads. This is due to variance in task size and too few
tasks. The modules that suffer from load imbalance would incur
significant overheads (e.g., redundant computation) to increase the
number of tasks — we believe we have chosen reasonable tradeoffs
between load imbalance and parallelization overhead.

Two modules have high parallelization overhead from lock-
ing. These modules use locking to protect small operations in a
tight loop, leading to high parallelization overhead (>60%). How-
ever, the locks have little contention, so this does not impact parallel
scalability.

Few modules have high inherent inter-thread communica-
tion. While six modules have a large fraction of their L1 misses
to shared data, false sharing is the source for two of those, and
barrier synchronization is the source for another two. The lack of
inter-thread communication is largely intentional, sincewe a priori
assumed it would limit scalability (in many cases we avoid itwith
redundant computation).

Most modules are streaming. Many of the modules perform
numerical operations on vectors, matrices, and/or elements in a spa-
tial representation of the problem (i.e., a grid or mesh). This leads
to a streaming access pattern. Some modules repeatedly stream
over their data structures (e.g., iterative solvers), leading to a large
amount of temporal locality. In those cases, the last-levelper-
thread working set size also decreases with an increasing number
of threads, due to our use of partitioning for parallelization.

Some modules have high on-die and off-die bandwidth us-
age. Many of the streaming modules also perform relatively little
computation per element per invocation or iteration. This results in
high bandwidth usage. Five modules have on-die communication-
to-computation ratios of at least one byte per ALU operation, and
three have off-die ratios exceeding 0.5 bytes per ALU operation.
Since CMPs have a large number of threads sharing both the on-
die and off-die interconnects, those must provide high bandwidth
or this will limit the scalability of these applications.

2. APPLICATIONS
Our applications are derived from the physical simulation pack-

age called PhysBAM, developed at Stanford [9]. The package in-
cludes techniques for solving a variety of physics-based modeling
problems such as fluids, rigid bodies, and deformable solids. The
code base has more than 150,000 lines of code. It has not been
hand-coded with single-instruction-multiple-data (SIMD) instruc-
tions.

We have chosen to study three physical simulation applications
that are representative of and span the space of physics-based com-
puter animation: computational fluid dynamics using a particle level-
set method, facial simulation using the finite element method, and
cloth simulation using a mass-spring system. Each is representa-
tive of the state-of-the-art in its respective domain. Figure 1 shows
example output frames from the applications, using the real-world
inputs that we use in this study. Face and cloth simulation include
similar collision detection modules. For cloth simulation, collision
detection is a key part of the application. However, for facesimu-
lation it is only a minor part of the application, and is significantly
simpler computationally than for cloth simulation. Therefore, we
disable the collision detection part of face simulation.

The applications we study are thematically similar to othernu-
merical computing and physical simulation codes from popular bench-
mark suites such as SPLASH-2 [17] and SPEC CPU2006 [13].
However, our target applications are quite different in scope and
context from these other codes. This leads to fundamentallydiffer-
ent domains, governing equations, algorithms, and computational
behavior. The unique requirements of a special effects production
environment typically dictate specific choices of theoretical and al-
gorithmic formulations which substantially limit the overlap with
other implementations of numerical computing techniques.

We next describe each of our applications.

2.1 Fluid Simulation
Simulated water volumes are key elements in an increasing num-

ber of feature films, making fluid simulation (a.k.a., computational
fluids dynamics, or CFD) very common in the special effects indus-
try today. Our fluid simulation application uses the incompressible

Fluid simulation Face simulation Cloth simulation

Figure 1: Sample output frames for our applications.

Navier-Stokes equations to describe the evolution of a bodyof wa-
ter with a free surface (as opposed to a fluid confined to an airtight
container). The equations of flow are discretized on a Cartesian 3D
grid using a finite difference formulation. The fluid-air interface
is represented by a signed distance function, defined on the same
grid and updated using the particle level-set method [4]. The sim-
ulation pipeline employs techniques such as the semi-Lagrangian
method [14] for velocity advection, the solution of a Poisson equa-
tion for making the velocity field divergence free using a precon-
ditioned conjugate gradient (PCG) algorithm, and the use ofthe
fast marching method [10] and fast sweeping method [18] for re-
initialization of the signed distance function.

2.2 Face Simulation
Face simulation animates an anatomical model of a human face

driven by the action of facial musculature and the motion of the
jawbone [11, 15]. A time sequence of muscle activation values
and kinematic parameters for the jaw motion is provided as input.
The Finite Element Method is used in conjunction with an accurate
muscle constitutive model to define forces on a tetrahedral mesh
discretization of the flesh. The application assumes that casual fa-
cial motion exhibits negligible ballistic or inertial effects. It thus
animates the face model as a sequence ofsteady states. Each state
is defined solely by muscle activation values and the position of
the cranium and jawbone. Such a state is efficiently computedvia
a quasistatic solver which uses Newton-Raphson iteration to de-
termine the steady state as the solution to a nonlinear system of
equations.

2.3 Cloth Simulation
Cloth simulation animates the time evolution of a deformable

surface having the material properties of a fabric sheet. The cloth
surface deforms under the influence of external forces such as grav-
ity or forced stretching, internal forces such as the elastic response
to tensile stress, shearing, and bending, and reacts to collisions with
itself or elements of the environment. The deformable clothis im-
plemented as a mass-spring system where the simulation particles
are connected into a triangle mesh. The simulation mesh is en-
dowed with a network of spring elements aligned with all edges and
all triangle altitudes. Bending elements provide additional forces
that resist change in dihedral angles formed by adjacent triangles.

Each time step of the deformable object evolution consists of
a forward time integration followed by collision resolution [1, 2].
We employ a semi-implicit Newmark integration scheme that uses
explicit integration for position updates and implicit solvers for ve-
locity updates. A collision resolution algorithm then detects and
attempts to resolve collisions of the cloth with itself or other ob-
jects that were caused by the integration step. Collision detection
is accelerated using a topological hierarchy of bounding boxes con-
structed every few frames. Should the collision resolutionfail, the
integration-collision loop is repeated with a reduced timestep.

��
��
��

��
��
��
����
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
100

25

50

75

%
 o

f E
xe

cu
tio

n
T

im
e

Fluid Face Cloth

PCG

FSM

MLe

P. Other
S. Other

UPBS

CG

P. Other

CG

AF
UPBS
CPL
HI
AV

P. Other
S. Other

AP

CL
AVIF

S. Other

Figure 2: Execution time breakdown for each application.

3. PARALLELIZATION
The applications we study are all computationally demanding —

on a real system described in Section 3.1 they take on average188,
14, and 5 seconds to process a single frame for fluid, face, and
cloth simulations, respectively. Since they will all benefit from a
large performance boost, we parallelize the applications,targeting
a large-scale CMP (i.e., one with tens of cores). Given the size of
the code base, we have not parallelized 100% of the applications,
but we have come close enough (≥ 96% for all applications — see
Section 3.1) to demonstrate that this is achievable. In somecases,
our parallelization impacts the output values. This is acceptable
as long as the approximations are still visually realistic.Thus, we
visually checked the results to verify acceptable output.

We profiled the serial applications on a real machine to select the
most expensive modules as targets for parallelization (Section 3.1).
We then parallelized those modules, as described in Sections 3.2 to
3.5, targeting a large scale CMP. We discuss only the most expen-
sive subset of the modules we parallelized. After parallelization,
we measured the performance of and characterized this subset of
modules using simulation since no large scale CMP is currently
available (Sections 4 through 7).

3.1 Selecting Representative Modules
We took the conventional approach to parallelizing large code

bases: prioritize the modules of each application and parallelize
them in decreasing order of importance. Therefore, we first pro-
filed each application to determine the most expensive modules in
a serial execution.

For profiling, we used a real 4-way IntelR©XeonTM3.0GHz sys-
tem, with 16GB of DDR2-3200 and 3-levels of cache on each pro-
cessor: 16KB L1, 1MB L2, and 8MB L3. Maximum memory
bandwidth is 6.4GB/s. I/O is minimal for all three applications
on this system. For each application, we ran long enough to amor-
tize any warmup effects and also to average out input-dependent
behavior.

Figure 2 shows the breakdown of the execution time of each ap-
plication. We label the key modules (i.e., the most expensive ones)
that we will focus on for the rest of this paper. For all three applica-

tions, the key modules make up more than 75% of the application
execution time. We also indicate the aggregate time taken bythe
other parallelized modules with “P. Other” and the remaining ag-
gregate serial modules as “S. Other.” The serial modules make up
only 3%, 1%, and 4% of the execution time for fluid, face, and cloth
simulations, respectively. Further, almost all of the serial modules
are easily parallelizable (e.g., array copy operations). The modules
that are not easily parallelizable account for less than 0.1% of the
execution time. The exception is a kd-tree building module in cloth
simulation, which accounts for 2% of the execution time. However,
kd-tree building has been shown to be parallelizable [6].

3.2 Parallelization Framework
The applications were parallelized using the fork-join model [5,

8, 16] in which the program consists of alternating serial and paral-
lel sections. This model is attractive because it allows oneto start
with a serial program and selectively parallelize the most profitable
portions of the program until satisfactory performance is achieved.

We use a task queue model to parallelize all modules. A par-
allel section of the program is specified as a list of tasks that can
be executed concurrently. The termtask denotes a parallel unit of
work. In our infrastructure, a task is specified as a functionpointer
together with its arguments. To scale to N cores, the programhas
to expose at least N tasks. If the execution time of all the tasks are
roughly the same, it might be sufficient to expose exactly N tasks.
However, if the task sizes vary significantly, the parallel section has
to be broken into enough tasks to avoid load imbalance.

We implemented distributed task queues with work stealing,an
effective and widely used task scheduling technique. We optimized
the implementation so that it was efficient even for small tasks and
a large number of threads. We have benchmarked our implementa-
tion against Cilk [5], TBB [16], and OpenMP [8] to make sure that
our implementation was efficient.

3.3 Fluid Simulation Modules
Many of the fluid simulation modules operate on a 3D uniform

grid representing the space being simulated. To parallelize these
modules, we typically partition the grid into cubes, each containing
a small number of grid cells. In some cases, the cubes are indepen-
dent, and in others we require locking to protect reads and writes to
grid cells along partition boundaries.

Advect Particles (AP). The particle level-set method utilizes a
dual representation of the fluid-air interface in order to improve ac-
curacy and minimize volume loss. Weightless marker particles are
seeded on either side of the zero isocontour of the signed distance
function corresponding to the fluid-air interface. Those particles
are advected along with the fluid and are used to correct the shape
of the interface as encoded by the signed distance function.The
AP module uses the second order Runge-Kutta integration scheme
to advance these particles with their underlying fluid velocities. It
iterates over the simulation grid, using the information ina small
3D window around each grid cell to update the positions of the
particles it contains. For parallelization, we partition the grid into
cubes, and operate on the particles in each cube independently.

Construct Levelset (CL). CL rasterizes rigid bodies that interact
with the grid so that their effect on fluid evolution can be computed.
CL operates by iterating over the simulation grid and interpolating
a signed distance value from the surface of the object using the
object’s kinematic state and its own signed distance representation
in its reference position and orientation. For parallelization, we
partition the grid into cubes, and operate on each independently.

Fast Sweeping Method (FSM). The signed distance function re-
ceives updates and corrections to ensure that the zero isocontour
accurately tracks the fluid-air interface. However, away from the
zero level set, the signed distance property may be violatedas a re-
sult of these corrections. The Fast Sweeping Method [18] is used to
re-initialize the level-set values to restore the signed distance prop-
erty without perturbing the location of the zero isocontour. It has
three phases of operation on each cube of the simulation grid: the
first initializes each grid cell, the second performs sweepsover each
cube in all eight different diagonal directions to propagate interface
information, and the final to flag cells far from the interface. For
parallelization, we use duplication of cells around the boundaries of
the cubes to make the cubes completely independent. Since multi-
ple sweeps may be performed simultaneously on a single cube,we
use locking to protect the grid cells.

Modify Levelset Using Escaped Particles (MLe). During the evo-
lution of the fluid volume, the dual representation of the fluid-air
interface might become inconsistent; that is, particles that had pre-
viously been marked as belonging to the fluid side of the interface
might have crossed over to the air region according to the signed
distance function, and vice versa. MLe uses the informationfrom
the particles in the vicinity of each grid cell to update the signed
distance function in each cell. Fine grain locking is employed to
guard updates at the boundaries of cubes.

Preconditioned Conjugate Gradient (PCG). Our fluid simula-
tion models an incompressible fluid (i.e., the volume remains con-
stant). To enforce incompressibility, velocity updates must main-
tain a “divergence free” property. This is accomplished through a
projection operation that involves the solution of a Poisson equa-
tion. The system matrix is sparse, symmetric, and positive def-
inite, allowing the use of a fast conjugate gradients (CG) solver.
Furthermore, PCG uses an Incomplete Choleskypreconditioner to
substantially accelerate convergence of CG. PCG involves forward
and backward substitution, matrix-vector multiplication, and vector
dot products. For parallelization, we employ a red-black reorder-
ing scheme [7]. This breaks the matrix into a set of red blocksand
black blocks, where blocks of the same color are independentof
each other. This obviates the need for fine-grained locking at the
cost of slightly slower convergence.

3.4 Face Simulation Modules
Parallelization of all modules used in our Finite Element simu-

lation framework is based on a static partitioning of the simulation
mesh. Tetrahedra and edges at the boundaries of partitions may
span nodes belonging to two or more partitions. In this case afull
copy of each such element is given to each partition. This elimi-
nates the need for locking at the expense of repeated computation.

Update Position Based State (UPBS). UPBS uses an iterative
Newton-Raphson algorithm to find the steady state of the simu-
lated mesh as the solution to a nonlinear system of equations. In
each iteration, this system is approximated by a symmetric and
positive definitelinear system. The UPBS kernel precomputes the
matrix of this system. The sparsity structure of this matrixallows
its storage in two one-dimensional arrays, respectively indexed by
node and edge indices in our mesh. The aggregate matrix is the
sum of the contribution of each element (tetrahedron) in ourmesh.
We circumvent output dependencies by duplicating tetrahedra and
edges in the simulation mesh that span nodes assigned to different
partitions. We then iterate over the (overlapping) sets of tetrahe-
dra assigned to each partition, computing their contributions to the

global matrix and distributing them to the entries corresponding to
the nodes and edges of each tetrahedron.

Add Velocity Independent Forces (AVIF). While UPBS com-
putes the matrix of the linear system arising from the Newton-
Raphson algorithm, the AVIF module computes the right hand side
of that system. The module iterates over the elements of our sim-
ulation mesh, reading the positions of their vertex nodes and com-
puting a force contribution to each of those four nodes. In a fashion
similar to UPBS, each partition processes all elements thatcontain
at least one node owned by the particle, but only writes the result-
ing forces on those nodes owned by the partition.

Conjugate Gradient (CG). This module employs the conjugate
gradient algorithm to solve the sparse linear system assembled by
modules UPBS and AVIF. The fundamental operations performed
by this module include a sparse matrix-vector multiplication us-
ing the matrix precomputed by UPBS and several streaming op-
erations. As a result of the information duplication by UPBS, the
system matrix is encoded in two flat arrays that are accessed in a
sequential fashion to perform matrix-vector multiplication. Global
reductions necessitate two barriers per iteration of the algorithm.

3.5 Cloth Simulation Modules
Parallelization of some modules in our cloth simulation frame-

work is based on a static partitioning of the simulation mesh, sim-
ilar to the partitioning of the tetrahedron mesh described in Sec-
tion 3.4. The set of nodes in our simulation mesh is partitioned
between different tasks, and edges and triangles that crossa parti-
tion boundary are duplicated between the corresponding partitions.

Update Position Based State (UPBS). Following the explicit po-
sition update for the cloth particles at each time step, several po-
sition dependent properties such as length and orientationof edge
springs or endpoint locations for altitude springs can be precom-
puted to accelerate subsequent modules requiring force computa-
tion. These are all properties of the simplices used in the definition
of forces (edges, triangles, and triangle pairs) and their computa-
tion is parallelized by simple partitioning of the respective simplex
sets.

Conjugate Gradient (CG). The employed iterative Newmark in-
tegration scheme calls for the solution of a symmetric, positive def-
inite system to determine the velocity updates for the clothpar-
ticles at each time step. The matrix of this linear system is the
sum of three matrices, corresponding to the different internal forces
(edge springs, altitude springs, and bending elements) considered
for cloth simulation. These are sparse matrices, having nonzero
entries only for pairs of indices corresponding to particles that are
connected by a force, i.e., belonging to the same edge, triangle,
or adjacent triangle pair in our cloth mesh. For parallelization, the
cloth mesh is statically partitioned, as described earlier. The overall
system matrix is not explicitly partitioned; instead each mesh parti-
tion implicitly stores possibly duplicated matrix elements sufficient
for computing the action of the matrix on the particles it owns. The
rest of the CG algorithm consists of streaming operations onthe
particle velocities, such as vector multiply-and-adds anddot prod-
ucts. Global reductions necessitate three barriers per iteration.

Add Forces (AF). Computation of elastic forces is needed for the
explicit parts of the Newmark scheme and as a part of the explicit
solver. For parallelization, the mesh is partitioned. For each force

defined on a simplex, the positions or velocities of its nodesare
used to determine forces on the same particles. Each task writes
the forces it computes only for the particles it owns.

Hierarchy Intersection (HI) . Collision detection and handling are
based on proximity detection of geometrical features of thesimu-
lation mesh (i.e., points, edges, and triangles). Proximity queries
are performed using bounding box hierarchies. Intersecting two
bounding box hierarchies efficiently provides a pruned set of can-
didate interacting feature pairs from the corresponding feature sets.
Algorithmically, this is equivalent to the traversal of a tree with
a maximum branching factor of four. This tree has a maximum
height of log(N), whereN is the number of features considered.
However, the tree is typically sparse, with an expected number of
Θ(N) nodes, out of theΘ(N2) maximum nodes allowed by its
branching factor. For parallelization, a dynamic partitioning is em-
ployed. The tree is traversed in a breadth-first fashion until a given
number of independent subtrees has been identified. These subtrees
are subsequently traversed in parallel, with their respective results
merged at the end.

Create And Prune Lists (CPL). HI returns an unordered list of
potentially interacting feature pairs. Before further processing, this
list has to be reordered into a list of interactions for each individ-
ual feature. Furthermore, geometrically adjacent features (e.g., a
triangle and its vertices) will always be registered as potentially
interacting, however such results are false positives which can be
pruned. For parallelization, the unordered list of featurepairs is
partitioned and dispatched to different tasks, which use fine grain
locking to register the interaction with each of the two involved fea-
tures. A second sweep partitions the set of features and proceeds to
prune their interaction lists of the false positives.

Adjust Velocity (AV) . Following the identification of interacting
feature pairs, the particles of the simulation mesh are adjusted in
response to the detected collision. Each adjustment amounts to
reading the positions and velocities of the involved particles and
correcting their velocities to account for collisions. Theadjustment
is applied in a Gauss-Seidel fashion; thus, any correction on a fea-
ture pair will influence the correction performed on subsequently
processed pairs. An ordered list of feature pairs is partitioned into
contiguous sublists, which are dispatched to different threads. Fine
grain locking is used to guard reading and writing to particles that
are shared among feature pairs processed by different threads.

4. CHARACTERIZATION METHODOLOGY
Since no large scale CMP is available for us to experiment with,

we use cycle-accurate simulation to measure performance ofand
characterize the parallelized workloads. However, the lowspeed of
cycle-accurate simulation forces us to make some practicalchoices.
Simulating a full multi-frame run, or even one entire frame,of one
of our applications is infeasible. Therefore, we simulate the set of
most expensive modules (i.e., those described in Section 3). Some
modules are too expensive to simulate in entirety; however,all such
modules are iterative and have uniform behavior across iterations.
Therefore, for modules too expensive to completely simulate, we
simulate a representative iteration.

Since we only simulate a single invocation of each module, we
take care to pick an invocation from a representative and interesting
frame. For fluid simulation, we model a ball falling into a cubic
container partially filled with water. We choose a frame soonafter
the ball hits the surface, and model the space using a 150x100x100

L2 Tag + Directory

Core 0

Core 1

Core 2Core 3

L2
Bank 0

Bank 1
L2

L2
Bank 2

Bank 3
L2 Bi−directional ring

64B wide/direction
1 cycle/stop

2k entry gshare branch pred.
2−wide, in−order issue CPU

8 ways, 64B lines, 8 cycles
1MB L2 Bank Data Array

64B/cycle/link

2 components/stop

32KB L1 Data Cache
4 ways, 64B lines, 3 cycles

Stride prefetcher

16 outstanding requests/bank

Memory
280 cycles

3.7B/cycle/bank

40 stops/direction

4 cycles

Figure 3: Simulated system.

grid. For face simulation, we model a person speaking a sentence.
We choose a frame where the person is in the middle of a word,
and model the face with 370K tetrahedra. For cloth simulation, we
model a rectangular piece of cloth interacting with a solid sphere.
We choose a frame where the cloth is in contact with the sphere,
and model the cloth with a 103x61 mesh.

We take care to simulate each of our modules in the context of
the full application. That is, we ensure that the input to each module
is real and representative of the inputs that the module willreceive
in a full, multi-frame run. We also take care that the cache state
is close to what it would be when the module is run as part of the
full application. We fast forward through the full application (i.e.,
we simulate the architectural state, but not the microarchitectural
state) until we reach the module of interest, and then begin our per-
formance simulations. In cases where cache warming is required,
we begin performance simulation early enough to ensure thatthe
appropriate data is touched before the module starts. In these cases,
we discard the timing and other statistics from the warmup period,
keeping only those from the module of interest.

We use a cycle-accurate, execution driven CMP simulator for
our experiments. This simulator has been validated againstreal
systems and has been extensively used by our lab. Figure 3 shows
our system configuration.2

We model a 64-core CMP, where each core is in-order and has
a private L1 data cache, and all processors share an L2 cache.
Each L1 cache has a hardware stride prefetcher [3]. The prefetcher
adapts how far ahead it prefetches — if it detects that it is not fully
covering memory access latency, it issues prefetches farther out.
The cores are connected with a bi-directional ring. The L2 cache is
broken into 16 banks and distributed around the ring. A givencache
line can exist in only one L2 bank according to an address hashing
function (XORs the most significant bits with the least significant).
Inclusion is enforced between the L1s and L2. Coherence between
the L1s is maintained via a directory-based MSI protocol. Each L2

2We also ran experiments on a simulator that includes simulation of a full operating
system. The parallel scaling results from that simulator are very close to those we
present here. However, that simulator does not give as detailed information as the one
used here.

cache line also holds the directory information for that line (i.e.,
state and sharing vector). The ring has 40 stops, each of which has
two components connected to it (i.e., core or L2 cache bank).The
ring stops have no extra buffering, so messages already on the ring
have priority over those entering the ring — messages on the ring
are guaranteed to go forward each cycle.

We assume a very high main memory bandwidth so that we
do not artificially limit the scalability of the modules. Each L2
bank has 16 MSHRs, and can submit a request to memory ev-
ery cycle. This gives an aggregate main memory bandwidth of 59
bytes/cycle.3

5. INSTRUCTION MIX AND EXECUTION
TIME BREAKDOWN

Table 1 gives the instruction mix and breakdown of execution
time for single-threaded runs of our modules. All three of our ap-
plications are floating-point intensive, but some individual modules
are dominated by integer computation (FSM, AV, and CPL). FSM
spends much of its time manipulating a heap, while AV and CPL
have many branches.

The second part of the table shows the instruction throughput
in instructions per cycle (IPC), and also the fraction of execution
time from the three primary performance bottlenecks: fetchstalls,
ALU stalls, and memory stalls. ALU and memory stalls are cycles
spent waiting for a result from an ALU or memory instruction,re-
spectively. Many of the ALU instructions in our modules are long
latency floating-point ones. Memory instructions also takemultiple
cycles, even for an L1 hit. Since the core we model is in-order, per-
formance is sensitive to instruction latencies. FSM, AV, and CPL
also suffer from a significant fraction of fetch stalls due tohard to
predict, data-dependent branches — branch misprediction rates are
20%, 17%, and 20%, respectively.

6. PARALLEL CHARACTERISTICS

6.1 Parallelization Overhead
Parallelization overhead is the difference between the execution

time of the original serial version of the code,TS , and the one
thread execution of the parallel version of the code,T1. More pre-
cisely, parallelization overhead is defined asT1−TS

TS
× 100%. Fig-

ure 4 shows the parallelization overhead for each of the modules on
a real machine.

Parallelization overhead comes from several sources. First, the
code has to be modified to expose the parallel tasks in the pro-
gram (Section 3.2). The overhead from this is usually fairlysmall
(task queuing overhead for one thread in Table 2). Second, locking
needs to be introduced in some modules to ensure mutual exclu-
sion when performing updates to shared data structures. Of course,
during a single threaded execution, there is no contention on the
locks and the locking overheads are entirely due to the instructions
to acquire and release locks. FSM, AV, and CPL incur significant
locking overheads (Table 2). In AV, each critical section requires
acquiring multiple locks (typically four). The standard technique
to avoid deadlocks when acquiring multiple locks is to sort them so
that there is a total ordering on lock acquires. The parallelization
overhead in AV is primarily due to sorting and locking. Finally,
some modules have to perform extra work to exploit parallelism.
In FSM, the grid is partitioned into overlapping tiles to allow them
to be processed in parallel. The overlapped regions are processed

3Memory bandwidth = #L2 banks×#L2 MSHRs/bank×line size
memory latency

Instruction Mix Execution Time Breakdown

Modules Branch Int FP Memory IPC Fetch ALU Memory

Fluid AP 4% 22% 25% 49% 0.81 3% 24% 32%

CL 5% 30% 30% 34% 1.00 7% 33% 8%

FSM 10% 43% 7% 40% 0.85 10% 32% 15%

MLe 6% 45% 18% 32% 0.59 4% 17% 48%

PCG 9% 38% 15% 38% 0.61 3% 31% 32%

Face AVIF 10% 27% 24% 39% 0.57 7% 17% 47%

CG 1% 18% 29% 52% 0.94 1% 22% 24%

UPBS 8% 34% 23% 35% 0.91 8% 25% 18%

Cloth CG 2% 17% 23% 58% 0.90 1% 30% 23%

UPBS 4% 19% 29% 48% 0.61 3% 28% 26%

AF 2% 16% 23% 59% 0.89 1% 27% 25%

AV 14% 57% 7% 23% 1.09 15% 12% 15%

CPL 15% 63% 3% 19% 0.82 13% 14% 26%

HI 11% 35% 11% 43% 0.60 9% 36% 24%

Table 1: Instruction and execution time breakdown for single-thread runs. For execution time, we show the IPC and the percentage
of time taken by fetch stalls, ALU stalls, and memory stalls.

Number Execution Serial Section(s) Parallel Section(s)

Modules of Time Execution Parallelism No. of Tasks† Load Overheads

Threads (M Cycles) Time Type Imbalance Task Queue Locks

Fluid AP 1 1937.66 0.00 % Nested Loop 3000 – 0.05 % –

64 34.19 0.02 % 3000 7.83 % 3.65 % –

CL 1 848.11 0.00 % Nested Loop 4708 – 0.13 % –

64 14.98 0.06 % 4708 1.43 % 10.18 % –

FSM 1 1799.67 0.02 % Nested Loop 125, 1000, 125 – 0.01 % 3.12 %

64 32.58 2.46 % 125, 1000, 125 9.61 % 1.29 % 3.06 %

MLe 1 942.67 0.00 % Nested Loop 2× 1500 – 0.09 % 0.95 %

64 17.97 0.17 % 2× 1500 12.57 % 6.81 % 1.55 %

PCG 1 254.47 0.01 % Loop 4 × 1, 4× 414, 833 – 0.19 % –

64 6.19 0.41 % 4× 64, 4× 414, 833 14.31 % 11.98 % –

Face AVIF 1 759.51 0.00 % Loop 1 – 0.00 % –

64 16.99 0.17 % 64 20.29 % 0.27 % –

CG 1 16904.88 0.06 % Loop 406× 1 – 0.00 % –

64 323.52 10.35 % 406× 64 3.68 % 3.82 % –

UPBS 1 7073.99 0.00 % Loop 1 – 0.00 % 0.00 %

64 146.91 0.02 % 64 14.00 % 0.03 % 0.19 %

Cloth CG 1 56.25 0.11 % Loop 26× 1 – 0.03 % –

64 2.09 5.09 % 26× 64 15.57 % 25.96 % –

UPBS 1 22.34 0.15 % Loop 3 × 1 – 0.03 % –

64 0.62 6.20 % 3× 64 10.18 % 12.93 % –

AF 1 9.05 0.23 % Loop 6 × 1 – 0.04 % –

64 0.39 5.47 % 6× 64 17.00 % 31.83 % –

AV 1 107.02 0.00 % Loop 1 – 0.01 % 8.80 %

64 2.44 0.12 % 64 24.74 % 2.02 % 9.96 %

CPL 1 44.05 0.13 % Loop 2, 1571 – 0.02 % 11.75 %

64 0.98 6.32 % 64, 1571 8.75 % 12.11 % 8.69 %

HI 1 84.13 0.25 % Tree 1026, 1 – 0.56 % –

64 2.77 8.28 % 1026, 64 21.60 % 19.11 % –

Table 2: Parallel characteristics of the modules.† This column shows the number of tasks in different parallel sections in the module.

200

150

100

50O
ve

rh
ea

d
(%

)
P

ar
al

le
liz

at
io

n

F
S

M

M
Le

P
C

G

Fluid
A

V
IF C
G

U
P

B
S

Face

C
G

U
P

B
S

A
F

A
V

C
P

L H
I

Cloth

A
P

C
L

0 9

68

0 0

14

0 0 0 0 0

19
6

77

11

Figure 4: Parallelization overhead for each module shown as
the percentage increase in execution time for a single-threaded
run of the parallel code versus the serial code. The measure-
ments reported in this table were obtained from an entire ap-
plication run on a real machine (see Section 3.1). Consequently,
the numbers in this table can be compared only qualitatively
with the numbers in Table 2. Note that the locking overhead on
today’s CPUs are significantly higher than what we expect in
future CMPs.

multiple times (once on behalf of each tile to which that region
belongs). This incurs significant overhead.

For FSM, the original algorithm had bad scaling and was re-
placed by a completely different algorithm. To do interfaceprop-
agation in fluids, the original serial code used the Fast Marching
Method (FMM) [10]. However, FMM is not scalable to a large
number of threads (we see only 20.8x on 64 threads). Conse-
quently, an alternative technique called Fast Sweeping Method [18]
was employed. FSM is 30% slower than FMM for one thread but
has much better scalability (54.5x on 64 threads).

6.2 Scalability
Figure 5 shows the scalability of the parallel version for all the

modules. Most modules show fairly good scaling behavior.
We now look at the reasons why these modules do not deliver

linear scaling.

Serial Sections. Amdahl’s law dictates that the scalability of a
module is bound by the size of its serial sections. For instance,
if 1% of the execution time on a one thread run is serial, it limits
the scaling of the module to about 39 on 64 threads. Table 2 shows
that the size of the serial sections in the various modules isreason-
ably small. For the one thread runs, the serial code accountsfor
much less than 1% of execution time for all modules.

Locking. Table 2 shows the overhead of grabbing locks to access
shared data in the different modules. In every case, the locking
overhead does not increase with the number of threads. This indi-
cates that there is little contention on the locks and that the lock-
ing is not a significant factor to the scalability of these modules.
This is because the overhead to access an uncontended lock mostly
impacts the parallelization overhead (Section 6.1) and notscaling.
Note that the locks used to implement the task queuing are ac-
counted for separately as part of task queuing overhead (seebelow).

Load Imbalance. Table 2 shows the load imbalance on 64 threads
for the modules. For some modules, the load imbalance is relatively
large, making this one of the primary limiters of parallel scaling.

Modules 2nd level Fits? 3rd level Fits?

Fluid N = grid steps/dimension
AP Streaming
CL Streaming

FSM N
3

P
Maybe

MLe Streaming

PCG N
3

P
Maybe N

3

P
Maybe

Face N = # of tetrahedra
AVIF Streaming

CG N

P
Yes N

P
Maybe

UPBS Streaming

Cloth N = # of triangles
C = # of potential collisions (typically on the order of N)

CG N

P
Yes N

P
Yes

UPBS Streaming

AF N

P
Yes

AV C

P
Yes

CPL C

P
Yes

HI C

P
Yes

Table 3: Per thread working set size growth as a function of
input size and number of threads (P), and whether the working
set is expected to fit in a reasonable size on-die cache. Working
sets that trigger high on-die traffic in our simulated systemare
highlighted light gray. Working sets that additionally tri gger
high off-die traffic are highlighted dark gray.

The load imbalance in a parallel section is a function of the vari-
ability of the size of the tasks as well as the number of tasks (given
in the table). The lower the variability, the fewer tasks areneeded to
obtain good load balance. Unfortunately, as the number of tasks is
increased, the parallelization overhead (Section 6.1) increases. For
those modules that perform redundant computation around parti-
tion boundaries (see Section 3), the parallelization overhead grows
quickly with the number of tasks. For these, we minimize the num-
ber of tasks at the cost of significant load imbalance.

Task Queuing. Table 2 shows the overhead of task queuing in the
different modules. For some modules, this overhead is largefor 64
threads. In our implementation of task queues, all tasks fora par-
allel region are enqueued before we enter the region (i.e., enqueues
are serial code). Therefore, if the number of tasks is large and/or
the parallel region is small, the enqueue overhead is large.An alter-
native implementation of task queues might reduce this and other
task queue overheads.

In addition to the reasons listed above, parallel scaling isalso
affected by the memory behavior. This is covered next.

7. MEMORY BEHAVIOR
We now examine the memory behavior of the key modules. For

each module, we characterize the working set sizes, the on-die and
off-die bandwidth usage, the effectiveness of prefetching, and the
data sharing behavior. Our analysis is inspired by an analysis of the
SPLASH-2 benchmark suite [17].

7.1 Working Sets
The cache miss rate versus cache size curve can provide us with

insight into how much temporal locality each module has, as well
as how effective caches will be at reducing bandwidth usage to the
next level of the memory hierarchy.

A knee in such a curve is commonly referred to as a working set
size. A working set is a group of data objects with similar temporal
locality. Having a cache at least as large as a working set provides

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8Cores

1.
0 2.
0 4.
0 7.

9
15

.7
30

.2
56

.7

1.
0 2.
0 4.
0 7.

9
15

.5
30

.1
56

.7

1.
0 2.
0 3.
9 7.

8
15

.5
30

.4
54

.5

1.
0 2.
0 4.
1 8.

1
15

.8
29

.6
52

.6

1.
0

1.
6 3.
3 6.

2
12

.0
23

.4
41

.3

1.
0 1.
9 3.
6 6.

8
12

.7
23

.8
44

.7

1.
0 2.
0 4.
0 7.

9
15

.6
30

.6
52

.1

1.
0 1.
9 3.
7 7.

2
13

.6
25

.5
48

.6

1.
0 2.
0 3.
7 7.

2 12
.3

21
.4 26

.1

1.
0 2.
0 3.
8 7.

6
13

.4
23

.9
36

.2

1.
0 2.
0 3.
9 7.

4
13

.6
21

.7
22

.8

1.
0 2.
0 3.
8 7.

2
13

.2
24

.7
44

.0

1.
0

1.
9 3.
8 7.

3
14

.1
27

.5
45

.3

1.
0 2.
0 3.
4 6.

6
12

.0
20

.4
30

.6

16

32

48

64
P

ar
al

le
l S

pe
ed

up

FSMCL MLe PCG AVIF CG UPBS CG UPBS AF AV CPL HIAP

Fluid Face Cloth

Figure 5: Parallel scaling for each module. Note that the execution time is normalized to the execution time of the parallel version
running on one thread. This was done to emphasize the scalingtrend of the parallel version. To obtain speedups over the serial
version, the data in this graph has to be combined with the data in Figure 4.

a significantly lower miss rate than having a cache just smaller than
the working set. Depending on how large the reduction in missrate
is, and the characteristics of the cache hierarchy, this mayresult in
a significant bandwidth reduction and/or a performance boost due
to lowered average memory access latency.

Typically, applications have multiple working sets because dif-
ferent data structures in the application have different temporal lo-
cality. Also, a parallel application’s working set sizes may be a
function of the number of threads. For example, an application
could keep significant per-thread state that inflates one of its work-
ing sets.

Our Inputs . Figure 6 shows cache miss rate versus cache size for
our modules for two different scenarios. First, we run each module
with a single thread, using a 256MB, 32-way L2 cache. We set the
L1 associativity to 32 and vary its size from 16KB to 256MB. Al-
though not shown, all modules except UPBS-face have a first-level
working set that is less than 16KB that consists primarily ofstack
— for UPBS-face it is between 16KB and 32KB. Next, we run each
module with 64 threads using the same L1 and L2 configurations,
except that we only vary the L1 size from 16KB to 4MB.4 For both
scenarios, we disable the hardware prefetcher since it willmask the
working set sizes.

Five modules do not have clearly defined second-level working
sets (AP, MLe, AVIF, UPBS-face, and UPBS-cloth). These are
largely streaming modules. That is, they touch each data element in
their primary data structures a number of times in quick succession
and then do not touch it again. The miss rates in the multi-threaded
case are somewhat higher for MLe and UPBS-cloth. For the for-
mer, the parallelization decreases the spatial locality, and for the
latter, the module is small enough that some cold misses to per-
thread state drive up the miss rate slightly.

The other nine modules have clearly defined second-level work-
ing sets. Most of these modules also stream through their pri-
mary data structures, but do so repeatedly. This creates a work-
ing set the size of the entire primary data structures for thesingle-
threaded runs. Since most modules partition their primary data
structures for parallelization, for multi-threaded runs,most (but not
all) have working set sizes of aboutprimary data structures size

threads
.

FSM, PCG, CG-face, CG-cloth, AF, and CPL all fall into this cate-
gory.

The three remaining modules, CL, AV, and HI, all have second-
level working sets, but not from repeated streaming. For thesingle-

4We stop at 4MB because we enforce inclusion between the L1s and L2, and the
aggregate capacity of the L1s at 4MB is 256MB, the size of the L2.

threaded run of CL, the second-level working set is composedof
the tasks in the task queue. AV makes a single pass over a list of
collisions involving up to four nodes each in the cloth mesh.The
second-level working set is the group of nodes involved in multiple
collisions. HI performs a tree traversal, so its second-level working
set is the entire tree (or subtree for each task, for multi-threaded
runs).

Impact of Problem Size. Since bandwidth usage (and latency to
a lesser extent) is dependent on whether working sets fit intocache,
it is important to understand how the working set sizes can change
if the problem size changes. Table 3 shows, for the modules that
are not strictly streaming, how the second and, if appropriate, the
third level working sets grow with the problem size and number
of threads. It also highlights the working sets that triggerhigh
bandwidth usage in our simulated system (discussed furtherin Sec-
tion 7.2). The bandwidth usage of the non-highlighted modules is
not expected to have a significant dependence on the problem size
for reasonable cache sizes. Thus, we focus only on the highlighted
entries.

Individual algorithms employed within these applicationscan in
principle be used with various input sizes. However, it is important
to note that the end application often limits the range of meaningful
problem sizes. Adequate resolution of the physical phenomena be-
ing modeled typically mandates a minimum problem size. On the
other hand, an arbitrary increase in resolution and complexity of a
simulation may render certain algorithmic choices suboptimal, or
even call for a different simulation method altogether. Therange
of reasonable problem sizes is especially strict for face simulation
and is most flexible for fluid simulation. We have taken this into
account in determining whether a working set will fit into a reason-
able on-die cache in Table 3, and also in the following discussion.

PCG’s and CG-face’s last level working sets for our inputs are
larger than our L2; thus, a larger input (higher resolution grid or
more tetrahedra, respectively) will not change the bandwidth us-
age. For PCG, simulating a lower resolution grid may allow the
working set to fit in a reasonable on-die cache. We have also sim-
ulated PCG with a grid with about an eighth of the resolution of
our default input (the smallest reasonable resolution). For this in-
put, the total working set size drops to about 4MB. Thus, for small
inputs, the off-die bandwidth usage of PCG may be much smaller
than reported here. As mentioned, for CG-face, simulating fewer
tetrahedra is not a practical option. Reducing the element count in
the model would result in unnatural motion due to under-resolution
of the muscle action and create problems for collision detection.

1 thread

64 threads

0.0

0.4

0.8

1.2

1.6

2.0

L1
 m

is
s

ra
te

 (
%

)

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

AP−Fluid

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

CL−Fluid

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

FSM−Fluid

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

UPBS−Face

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

AV−Cloth

0

1

2

3

4

5

L1
 m

is
s

ra
te

 (
%

)

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

MLe−Fluid
16

K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

AVIF−Face

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

CG−Cloth

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

UPBS−Cloth

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

AF−Cloth

0

2

4

6

8

10

L1
 m

is
s

ra
te

 (
%

)

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

PCG−Fluid

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

CG−Face

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

CPL−Cloth

16
K

64
K

25
6K 1M 4M 16
M

64
M

25
6M

HI−Cloth

Figure 6: L1 miss rate as a function of cache size. For all experiments, we use a 256MB, 32-way L2, and use a 32-way L1 of varying
size. We show results for a single-threaded run, varying theL1 size from 16KB to 256MB, and for a 64-thread run, varying the L1
size for each core from 16KB to 4MB.

For the other modules with high bandwidth usage, we do not
expect a change in problem size to significantly alter their off-die
bandwidth usage because the working sets should always fit inrea-
sonable sized on-die caches. CG-cloth and HI have relatively low
off-die bandwidth usage because of this, although CG-cloth’s on-
die bandwidth usage is sensitive to the size of the cores’ private
caches. AF’s high off-die bandwidth usage is due to cold misses,
and so is not affected by the working set fitting in cache.

7.2 On-Die and Off-Die Traffic
We next examine the amount of on-chip and off-chip data com-

munication. This provides further insights into the memorybehav-
ior of our key modules, as well as into the bandwidth requirements
of a system that targets our applications. Bandwidth, both on-die
and off-die, is a critical resource in scalable CMPs since itmust be
shared amongst a potentially large number of threads. A module
will only continue to scale if sufficient bandwidth is available. We
consider only data communication because the number and size of
coherence messages are dependent on the coherence protocoland
implementation. Data traffic comprises the vast majority ofband-
width usage in our system.

On-die traffic . Figure 7 shows the communication-to-computation
ratio for on-die separated into three components: useful prefetches,

useless prefetches, and demand accesses (includes writebacks). We
include both integer and floating point computation as ALU opera-
tions because some modules have significant integer computation.

Most modules’ communication-to-computation ratios are rela-
tively insensitive to the number of threads. There are two primary
effects that we expect to impact the ratios as the number of threads
scales. First, the ratios may decrease as the per-thread working sets
shrink. The only module where this effect is pronounced is CL,
which matches our expectations from Figure 6. Second, the ratios
may increase as inter-thread communication rises with an increas-
ing number of threads. A number of modules see this effect, and
we examine it more closely later (see Section 7.3).

Five modules have high on-die bandwidth usage (≥ 1 byte/ALU
op) for 64 threads, PCG, CG-face, CG-cloth, AF, and HI. To reduce
the on-die bandwidth usage, one might consider increasing the L1
cache size. Our results in Figure 6 indicate that this would help
three of the five high-bandwidth modules, CG-face, CG-cloth, and
AF. However, increased L1 size would not provide much benefit
for PCG or HI because they have high inter-thread communication.

Prefetching. Prefetching into the L1s can also affect the on-die
bandwidth usage. Overly aggressive prefetching will increase the
bandwidth usage by fetching data that is not used. Further, it may
evict useful data that needs to be re-fetched. Figure 7 showsthat for

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8Cores

�
�
�
�Demand accessesUseless prefetchesUseful prefetches

FSMCL MLe PCG AVIF CG UPBS CG UPBS AF AV CPL HIAP

Fluid Face Cloth

��
��
��
��
������
��
��
��
������
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

������������������
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
������
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��1

2

3

4
B

yt
es

/A
LU

 o
p

Figure 7: On-die data traffic shown as bytes per ALU operation. The traffic is broken down into usefully prefetched data, uselessly
prefetched data, and data from demand accesses (includes writebacks).

all modules, the hardware prefetcher creates little useless prefetch
traffic. The figure also shows that for the modules with high band-
width requirements (except for HI), most of the data communica-
tion is from useful prefetches.

Our hardware stride prefetcher is most effective for modules with
high spatial locality and predictable access patterns. Therefore,
modules that touch large structures in a streaming manner will ben-
efit most. Many of our modules have a streaming access pattern;
therefore, most modules with the highest bandwidth usage also see
the highest fraction of their data successfully prefetched.

Memory Traffic . Figure 8 shows the data traffic between the shared
L2 and main memory, as a communication-to-computation ratio,
separated into reads and writes.5

The off-die memory traffic for the modules follows similar pat-
terns as for on-die traffic. The off-die communication-to-computation
ratios are very insensitive to the number of threads becauseinter-
thread communication is on-die, not off-die, and because there is
limited constructive and destructive sharing in these modules.6

PCG, CG-face, and AF have high off-die bandwidth usage in ad-
dition to the previously discussed high on-die bandwidth usage. On
the other hand, CG-cloth has extremely low off-die bandwidth us-
age because the entire data set for this iterative module fitsin the
L2 cache. CL and FSM see a similar effect. Also, the off-die band-
width usage for HI is dramatically lower than the on-die because
most of its on-die traffic is related to inter-thread communication.

The off-die bandwidth usage of some of the modules is so high,
especially for PCG, that it is likely to limit parallel scalability on
most current and near-future systems. On our simulated system,
assuming a 3GHz clock, PCG uses an average of 64GB/s of main
memory bandwidth for 64 threads. The average bandwidth usage
for each of the applications is significantly lower than the peak
bandwidth usage. However, the scaling of a worst-case module can
limit the scaling of an entire application if insufficient bandwidth is
available.

7.3 Data Sharing
Figure 9 shows the on-die data communication-to-computation

ratios broken down into four components: non-shared reads from
the L2 to an L1, shared reads from the L2 to an L1, cache-to-cache

5Dirty data left in the L2 at the end of each module is not counted as being written
back to memory.
6Constructive sharing is when a thread brings a line into a shared cache and is sub-
sequently used by another thread; this can greatly reduce off-die traffic. Destructive
sharing is when two or more threads are contending for the same set in a cache — this
results in additional conflict misses.

transfers, and writes from an L1 to the L2. We distinguish between
shared and non-shared reads from by examining the sharing vec-
tor on every L2 access — if another L1 has its sharing bit set, we
classify the access as shared, otherwise, non-shared.

Many of the modules are dominated by non-shared reads from
the L2 and writes to the L2, indicating little data sharing. This
is expected, since most modules partition their primary data struc-
tures, and each partition is touched by only one thread. However,
six modules have large fractions of their traffic from shareddata
(CL, FSM, PCG, CG-cloth, AF, and HI). There are three primary
sources for the data sharing in these modules.

First, PCG and FSM have true inter-thread communication due
to differences in partitioning across parallel sections. That is, these
modules contain multiple parallel sections, and do not partition
their data consistently across all sections. Therefore, insome sec-
tions an element will belong to thread A’s partition, while in others
it will belong to thread B’s. FSM has additional sharing since in
its largest section multiple threads may simultaneously operate on
a given partition.

Second, CL, FSM, and HI exhibit significant false sharing. CL
and FSM update a 3D array partitioned into cubes. Cube bound-
aries may not be aligned on cache line boundaries, triggering false
sharing. HI keeps some per-task state laid out in a 1D array. Up-
dates to this state trigger false sharing.7

Third, CG-cloth and AF have very small parallel regions (seeTa-
ble 2). The barrier cost is significant for these modules whenthe
number of threads is large. Accesses to the shared variablesasso-
ciated with the barriers grows with the number of threads, quickly
becoming a large fraction of the on-die traffic. CG-face simula-
tion, UPBS-cloth, and CPL have similar patterns, but they are less
pronounced since their parallel regions are larger.

8. CONCLUSIONS
We have studied a set of applications that span the important

emerging workload domain of physical simulation for computer an-
imation and visual effects: fluid, face, and cloth simulation. These
are all computationally demanding, and therefore can benefit from
large speedups. To provide these speedups, we parallelizedthese
applications for a large-scale CMP. We cover code that accounts
for at least 96% of the serial execution time for all three applica-
tions, and identified that at least 99.9% of the time is parallelizable
with reasonable effort. We identified and characterized themost
important modules in each application.

7This false sharing does not impact performance significantly, so we did not alter the
data structure.

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8Cores

Reads from memory Writes to memory

FSMCL MLe PCG AVIF CG UPBS CG UPBS AF AV CPL HIAP

Fluid Face Cloth

1

2

0.5

1.5
B

yt
es

/A
LU

 o
p

Figure 8: Main memory data bandwidth usage shown as bytes perALU operation. The traffic is broken into reads and writes.

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8

643216421 8Cores

�
�
�

�
�
�

Non−shared reads from L2 Shared reads from L2 $ to $ transfers Writes to L2

����
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��������
��
��
��
������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

������������
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
��
��
��
��������������
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
����
��
��
��

��
��
��

��
��
��
��

��
��
��
��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��
��
��������������
��
��

��
��
��

��
��
��

��
��
��

������������
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
������
��
��
��
��
��
��
��
��
��
��
��
��
������
��
��
��
����

1

2

3

4

B
yt

es
/A

LU
 o

p

FSMCL MLe PCG AVIF CG UPBS CG UPBS AF AV CPL HIAP

Fluid Face Cloth

Figure 9: On-die data traffic shown as bytes per ALU operation. The traffic is broken down into reads of non-shared data fromthe
L2 to L1, reads of shared data from the L2 to L1, cache-to-cache transfers (L1 to L1), and writebacks from the L1s to the L2.

For the code representing key modules, we achieve parallel scal-
ing of 45x, 50x, and 30x for fluid, face, and cloth simulations,
respectively. The modules have a spectrum of parallel task gran-
ularity and locking behavior, and all but one are dominated by
loop-level parallelism. Many modules operate on streams ofdata,
sometimes iterating over them, leading to significant temporal lo-
cality. This streaming behavior leads to very high on-die and main
memory bandwidth requirements. Finally, most modules havelittle
inter-thread communication since they are data-parallel,but a few
require heavy communication between data-parallel operations.

Acknowledgments
We would like to thank Bob Liang and Pradeep Dubey for helping
to start this effort, Victor Lee and Anthony Nguyen for theirassis-
tance with the simulation infrastructure, and Ron Fedkiw for access
to PhysBam. We would also like to thank our shepherd, Michael
Taylor, and the anonymous reviewers for their helpful feedback.

9. REFERENCES
[1] R. Bridson, R. P. Fedkiw, and J. Anderson. Robust Treatment of Collisions,

Contact, and Friction for Cloth Animation.ACM Transactions on Graphics,
21(3):594–603, July 2002.

[2] R. Bridson, S. Marino, and R. Fedkiw. Simulation of Clothing With Folds and
Wrinkles. In2003 ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, pages 28–36, Aug. 2003.

[3] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data Prefetching for
High-Performance Processors.IEEE Trans. on Computers, 44(5):609–623,
1995.

[4] D. P. Enright, S. R. Marschner, and R. P. Fedkiw. Animation and Rendering of
Complex Water Surfaces.ACM Transactions on Graphics, 21(3):736–744, July
2002.

[5] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5
Multithreaded Language. InProc. of ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 1998.

[6] W. Hunt, W. R. Mark, and G. Stoll. Fast kd-tree Construction with an Adaptive
Error-Bounded Heuristic. InProc. of the 2006 IEEE Symp. on Interactive Ray
Tracing, 2006.

[7] T. Iwashita and M. Shimasaki. Block Red-Black Ordering Method for Parallel
Processing of ICCG Solver. InProc. of the 4th Intl. Symp. on High Perf.
Computing, 2002.

[8] OpenMP Application Program Interface, May 2005. Version 2.5.
[9] PhysBAM package. http://graphics.stanford.edu/∼fedkiw.

[10] J. A. Sethian.Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, 1999.

[11] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Determination of Facial
Muscle Activations from Sparse Motion Capture Marker Data.ACM
Transactions on Graphics, 24(3):417–425, Aug. 2005.

[12] E. Sifakis, A. Selle, A. Robinson-Mosher, and R. Fedkiw. Simulating Speech
with a Physics-Based Facial Muscle Model. In M.-P. Cani and J. O’Brien,
editors,ACM SIGGRAPH/Eurographics Symp. on Computer Animation (SCA),
2006.

[13] SPEC CPU2006. http://www.spec.org/cpu2006/.
[14] J. Stam. Stable Fluids. InProceedings of SIGGRAPH 99, Computer Graphics

Proceedings, Annual Conference Series, pages 121–128, Aug. 1999.
[15] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements

and flesh simulation. In2005 ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pages 181–190, July 2005.

[16] Intel R©Thread Building Blocks Reference, 2006. Version 1.3.
[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

Programs: Characterization and Methodological Considerations. InProc. of the
22nd Annual Intl. Symp. on Computer Architecture, 1995.

[18] H. Zhao. A Fast Sweeping Method for Eikonal Equations.Mathematics of
Computation, 74:603–627, 2005.

