
CS/ECE 552: Single Cycle Datapath

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi, John Shen

and Jim Smith

Processor Implementation

• Forecast – heart of 552 – key to project

– Sequential logic design review (brief)

– Clock methodology (FSD)

– Datapath – 1 CPI
• Single instruction, 2’s complement, unsigned

• Next:

– Control

– Multiple cycle implementation (information only)

– Microprogramming

– Exceptions

Review Sequential Logic

• Logic is combinational if output is solely
function of inputs

– E.g., ALU of previous lecture

• Logic is sequential or “has state” if output
function of:

– Past and current inputs

– Past inputs remembered in “state”

– Of course, no magic

Review Sequential Logic: Building Block

• Clock high, Q = D, ~Q = ~D after prop. Delay
• Clock low Q, ~Q remain unchanged

– Level-sensitive latch

Review Sequential Logic

• Master/Slave D flip-flop

– While clock high, QM follows D, but QS holds

– At falling edge QM propagates to QS

– Opaque except at falling (rising) clock edge

QM QS

Review Sequential Logic

• Why can this fail for a latch?

– Latch is transparent when clock is high (low)

– Creates combinational loop

– Increment evaluates unknown number of times

D FF +1

Clocking Methology

• Motivation

– Design data and control without considering clock

• Use Fully Synchronous Design (FSD)

– Just a convention to simplify design process

– Restricts design freedom

– Eliminates complexity, can guarantee timing
correctness

– Not really feasible in real designs: off-chip I/O

– Even in ECE 554 you will violate FSD

552 Methodology
• Only flip-flops: clkrst.v
• All on the same edge (rising in clkrst.v)
• All use the same clock

– No need to draw clock signals (implicit)

• All logic you design should finish in 1 cycle

FFs Logic FFsLogic

552 Methodology (Cont.)

• No clock gating!

– Book has bad examples

• Correct design:

state

write AND clock

new current

state
current

new

write

0

1

Delayed Clocks (Gating)

• Problem:

– Some flip-flops receive gated clock late

– Data signal may violate setup & hold req’ts

Clock

Gated clock

X

D D
Delay

Delay

Clock

X Y

Y

Datapath – 1 CPI

• Assumption: get whole instruction done in one
long cycle

• Instructions:

– and, lw, sw, & beq

• For each instr. our single cycle processor must:

– For each instruction type: some comb and seq logic

– How to connect the components

Fetch Instructions

• Fetch instruction, then
increment PC

– Same for all types

• Assumes

– PC updated every cycle

– No branches or jumps

• After this instruction
fetch next one

ALU Instructions

• and $1, $2, $3 # $1 <= $2 & $3

• E.g., MIPS R-format
add rd, rs, rt
Opcode rs rt rd shamt function

6 5 5 5 5 6

Load/Store Instructions
• lw $1, immed($2) # $1 <= M[SE(immed)+$2]
• E.g., MIPS I-format:

lw rt, immed(rs)
Opcode rs rt immed

6 5 5 16

Branch Instructions

• beq $1, $2, addr # if ($1==$2) PC = PC + addr<<2

beq rt, rs, immed

• Actually

newPC = PC + 4

target = newPC + addr << 2 # in MIPS offset from newPC

if (($1 - $2) == 0)
PC = target

else
PC = newPC

Branch Instructions

All Together

Register File?

Summary

• Sequential logic design review (brief)

• Clock methodology (FSD)

• Datapath – 1 CPI

– ALU, lw, sw, beq instructions

