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Processor Implementation

• Forecast – heart of 552 – key to project

– Sequential logic design review (brief)

– Clock methodology (FSD)

– Datapath – 1 CPI
• Single instruction, 2’s complement, unsigned

• Next:

– Control

– Multiple cycle implementation (information only)

– Microprogramming

– Exceptions



Review Sequential Logic

• Logic is combinational if output is solely 
function of inputs

– E.g., ALU of previous lecture

• Logic is sequential or “has state” if output 
function of:

– Past and current inputs

– Past inputs remembered in “state”

– Of course, no magic



Review Sequential Logic: Building Block

• Clock high, Q = D, ~Q = ~D after prop. Delay
• Clock low Q, ~Q remain unchanged

– Level-sensitive latch



Review Sequential Logic

• Master/Slave D flip-flop

– While clock high, QM follows D, but QS holds

– At falling edge QM propagates to QS

– Opaque except at falling (rising) clock edge

QM QS



Review Sequential Logic

• Why can this fail for a latch?

– Latch is transparent when clock is high (low)

– Creates combinational loop

– Increment evaluates unknown number of times

D FF +1



Clocking Methology

• Motivation

– Design data and control without considering clock

• Use Fully Synchronous Design (FSD)

– Just a convention to simplify design process

– Restricts design freedom

– Eliminates complexity, can guarantee timing 
correctness

– Not really feasible in real designs: off-chip I/O

– Even in ECE 554 you will violate FSD



552 Methodology
• Only flip-flops: clkrst.v
• All on the same edge (rising in clkrst.v)
• All use the same clock

– No need to draw clock signals (implicit)

• All logic you design should finish in 1 cycle

FFs Logic FFsLogic



552 Methodology (Cont.)

• No clock gating!

– Book has bad examples

• Correct design:

state
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Delayed Clocks (Gating)

• Problem:

– Some flip-flops receive gated clock late

– Data signal may violate setup & hold req’ts
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Datapath – 1 CPI

• Assumption: get whole instruction done in one 
long cycle

• Instructions:

– and, lw, sw, & beq

• For each instr. our single cycle processor must:

– For each instruction type: some comb and seq logic

– How to connect the components



Fetch Instructions

• Fetch instruction, then 
increment PC

– Same for all types

• Assumes

– PC updated every cycle

– No branches or jumps

• After this instruction 
fetch next one



ALU Instructions

• and $1, $2, $3 # $1 <= $2 & $3

• E.g., MIPS R-format
add rd, rs, rt
Opcode rs rt rd shamt function

6 5 5 5 5 6



Load/Store Instructions
• lw $1, immed($2) # $1 <= M[SE(immed)+$2]
• E.g., MIPS I-format:

lw rt, immed(rs)
Opcode rs rt immed

6 5 5 16



Branch Instructions

• beq $1, $2, addr # if ($1==$2) PC = PC + addr<<2

beq rt, rs, immed

• Actually

newPC = PC + 4

target = newPC + addr << 2 # in MIPS offset from newPC

if (($1 - $2) == 0)
PC = target

else
PC = newPC



Branch Instructions



All Together



Register File?



Summary

• Sequential logic design review (brief)

• Clock methodology (FSD)

• Datapath – 1 CPI

– ALU, lw, sw, beq instructions


