
CS/ECE 552: Single Cycle Control Path

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill, 
Mikko Lipasti, David Wood, Guri Sohi, John Shen 

and Jim Smith



Control Overview

• Single-cycle implementation
– Datapath: combinational logic, I-mem, regs, D-mem, PC

• Last three written at end of cycle

– Need control – just combinational logic!

– Inputs: 
• Instruction (I-mem out)

• Zero (for beq)

– Outputs:
• Control lines for muxes

• ALUop

• Write-enables (Register File, Data Memory)

• Read-enable (Data Memory)

2



Control Overview

• Fast control

– Divide up work on “need to know” basis

– Logic with fewer inputs is faster

• E.g.:

– Global control need not know which ALUop

3



ALU Control

• Assume ALU uses

000 and

001 or

010 add

110 sub

111 slt (set less than)

others don’t care

4



ALU Control

• ALU-ctrl = f(opcode,function)

Instruction Operation Opcode Function

add add 000000 100000

sub sub 000000 100010

and and 000000 100100

or or 000000 100101

slt slt 000000 101010

5



But…don’t forget

• To simplify ALU-ctrl

– ALUop = f(opcode)

2 bits 6 bits

Instruction Operation Opcode function

lw add 100011 xxxxxx

sw add 101011 xxxxxx

beq sub 000100 100010

6



ALU Control

• ALU-ctrl = f(ALUop, function)

• 3 bits 2 bits 6 bits

• Requires only five gates plus inverters

10 add, sub, and, …

00 lw, sw

01 beq

7



Control Signals Needed

8



Global Control

• R-format: opcode rs rt rd shamt function

6 5 5 5 5 6

• I-format: opcode rs rt address/immediate

6 5 5 16

• J-format: opcode address

6 26

9



Global Control

• Route instruction[25:21] as read reg1 spec

• Route instruction[20:16] are read reg2 spec

• Route instruction[20:16] (load) and 
instruction[15:11] (others) to

– Write reg mux

• Rename instruction[31:26] op[5:0]

10



Global Control

• Global control outputs

– ALU-ctrl - see previous slides

– ALU src - R-format, beq vs. ld/st

– MemRead - lw

– MemWrite - sw

– MemtoReg - lw

– RegDst - lw dst in bits 20:16, not 15:11

– RegWrite - all but beq and sw

– PCSrc - beq taken

11



Global Control

• Global control outputs

– Replace PCsrc with

• Branch beq

• PCSrc = Branch * Zero

• What are the inputs needed to determine 
above global control signals?

– Just Op[5:0]

12



Control Signals Needed

13



Global Control

• RegDst = ~Op[0]
• ALUSrc = Op[0] 
• RegWrite = ~Op[3] * ~Op[2]

Instruction Opcode RegDst ALUSrc

rrr 000000 1 0

lw 100011 0 1

sw 101011 x 1

beq 000100 x 0

??? others x x

14



Global Control

• More complex with entire MIPS ISA

– Need more systematic structure

– Want to share gates between control signals

• Common solution: PLA

– MIPS opcode space designed to minimize PLA 
inputs, minterms, and outputs

• Refer to MIPS Opcode map

15



PLA

• In AND-plane, & selected 
inputs to get minterms

• In OR-plane, | selected 
minterms to get outputs

• E.g.:

16



How Can we add Jumps?

17



Control Signals w/Jumps

18



What’s wrong with single cycle?

• Critical path probably lw:
– I-mem, reg-read, alu, d-mem, reg-write

• Other instructions faster
– E.g., rrr: skip d-mem

• Instruction variation much worse for full ISA and 
real implementation:
– FP divide

– Cache misses (what the heck is this? – later)

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

X X

(CPI) (cycle time)

19



Single Cycle Implementation

• Solution

– Variable clock?

• Too hard to control, design

– Fixed short clock

• Variable cycles per instruction

• Multicycle control (next lecture)

20



Summary

• Processor implementation

– Datapath

– Control

• Single cycle implementation

21


