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Exceptions

 What happens?
— Instruction fetch page fault
— lllegal opcode
— Privileged opcode
— Arithmetic overflow
— Data page fault
— |/O device status change
— Power-on/reset



Exceptions

 For some, we could test for the condition
— Arithmetic overflow
— 1/0O device ready (polling)

* But most tests uselessly say “no”
e Solution:

— Surprise “procedure call”
— Called an exception



Exceptions: Big Picture

* Two types:
— Interrupt (asynchronous) or
— Trap (synchronous)

 Hardware handles initial reaction
* Then invokes a software exception handler

— By convention, at e.g., OxCOO
— O/S kernel provides code at the handler address



Exceptions: Hardware

Sets state that identifies cause of exception
— MIPS: in exception_code field of Cause register

Changes to kernel mode for dangerous work ahead
Disables interrupts

— MIPS: recorded in status register
Saves current PC (MIPS: exception PC)
Jumps to specific address (MIPS: 0x80000080)

— Like a surprise JAL — so can’t clobber $31



Exceptions: Software

e Exception handler:
— MIPS: .ktext at 0x80000080
* Set flag to detect incorrect entry
— Nested exception while in handler
* Save some registers
* Find exception type
— E.g., I/O interrupt or syscall
* Jump to specific exception handler




Exceptions: Software, cont’d

* Handle specific exception
* Jump to clean-up to resume user program
* Restore registers
* Reset flag that detects incorrect entry
e Atomically
— Restore previous mode (user vs. supervisor)
— Enable interrupts
— Jump back to program (using EPC)




Implementing Exceptions

We worry only about hardware, not s/w

IntCause

— 0 undefined instruction

— 1 arithmetic overflow

Changes to the datapath (e.g., project extra credit)

— Detect exception

— Add additional source for next PC (e.g., another 2-1 mux)
— Storage for exception cause, return address, spare register
Additional complexity in control logic



Pipeline With Exceptions (Fig 4.66)
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Summary and Review

* Exceptions
* Handling exceptions in a pipelined design



