THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552:
Pipelining and Exceptions

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by
Mark Hill, Mikko Lipasti, David Wood, Guri Sohi,
John Shen and Jim Smith



Exceptions

 What happens?
— Instruction fetch page fault
— lllegal opcode
— Privileged opcode
— Arithmetic overflow
— Data page fault
— |/O device status change
— Power-on/reset



Exceptions

 For some, we could test for the condition
— Arithmetic overflow
— 1/0O device ready (polling)

* But most tests uselessly say “no”
e Solution:

— Surprise “procedure call”
— Called an exception



Exceptions: Big Picture

* Two types:
— Interrupt (asynchronous) or
— Trap (synchronous)

 Hardware handles initial reaction
* Then invokes a software exception handler

— By convention, at e.g., OxCOO
— O/S kernel provides code at the handler address



Exceptions: Hardware

Sets state that identifies cause of exception
— MIPS: in exception_code field of Cause register

Changes to kernel mode for dangerous work ahead
Disables interrupts

— MIPS: recorded in status register
Saves current PC (MIPS: exception PC)
Jumps to specific address (MIPS: 0x80000080)

— Like a surprise JAL — so can’t clobber $31



Exceptions: Software

e Exception handler:
— MIPS: .ktext at 0x80000080
* Set flag to detect incorrect entry
— Nested exception while in handler
* Save some registers
* Find exception type
— E.g., I/O interrupt or syscall
* Jump to specific exception handler




Exceptions: Software, cont’d

* Handle specific exception
* Jump to clean-up to resume user program
* Restore registers
* Reset flag that detects incorrect entry
e Atomically
— Restore previous mode (user vs. supervisor)
— Enable interrupts
— Jump back to program (using EPC)




Implementing Exceptions

We worry only about hardware, not s/w

IntCause

— 0 undefined instruction

— 1 arithmetic overflow

Changes to the datapath (e.g., project extra credit)

— Detect exception

— Add additional source for next PC (e.g., another 2-1 mux)
— Storage for exception cause, return address, spare register
Additional complexity in control logic



Pipeline With Exceptions (Fig 4.66)

SO0001ED -

IF Flusslk
10, Flizzh
Hasand |
detection . §
unit ¥ -L
y [
.L'\-\. }--._"
i —
| — "]
Caniral = r—— [
| |
LA .I x
'-_\ T l_ —.—L_
5l
L]
Registers
Cm
o Instruction
memory
L -

HEMWE

| Lt L]
1 1] | k
Caisa k|| = |

+

Deata
mamary

THE UNIVERSITY

WISCONSIN

B

MADISON

al
Sy P

— uril -
h,

-\.
R .'- Farwandir ' 1 -

i =




Summary and Review

* Exceptions
* Handling exceptions in a pipelined design



