
CS/ECE 552:
Pipelining and Exceptions

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by
Mark Hill, Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Exceptions

• What happens?
– Instruction fetch page fault

– Illegal opcode

– Privileged opcode

– Arithmetic overflow

– Data page fault

– I/O device status change

– Power-on/reset

Exceptions

• For some, we could test for the condition

– Arithmetic overflow

– I/O device ready (polling)

• But most tests uselessly say “no”

• Solution:

– Surprise “procedure call”

– Called an exception

Exceptions: Big Picture

• Two types:

– Interrupt (asynchronous) or

– Trap (synchronous)

• Hardware handles initial reaction

• Then invokes a software exception handler

– By convention, at e.g., 0xC00

– O/S kernel provides code at the handler address

Exceptions: Hardware

• Sets state that identifies cause of exception

– MIPS: in exception_code field of Cause register

• Changes to kernel mode for dangerous work ahead

• Disables interrupts

– MIPS: recorded in status register

• Saves current PC (MIPS: exception PC)

• Jumps to specific address (MIPS: 0x80000080)

– Like a surprise JAL – so can’t clobber $31

Exceptions: Software

• Exception handler:
– MIPS: .ktext at 0x80000080

• Set flag to detect incorrect entry
– Nested exception while in handler

• Save some registers
• Find exception type

– E.g., I/O interrupt or syscall

• Jump to specific exception handler

Exceptions: Software, cont’d

• Handle specific exception
• Jump to clean-up to resume user program
• Restore registers
• Reset flag that detects incorrect entry
• Atomically

– Restore previous mode (user vs. supervisor)

– Enable interrupts

– Jump back to program (using EPC)

Implementing Exceptions

• We worry only about hardware, not s/w
• IntCause

– 0 undefined instruction

– 1 arithmetic overflow

• Changes to the datapath (e.g., project extra credit)
– Detect exception

– Add additional source for next PC (e.g., another 2-1 mux)

– Storage for exception cause, return address, spare register

• Additional complexity in control logic

Pipeline With Exceptions (Fig 4.66)

9

Summary and Review

• Exceptions

• Handling exceptions in a pipelined design

