THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552: Pipelining

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,
John Shen and Jim Smith

Pipelining

* Motivation
e Datapath
e Control

Single Cycle Performance

(code size) (CPI) (cycle time)

* Single cycle implementation
—CPI=1

— Cycle =imem + RFrd + ALU + dmem + RFwr +
muxes + control

— E.g. 500+250+500+500+250+0+0 = 2000ps
— Time/program = IPP x 1 CPI x 2ns = IPP x 2ns

Pipeline Stages

Stage | Description | Sample Actions
IF Fetch Instr=MEM|[PC]
NextPC=PC+4
ID |Decode A=RF(IR[25:21])
B=RF(IR[20:16])
Target={PC+4[31:28], SE(Instr[15:0] << 2)}
EX |FExecute ALUout = A + SE(Instr[15:0]) # lw/sw
ALUout = A op B # rrr (R-format)
if (A==B) NextPC = Target # beq
Mem M@IIIOI'Y MEM[ALUout] = B # sw
R, = MEM[ALUout] #lw
WB | Writeback Reg(IR[20:16]) = R, # lw

Reg(IR[20:16]) = ALUOut # rrr (R-format)

Multicycle Performance

Multicycle implementation:

Cycle: |1 |2 |3 (45|67
Instr:

10

11

12

13

1 F DI XMW

1+1 F|D

1+2

1+3

1+4

Multicycle Performance

* Multicycle implementation
— CPI1=5// 5 for each instruction
— Cycle = max(memory, RF, ALU, mux, control)
— = max(300,200,300) = 300ps
— Time/prog = IPP x 5 x 500 = IPP x 300ps = IPP x 1.5ns

 Would like:

— CPI =1 + overhead from hazards (later)
— Cycle = 300ps + overhead

— In practice, ~¥3x improvement

Latency vs. Throughput

Instruction latency = 5 cycles
Instruction throughput = 1/5 instr/cycle
CPI =5 cycles per instruction

Instead

— Pipelining: process instructions like a lunch buffet

— ALL microprocessors use it
* E.g. Intel Core i7, AMD Ryzen, ARM A10

Instruction Throughput

* |nstruction Latency =5 cycles (same)
* Instruction throughput = 1 instr/cycle
 CPl =1 cycle per instruction!

ldeal Pipelining

Semb. Kogic |~va=~<1/n>

Bandwidth increases linearly with pipeline depth
Latency increases by latch delays

Example: Integer Multiplier

Half Adder A
0O Full Adder m,emr™
)
|
7 e
SELLIFLT 6
m I Fa
'+5| " g
F10
F11
J F12
Mig 2,
[FIfp
. [Source: J. Hayes, Univ. of Michigan]
P31 Miv1 @& Mie Mi3

16x16 combinational multiplier
ISCAS-85 C6288 standard benchmark
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

10

Example: Integer Multiplier

urs o /i

Combinational 3.52ns
2 Stages 1.87ns
4 Stages 1.17ns
8 Stages 0.80ns

Pipeline efficiency

534 (1.9x)
855 (3.0x)
1250 (4.4x)

7535 (--/1759)

8725 (1078/1870) 16%
11276 (3388/2112) 50%
17127 (8938/2612) 127%

2-stage: nearly double throughput; marginal area cost

4-stage: 75% efficiency; area still reasonable

8-stage: 55% efficiency; area more than doubles
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

11

ldeal Pipelining

Cycle: 213(4|5|61|7 |8 1 11
Instr: 0 2 |3
i DX | MW

i+1 FIDIX| MW

i+2 FIDIX MW

i+3 F|D|X |MW

i+4 FID|X |M

12

Pipelining Idealisms

Uniform subcomputations
— Can pipeline into stages with equal delay

ldentical computations
— Can fill pipeline with identical work

Independent computations
— No relationships between work units
— No dependences, hence no pipeline hazards

Can we guarantee these conditions all the time?
— No, but can get close enough to get significant speedup

13

THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552: Pipelining Part 2

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,
John Shen and Jim Smith

Complications

e Datapath

— Five (or more) instructions in flight

e Control

— Must correspond to multiple instructions

* |nstructions may have
— data and control flow dependences
— |.e., units of work are not independent

* One may have to stall and wait for another

15

Datapath

16

WEB: Write back

1))
W
o
=
=
& o 5
o ®E
& og
il 2 .
= 3 £8
5 b =8
Ll
=
[
e,
ey,
e..nld. o D=
- T 23
w w = ZAM
w 23 3
55 ; b
0 2
Tt S
H m =Oox
(=] —
3 e
o &%
e,
5 o+t
T o
O T s Sw -
O ¥ rm g c
[(V ()] © © k=
o w W X
T 5 9
c @ % s |
S - of 2
d a .m...m .m..m M..m Ea
20 28 2% £7 £
0w o 3
C o
—_
O
g
E
2

Instruction
memory

Instruction fetch
¥
1
>}

IF
—H Address

Datapath

2 o
Q@ (8]
O O _e_ =
& O P -
o | S —— |
3]
° ___ - ____
O _J—
=
e —
e 5 |
= O
=) o =)
P € &«
n o Q -
mO o ()
oA N (4p]
c B = , ,
ES 2 & & &8
5 . ®
3oL =
A w o O
o o O »

17

Control

e Control
— Concurrently set by 5 different instructions
— Divide and conquer: carry instr. down the pipe

* Smarter: only carry needed control signals from instr.
* More on this later

18

Pipelined Datapath

e Start with single-cycle datapath
* Pipelined execution
— Assume each instruction has its own datapath
— But each instruction uses a different part in every cycle
— Multiplex all on to one datapath
— Latches/flip-flops separate stages

* |gnore dependences and hazards for now
— Data
— control

19

Pipelined Datapath

add
load

ID/EX EX/MEM MEM/WB

o 1~

Add
>Add result

c
o
Address 3 er 1 Read
£ Read data 1
£ i [
egisiers Rea
Write data 2
register
Write
data
. 32
\ Sign |\
N lextend [

20

Pipelined Datapath

add
load

ID/EX EX/MEM MEM/WB

o 1~

Add
>Add result

c
o
Address 3 er 1 Read
£ Read data 1
£ i [
egisiers Rea
Write data 2
register
Write
data
. 32
\ Sign |\

N lextend

Pipelined Datapath

* |Instruction flow

— add and load shown, work through beq, st, ...
— 2 instructions in 6 cycles
— n instructions in n+1 cycles, for large n CPI ~ 1

* Any info needed by a later stage gets passed
through the pipeline

— E.g., store value through EX for a store

22

THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552: Pipelining Part 3

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,
John Shen and Jim Smith

Pipelined Control

IF and ID
— Nonein IF
— Implicit in ID
* Just decoded instruction from IF/ID pipeline register

EX

— ALUop, ALUsrc, RegDst

MEM

— Branch, MemRead, MemWrite

WB
— MemtoReg, RegWrite

24

Datapath Control Signals

0

M

u

X
A

IF/ID

ID/EX

Add

b

Address

Instruction
memory

Read

register 1 Read

Read data 1

l Instruction

register 2
Registers Read

Write data 2

register

Write
data

Instruction

[15-0] 16 32
A\

Instruction
[20-16]

Add

Shift
left 2

Add

EXIMEM

result

ALU AlLu
result

A o

Instruction
[15—11]

Address Read
data
Data
memory
Write
data

MEM/WB

C==9)

OxecZ

Instruction

_>C

IF/ID

Pipelined Control

ontrol

WB

EX

ID/EX

WB

v

EX/MEM

WB

MEM/WB

26

All Together

ID/EX

PC

EX/MEM

Address
Data
memory
Write
data

MEM/WB

r————————————————
IF/ID
Add
4
c Read
Address -% register 1 Read|
=)
= Read data 1
Instruction L regisrekﬁgisters Read ALU ALU
eal
memory Write data 2 0 result
register M
u
Write X
| data | 1
Instruction
32 6
[15-0] \ Sign |\ A
N lextend N
Instruction
[20- 16] 5
M
Instruction u
[15-11] 1X

Oxcz—

Pipelined Control

* Each stage controlled by a different instruction

* Decode instruction in ID, pass its control
signals through pipeline
* Control sequencing embedded in pipeline

— No explicit FSM
— Instead, distributed FSM (harder to verify)

28

Summary

Motivation
Datapath
Control

Next

— Program dependences
— Pipeline hazards

29

