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Pipelining

* Motivation
e Datapath
e Control



Single Cycle Performance

(code size) (CPI) (cycle time)

* Single cycle implementation
—CPI=1

— Cycle =imem + RFrd + ALU + dmem + RFwr +
muxes + control

— E.g. 500+250+500+500+250+0+0 = 2000ps
— Time/program = IPP x 1 CPI x 2ns = IPP x 2ns



Pipeline Stages

Stage | Description | Sample Actions
IF Fetch Instr=MEM|[PC]
NextPC=PC+4
ID |Decode A=RF(IR[25:21])
B=RF(IR[20:16])
Target={PC+4[31:28], SE(Instr[15:0] << 2)}
EX |FExecute ALUout = A + SE(Instr[15:0]) # lw/sw
ALUout = A op B # rrr (R-format)
if (A==B) NextPC = Target # beq
Mem M@IIIOI'Y MEM[ALUout] = B # sw
R, = MEM[ALUout] #lw
WB | Writeback Reg(IR[20:16]) = R, # lw

Reg(IR[20:16]) = ALUOut # rrr (R-format)




Multicycle Performance

Multicycle implementation:

Cycle: |1 |2 |3 (45|67
Instr:
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Multicycle Performance

* Multicycle implementation
— CPI1=5// 5 for each instruction
— Cycle = max(memory, RF, ALU, mux, control)
— = max(300,200,300) = 300ps
— Time/prog = IPP x 5 x 500 = IPP x 300ps = IPP x 1.5ns

 Would like:

— CPI =1 + overhead from hazards (later)
— Cycle = 300ps + overhead

— In practice, ~¥3x improvement



Latency vs. Throughput

Instruction latency = 5 cycles
Instruction throughput = 1/5 instr/cycle
CPI =5 cycles per instruction

Instead

— Pipelining: process instructions like a lunch buffet

— ALL microprocessors use it
* E.g. Intel Core i7, AMD Ryzen, ARM A10



Instruction Throughput

* |nstruction Latency =5 cycles (same)
* Instruction throughput = 1 instr/cycle
 CPl =1 cycle per instruction!



ldeal Pipelining

Semb. Kogic |~va=~<1/n>

Bandwidth increases linearly with pipeline depth
Latency increases by latch delays



Example: Integer Multiplier
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16x16 combinational multiplier
ISCAS-85 C6288 standard benchmark
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC
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Example: Integer Multiplier

urs o /i

Combinational 3.52ns
2 Stages 1.87ns
4 Stages 1.17ns
8 Stages 0.80ns

Pipeline efficiency

534 (1.9x)
855 (3.0x)
1250 (4.4x)

7535 (--/1759)

8725 (1078/1870) 16%
11276 (3388/2112) 50%
17127 (8938/2612) 127%

2-stage: nearly double throughput; marginal area cost

4-stage: 75% efficiency; area still reasonable

8-stage: 55% efficiency; area more than doubles
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC
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ldeal Pipelining

Cycle: 213(4|5|61|7 |8 1 11
Instr: 0 2 |3
i DX | MW

i+1 FIDIX| MW

i+2 FIDIX MW

i+3 F|D|X |MW

i+4 FID|X |M

12



Pipelining Idealisms

Uniform subcomputations
— Can pipeline into stages with equal delay

ldentical computations
— Can fill pipeline with identical work

Independent computations
— No relationships between work units
— No dependences, hence no pipeline hazards

Can we guarantee these conditions all the time?
— No, but can get close enough to get significant speedup

13



THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552: Pipelining Part 2

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,
John Shen and Jim Smith



Complications

e Datapath

— Five (or more) instructions in flight

e Control

— Must correspond to multiple instructions

* |nstructions may have
— data and control flow dependences
— |.e., units of work are not independent

* One may have to stall and wait for another
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Datapath

16

WEB: Write back

1))
W
o
=
=
& o 5
o ®E
& og
il 2 .
= 3 £8
5 b =8
Ll
=
[
e,
ey,
e..nld. o D=
- T 23
w w = ZAM
w 23 3
55 ; b
0 2
Tt S
H m =Oox
(=] —
3 e
o &%
e,
5 o+t
T o
O T s Sw -
O ¥ rm g c
[(V ()] © © k=
o w W X
T 5 9
c @ % s |
S - of 2
d a .m...m .m..m M..m Ea
20 28 2% £7 £
0w o 3
C o
—_
O
g
E
2

Instruction
memory

Instruction fetch
¥
1
>}

IF
—H Address




Datapath
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Control

e Control
— Concurrently set by 5 different instructions
— Divide and conquer: carry instr. down the pipe

* Smarter: only carry needed control signals from instr.
* More on this later
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Pipelined Datapath

e Start with single-cycle datapath
* Pipelined execution
— Assume each instruction has its own datapath
— But each instruction uses a different part in every cycle
— Multiplex all on to one datapath
— Latches/flip-flops separate stages

* |gnore dependences and hazards for now
— Data
— control
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Pipelined Datapath
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Pipelined Datapath
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Pipelined Datapath

* |Instruction flow

— add and load shown, work through beq, st, ...
— 2 instructions in 6 cycles
— n instructions in n+1 cycles, for large n CPI ~ 1

* Any info needed by a later stage gets passed
through the pipeline

— E.g., store value through EX for a store
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Pipelined Control

IF and ID
— Nonein IF
— Implicit in ID
* Just decoded instruction from IF/ID pipeline register

EX

— ALUop, ALUsrc, RegDst

MEM

— Branch, MemRead, MemWrite

WB
— MemtoReg, RegWrite

24



Datapath Control Signals
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All Together
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Pipelined Control

* Each stage controlled by a different instruction

* Decode instruction in ID, pass its control
signals through pipeline
* Control sequencing embedded in pipeline

— No explicit FSM
— Instead, distributed FSM (harder to verify)
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Summary

Motivation
Datapath
Control

Next

— Program dependences
— Pipeline hazards
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