
CS/ECE 552: Pipelining

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill, 
Mikko Lipasti, David Wood, Guri Sohi, 

John Shen and Jim Smith



Pipelining

• Motivation

• Datapath

• Control

2



Single Cycle Performance

• Single cycle implementation

– CPI = 1

– Cycle = imem + RFrd + ALU + dmem + RFwr + 
muxes + control

– E.g. 500+250+500+500+250+0+0 = 2000ps

– Time/program = IPP x 1 CPI x 2ns = IPP x 2ns

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

X X

(CPI) (cycle time)

3



Pipeline Stages

Stage Description Sample Actions

IF Fetch Instr=MEM[PC]

NextPC=PC+4

ID Decode A=RF(IR[25:21])

B=RF(IR[20:16])

Target={PC+4[31:28], SE(Instr[15:0] << 2)}

EX Execute ALUout = A + SE(Instr[15:0]) # lw/sw

ALUout = A op B # rrr (R-format)

if (A==B) NextPC = Target # beq

Mem Memory MEM[ALUout] = B # sw

Rt = MEM[ALUout] #lw

WB Writeback Reg(IR[20:16]) = Rt # lw

Reg(IR[20:16]) = ALUOut # rrr (R-format)

4



Multicycle Performance

• Multicycle implementation:

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 10 11 12 13

i F D X M W

i+1 F D X M W

i+2 F D X

i+3

i+4

5



Multicycle Performance

• Multicycle implementation

– CPI = 5 // 5 for each instruction

– Cycle = max(memory, RF, ALU, mux, control)

– = max(300,200,300) = 300ps

– Time/prog = IPP x 5 x 500 = IPP x 300ps = IPP x 1.5ns

• Would like:

– CPI = 1 + overhead from hazards (later)

– Cycle = 300ps + overhead

– In practice, ~3x improvement

6



Latency vs. Throughput

• Instruction latency = 5 cycles

• Instruction throughput = 1/5 instr/cycle

• CPI = 5 cycles per instruction

• Instead

– Pipelining: process instructions like a lunch buffet

– ALL microprocessors use it

• E.g. Intel Core i7, AMD Ryzen, ARM A10

7



Instruction Throughput

• Instruction Latency = 5 cycles (same)

• Instruction throughput = 1 instr/cycle

• CPI = 1 cycle per instruction!

8



Ideal Pipelining

Bandwidth increases linearly with pipeline depth

Latency increases by latch delays

Gate
Delay

Comb. Logic
n Gate Delay

Gate
Delay

L Gate
DelayL

L Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--
2

n
--
2

n
--
3

n
--
3

n
--
3

BW = ~(2/n)

BW = ~(3/n)

9



Example: Integer Multiplier

10

16x16 combinational multiplier 

ISCAS-85 C6288 standard benchmark

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

[Source: J. Hayes, Univ. of Michigan]

mi

mi+1 mi+2 mi+3

mi+4

mi+5

mi+6

mi+7



Example: Integer Multiplier

Configuration Delay MPS (Thrpt) Area (FF/wiring) Area Increase

Combinational 3.52ns 284 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%

4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%

8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%

11

Pipeline efficiency

2-stage: nearly double throughput; marginal area cost

4-stage: 75% efficiency; area still reasonable

8-stage: 55% efficiency; area more than doubles

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC



Ideal Pipelining

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X M W

i+2 F D X M W

i+3 F D X M W

i+4 F D X M W

12



Pipelining Idealisms

• Uniform subcomputations

– Can pipeline into stages with equal delay

• Identical computations

– Can fill pipeline with identical work

• Independent computations

– No relationships between work units

– No dependences, hence no pipeline hazards

• Can we guarantee these conditions all the time?

– No, but can get close enough to get significant speedup

13



CS/ECE 552: Pipelining Part 2

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill, 
Mikko Lipasti, David Wood, Guri Sohi, 

John Shen and Jim Smith



Complications

• Datapath

– Five (or more) instructions in flight

• Control

– Must correspond to multiple instructions

• Instructions may have 

– data and control flow dependences

– I.e., units of work are not independent

• One may have to stall and wait for another

15



Datapath

16



Datapath

17



Control

• Control

– Concurrently set by 5 different instructions

– Divide and conquer: carry instr. down the pipe

• Smarter: only carry needed control signals from instr.

• More on this later

18



Pipelined Datapath

• Start with single-cycle datapath
• Pipelined execution

– Assume each instruction has its own datapath

– But each instruction uses a different part in every cycle

– Multiplex all on to one datapath

– Latches/flip-flops separate stages

• Ignore dependences and hazards for now
– Data

– control

19



Pipelined Datapath

Instruction 

memory

Address

4

32

0

Add
Add 

result

Shift 

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0
Write 
data

M 
u 
x

1

Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU

Zero

ID/EX

Data 

memory

Address

add
load

20



Pipelined Datapath

Instruction 

memory

Address

4

32

0

Add
Add 

result

Shift 

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M 
u 
x

0

1

Add

PC

0
Write 
data

M 
u 
x

1

Registers

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

16
Sign 

extend

Write 
register

Write 
data

Read 
data

1

ALU 
result

M 
u 
x

ALU

Zero

ID/EX

Data 

memory

Address

add
load

21



Pipelined Datapath

• Instruction flow

– add and load shown, work through beq, st, …

– 2 instructions in 6 cycles

– n instructions in n+1 cycles, for large n CPI ~ 1

• Any info needed by a later stage gets passed 
through the pipeline

– E.g., store value through EX for a store

22



CS/ECE 552: Pipelining Part 3

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill, 
Mikko Lipasti, David Wood, Guri Sohi, 

John Shen and Jim Smith



Pipelined Control

• IF and ID
– None in IF

– Implicit in ID
• Just decoded instruction from IF/ID pipeline register

• EX
– ALUop, ALUsrc, RegDst

• MEM
– Branch, MemRead, MemWrite

• WB
– MemtoReg, RegWrite

24



Datapath Control Signals

PC

Instruction 
memory

Address

In
s
tr

u
c
ti
o
n

Instruction 
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction 
[15– 0]

0

0
Registers

Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Sign 
extend

M 
u 
x

1
Write 

data

Read 

data M 
u 
x

1

ALU 

control

RegWrite

MemRead

Instruction 
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data 
memory

PCSrc

Zero

Add
Add 

result

Shift 

left 2

ALU 

result

ALU

Zero

Add

0

1

M 
u 
x

0

1

M 
u 
x

25



Pipelined Control

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

26



All Together

PC

Instruction 
memory

In
s
tr

u
c
ti
o

n

Add

Instruction 
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction 
[15–0]

0

0

M 
u 
x

0

1

Add
Add 

result

Registers
Write 
register

Write 
data

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Sign 
extend

M 
u 
x

1

ALU 
result

Zero

Write 
data

Read 
data

M 
u 
x

1

ALU 
control

Shift 
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction 
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M 
u 
x

0

1

M
e

m
W

ri
te

Address

Data 
memory

Address

27



Pipelined Control

• Each stage controlled by a different instruction

• Decode instruction in ID, pass its control 
signals through pipeline

• Control sequencing embedded in pipeline

– No explicit FSM

– Instead, distributed FSM (harder to verify)

28



Summary

• Motivation
• Datapath
• Control
• Next

– Program dependences 
– Pipeline hazards

29


