
CS/ECE 552: Pipeline Hazards

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Pipeline Hazards

• Forecast
– Program Dependences

– Data Hazards
• Stalls

• Forwarding

– Control Hazards
• Stalls

• Speculation

– Exceptions

2

Sequential Execution Model

• MIPS ISA requires the appearance of
sequential execution

– Precise exceptions

– True of most general-purpose ISAs

– Hardware’s goal: maintain this illusion

• Execute things concurrently under the hood

• Use bookkeeping to keep track of sequential order

• If something bad happens (e.g., exception): utilize
bookkeeping to restore everything to sequential order

3

Program Dependences

i1: xxxx

i2: xxxx

i3: xxxx

i1

i2

i3

i1:

i2:

i3:

The implied sequential precedences are
an overspecification. It is sufficient but not
necessary to ensure program correctness.

A true dependence between
two instructions may only
involve one subcomputation
of each instruction.

4

Program Data Dependences

• True dependence (RAW)
– j cannot execute until i

produces its result

• Anti-dependence (WAR)
– j cannot write its result until i

has read its sources

• Output dependence (WAW)
– j cannot write its result until i

has written its result

)()(jRiD

)()(jDiR

)()(jDiD

5

Control Dependences

• Conditional branches

– Branch must execute first to determine which
instruction to fetch next

• Tells hardware if branch is taken or not taken

– Instructions following a conditional branch are
control dependent on the branch instruction

• Usually program executes different instructions if
branch is taken or not

6

Example (quicksort/MIPS)

for (; (j < high) && (array[j] < array[low]) ; ++j);

$10 = j

$9 = high

$6 = array

$8 = low

bge done, $10, $9

mul $15, $10, 4

addu $24, $6, $15

lw $25, 0($24)

mul $13, $8, 4

addu $14, $6, $13

lw $15, 0($14)

bge done, $25, $15

cont:

addu $10, $10, 1

. . .

done:

addu $11, $11, -1

7

Pipeline Hazards

• Pipeline hazards

– Potential violations of program dependences

– Must ensure program dependences are not violated

• Hazard resolution

– Static: compiler/programmer guarantees correctness

– Dynamic: hardware performs checks at runtime

• Pipeline interlock

– Hardware mechanism for dynamic hazard resolution

– Must detect and enforce dependences at runtime
• E.g., stall until hazard condition is gone

8

Pipeline Hazards

• Necessary conditions:
– WAR: write stage earlier than read stage

• Is this possible in IF-RD-EX-MEM-WB ?

– WAW: write stage earlier than write stage
• Is this possible in IF-RD-EX-MEM-WB ?

– RAW: read stage earlier than write stage
• Is this possible in IF-RD-EX-MEM-WB?

• If conditions not met, no need to resolve
• Check for both register and memory

9

Pipeline Hazard Analysis

ALU

RD

IFIF

ID

RD

ALU

MEM

WB

D

S1

S2

W/RWData

RData2

Register
File

RAdd2
RData1

WAdd

RAdd1

• Memory hazards

– WAR: Yes/No?

– WAW: Yes/No?

– RAW: Yes/No?

• Register hazards

– WAR: Yes/No?

– WAW: Yes/No?

– RAW: Yes/No?

WAR: write stage earlier than read?
WAW: write stage earlier than write?
RAW: read stage earlier than write?

10

RAW Hazard

• Earlier instruction produces a value used by a
later instruction:
– add $1, $2, $3

– sub $4, $5, $1

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

add F D X M W

sub F D X M W

11

RAW Hazard - Stall

• Detect dependence and stall:
– add $1, $2, $3

– sub $4, $5, $1

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3

add F D X M W

sub F D X M W

12

Control Dependence

• One instruction affects which executes next
– sw $4, 0($5)

– bne $2, $3, loop

– sub $6, $7, $8

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3

sw F D X M W

bne F D X M W

sub F D X M W

13

Control Dependence - Stall

• Detect dependence and stall
– sw $4, 0($5)

– bne $2, $3, loop

– sub $6, $7, $8

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3

sw F D X M W

bne F D X M W

sub F D X M W

14

CS/ECE 552: Pipeline Hazards Part 2

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Pipelined Control

• Each stage controlled by a different instruction

• Decode instruction in ID, pass its control
signals through pipeline

• Control sequencing embedded in pipeline

– No explicit FSM

– Instead, distributed FSM (harder to verify)

16

Pipelined Control

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

17

RAW Hazards

• Must first detect RAW hazards
– Pipeline analysis proved that WAR/WAW don’t occur

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2

18

RAW Hazards

• Not all hazards because

– WriteRegister not used (e.g., sw, branch)

– ReadRegister not used (e.g., addi, jump)

– Do something only if necessary

• Logic becomes more complicated than previous slide

19

RAW Hazards

• Hazard Detection Unit

– Several 5-bit comparators

• Response? Stall pipeline

– Instructions in IF and ID stay

– IF/ID pipeline register not updated

– Send ‘nop’ down pipeline (called a bubble)

– HW Changes: PCWrite, IF/ID.Write, and nop mux

– X, M, WB instructions continue

20

RAW Hazard Forwarding

• A better response – forwarding

– Also called bypassing

• Stalling: relies on comparators to ensure
register is read after it is written

• Forwarding: don’t stall, forward!

– Use mux to select forwarded value from later
pipeline stage instead of register value

– Control mux with hazard detection logic

21

Forwarding Paths
(ALU instructions)

22

FORWARDING

IF

ID

b

ALU

PATHS

a

i+1: i+2: i+3:

i: R1

i: R1

i: R1

(i i+1)

Forwarding

via Path a

i+1:

i+1:

i+2:

(i i+2)

Forwarding

via Path b

(i i+3)

i writes R1
before i+3
reads R1

RD

ALU

MEM

WB

R1 R1 R1

R1c

Write before Read RF

• Register file design

– 2-phase clocks common

– Write RF on first phase

– Read RF on second phase

• Hence, same cycle:

– Write $1

– Read $1

• No bypass needed

– If read before write or DFF-based, need bypass

23

ALU

Register
File

•

•
•

•

•

• •

1 0 1 0

1 0 1 0

ALU

Comp Comp Comp Comp

•

•

•

•

•

ALU Forwarding

24

Forwarding Paths (Load instructions)

25

(i i+2)
(i i+1)

IF

ID

e
LOAD

FORWARDING

PATH(s)

i+1: i+1: i+2:

i+1:

RD

ALU

MEM

WB

i:R1

i:R1

i:R1

(i i+1)

Stall i+1 Forwarding

via Path d

i writes R1

before i+2

reads R1

d

R1 R1 R1

R1

MEM[]

MEM[]

MEM[]

Implementation of Load Forwarding

•

ALU

Register
File

•

•

•

•

•

• •

1 0 1 0

1 0 1 0

ALU

CompComp CompComp

•

•

1 0 1 0

•

Load

Stall
IF,ID,RD

•
D
a
ta

A
d
d

•

•

D-Cache

•

r

LOAD

26

CS/ECE 552: Pipeline Hazards Part 3

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Control Flow Hazards

• Control flow instructions

– branches, jumps, jals, returns

– Can’t fetch until branch outcome is known

– Too late for next IF

28

Control Flow Hazards (Cont.)

• What to do?

– Always stall

– Easy to implement

– Performs poorly

– 1/6th instructions are branches

• each branch takes 3 cycles

– CPI = 1 + 3 x 1/6 = 1.5 (lower bound)

29

Control Flow Hazards (Cont.)

• Predict branch not taken

• Send sequential instructions down pipeline

• Kill instructions later if incorrect

• Must stop memory accesses and RF writes

• Late flush of instructions on misprediction

– Complex

– Global signal (wire delay)

30

Control Flow Hazards (Cont.)

• Even better but more complex
– Predict taken

– Predict both (eager execution)

– Predict one or the other dynamically
• Adapt to program branch patterns

• Lots of chip real estate these days
– Core i7, ARM A15 and their successors

• Current research topic

– More later, covered in detail in CS/ECE 752

31

Control Flow Hazards (Cont.)

• Another option: delayed branches

– Always execute following instruction

– “delay slot” (later example on MIPS pipeline)

– Put useful instruction there, otherwise ‘nop’

• A mistake to cement this into ISA

– Just a stopgap (one cycle, one instruction)

– Superscalar processors (later)

• Delay slot just gets in the way

32

Exceptions and Pipelining

• add $1, $2, $3 overflows

• A surprise branch

– Earlier instructions flow to completion

– Kill (flush) later instructions

– Save PC in EPC, set PC to Exception handler, etc.

• Costs a lot of designer sanity

33

Exceptions

• Even worse: in one cycle
– I/O interrupt

– User trap to OS (EX)

– Illegal instruction (ID)

– Arithmetic overflow

– Hardware error

– Etc.

• Interrupt priorities must be supported

34

Pipeline Hazards

• Program Dependences

• Data Hazards
– Stalls

– Forwarding

• Control Hazards
– Stalls

– Speculation

• Exceptions

35

