
CS/ECE 552: Pipelining
to Superscalar

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Pipelining to Superscalar

• Forecast

– IBM RISC Experience

– The case for superscalar

– Instruction-level parallel machines

– Superscalar pipeline organization

– Superscalar pipeline design

IBM RISC Experience [Agerwala and Cocke 1987]

• Internal IBM study: Limits of a scalar pipeline?
• Memory Bandwidth

– Fetch 1 instr/cycle from I-cache

– 40% of instructions are load/store (D-cache)

• Code characteristics (dynamic)
– Loads – 25%

– Stores 15%

– ALU/RR – 40%

– Branches & jumps – 20%
• 1/3 unconditional (always taken)

• 1/3 conditional taken, 1/3 conditional not taken

IBM Experience – Assumptions

• Cache Performance
– Assume 100% hit ratio (upper bound)

– Cache latency: I = D = 1 cycle default

• Load and branch scheduling
– Loads

• 25% cannot be scheduled (delay slot empty)

• 65% can be moved back 1 or 2 instructions

• 10% can be moved back 1 instruction

– Branches & jumps
• Unconditional – 100% schedulable (fill one delay slot)

• Conditional – 50% schedulable (fill one delay slot)

CPI Optimizations

• Goal and impediments
– CPI = 1, prevented by pipeline stalls

• V1: No RF bypassing, no load/branch scheduling
– Load penalty: 2 cycles: 0.25 x 2 = 0.5 CPI

– Branch penalty: 2 cycles: 0.2 x 2/3 x 2 = 0.27 CPI

– Total CPI: 1 + 0.5 + 0.27 = 1.77 CPI

• V2: RF Bypassing, no load/branch scheduling
– Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI

– Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI

More CPI Optimizations

• V3: RF Bypassing, scheduling of loads/branches
– Load penalty:

• 65% + 10% = 75% moved back, no penalty

• 25% => 1 cycle penalty

• 0.25 x 0.25 x 1 = 0.0625 CPI

– Branch Penalty
• 1/3 unconditional 100% schedulable => 1 cycle

• 1/3 cond. not-taken, => no penalty (predict not-taken)

• 1/3 cond. Taken, 50% schedulable => 1 cycle

• 1/3 cond. Taken, 50% unschedulable => 2 cycles

• 0.20 x [1/3 x 1 + 1/3 x 0.5 x 1 + 1/3 x 0.5 x 2] = 0.167

• Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI

Simplify Branches

• V4: Assume 90% can be PC-relative
– No register indirect, no register access

– Separate adder (like MIPS R3000)

– Branch penalty reduced

• Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI = 0.87 IPC

PC-relative Schedulable Penalty

Yes (90%) Yes (50%) 0 cycle

Yes (90%) No (50%) 1 cycle

No (10%) Yes (50%) 1 cycle

No (10%) No (50%) 2 cycles

15% Overhead

from program

dependences

CS/ECE 552: Pipelining
to Superscalar Part 2

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Processor Performance

• In the 1980’s (decade of pipelining):
– CPI: 5.0 => 1.15

• In the 1990’s (decade of superscalar):
– CPI: 1.15 => 0.5 (best case)

Processor Performance = ---------------
Time

Program

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)

Revisit Amdahl’s Law

• h = fraction of time in serial code
• f = fraction that is vectorizable
• v = speedup for f
• Overall speedup:

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

v

f
f

Speedup

+−

=

1

1

Revisit Amdahl’s Law

• Sequential bottleneck

• Even if v is infinite

– Performance limited by nonvectorizable
portion (1-f)

f

v

f
f

v −
=

+−
→ 1

1

1

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

Pipelined Performance Model

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled
(stalled)

1-g g

Pipeline
Depth

N

1

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled
(stalled)

1-g g

Pipeline
Depth

N

1

Pipelined Performance Model

Pipelined Performance Model

• Tyranny of Amdahl’s Law [Bob Colwell]
– When g is even slightly below 100%, a big performance

hit will result

– Stalled cycles are the key adversary and must be
minimized as much as possible

1-g g

Pipeline
Depth

N

1

Motivation for Superscalar
[Agerwala and Cocke]

Typical Range

Speedup jumps from 3 to 4.3

for N=6, f=0.8, but s =2 instead

of s=1 (scalar)

Superscalar Proposal

• Moderate tyranny of Amdahl’s Law

– Ease sequential bottleneck

– More generally applicable

– Robust (less sensitive to f)

– Revised Amdahl’s Law:

()
v

f

s

f
Speedup

+
−

=
1

1

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

CS/ECE 552: Pipelining
to Superscalar Part 3

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
Mikko Lipasti, David Wood, Guri Sohi,

John Shen and Jim Smith

Superscalar Proposal

• Go beyond single instruction pipeline, achieve
IPC > 1

• Dispatch multiple instructions per cycle
• Provide more generally applicable form of

concurrency (not just vectors)
• Geared for sequential code that is hard to

parallelize otherwise
• Exploit fine-grained or instruction-level

parallelism (ILP)

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Baseline scalar RISC

– Issue parallelism = IP = 1

– Operation latency = OP = 1

– Peak IPC = 1

1

2
3

4
5

6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
T

R
U

C
T

IO
N

S

Classifying ILP Machines

[Jouppi, DECWRL 1991]

• Superpipelined: cycle time = 1/m of baseline

– Issue parallelism = IP = 1 inst / minor cycle

– Operation latency = OP = m minor cycles

– Peak IPC = m instr / major cycle (m x speedup?)

1
2

3
4

5

IF DE EX WB

6

1 2 3 4 5 6

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Superscalar:

– Issue parallelism = IP = n inst / cycle

– Operation latency = OP = 1 cycle

– Peak IPC = n instr / cycle (n x speedup?)

IF DE EX WB

1
2
3

4
5
6

9

7
8

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• VLIW: Very Long Instruction Word

– Issue parallelism = IP = n inst / cycle

– Operation latency = OP = 1 cycle

– Peak IPC = n instr / cycle = 1 VLIW / cycle

IF DE

EX

WB

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Superpipelined-Superscalar

– Issue parallelism = IP = n inst / minor cycle

– Operation latency = OP = m minor cycles

– Peak IPC = n x m instr / major cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

Superscalar vs. Superpipelined

• Roughly equivalent performance

– If n = m then both have about the same IPC

– Parallelism exposed in space vs. time

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR
Key:

IFetch
Dcode

Execute

Writeback

Superscalar Challenges

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Backup

© Shen, Lipasti 27

MIPS R2000/R3000 Pipeline

Stage Phase Function performed

IF φ1
Translate virtual instr. addr. using TLB

φ2
Access I-cache

RD φ1
Return instruction from I-cache, check tags & parity

φ2
Read RF; if branch, generate target

ALU φ1
Start ALU op; if branch, check condition

φ2
Finish ALU op; if ld/st, translate addr

MEM φ1
Access D-cache

φ2
Return data from D-cache, check tags & parity

WB φ1
Write RF

φ2

Separate

Adder

Intel i486 5-stage Pipeline

Stage Function Performed

IF Fetch instruction from 32B prefetch buffer

(separate fetch unit fills and flushes prefetch buffer)

ID-1 Translate instr. Into control signals or microcode address

Initiate address generation and memory access

ID-2 Access microcode memory

Send microinstruction(s) to execute unit

EX Execute ALU and memory operations

WB Write back to RF

Prefetch Queue

Holds 2 x 16B

??? instructions

