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Memory Hierarchy
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Shared L2 Cache

Main Memory
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Temporal Locality
•Keep recently referenced 
items at higher levels

•Future references satisfied 
quickly

Spatial Locality
•Bring neighbors of recently 
referenced to higher levels

•Future references satisfied 
quickly



Caches and Performance

• Caches

– Enable design for common case: cache hit
• L1 caches usually affect cycle time, pipeline organization

• Also want efficient “recovery” when we miss

– Uncommon case: cache miss
• Fetch from next level

– Apply recursively if multiple levels

• What to do in the meantime?

• Need to reason about perf. impact of an optimization

• Various optimizations are possible
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Performance Impact

• Cache hit latency

– Included in “pipeline” portion of CPI
• E.g., IBM study: 1.15 CPI with 100% cache hits

– Typically 1-3 cycles for L1 cache
• Intel/HP McKinley: 1 cycle

– Heroic array design

– No address generation: load r1, (r2)

• IBM Power4: 3 cycles

– Address generation

– Array access

– Word select and align
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Cache Hit continued

• Cycle stealing common
– Address generation < cycle

– Array access > cycle

– Clean, FSD cycle boundaries violated

• Speculation rampant
– “Predict” (speculate) cache hit

– Don’t wait for tag check

– Consume fetched word in pipeline

– Recover/flush when miss is detected
• Reportedly 7+ cycles later in Intel Pentium 4

– Subsequent Issue: security vulnerability
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Cache Hits and Performance

• Cache hit latency determined by:
– Cache organization

• Associativity (usually: ↑ associativity, ↑ latency)
– Parallel tag checks expensive, slow

– Way select slow (fan-in, wires)

• Block size (usually: ↑ block size, ↑ latency)
– Word select may be slow (fan-in, wires)

• Number of blocks (sets x associativity)
– (↑ capacity, ↑ latency)

– Wire delay across array

– “Manhattan distance” = width + height

– Word line delay: width

– Bit line delay: height

• Array design is an art form
– Detailed analog circuit/wire delay modeling
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Cache Misses and Performance

• Miss penalty
1. Detect miss: 1 or more cycles

2. Find victim (replace line): 1 or more cycles
• Write back if dirty

3. Request line from next level: several cycles

4. Transfer line from next level: several cycles
• (block size) / (bus width)

5. Fill line into data array, update tag array: 1+ cycles

6. Resume execution

• In practice: 6 cycles to 100s of cycles
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Cache Miss Rate

• Determined by:

– Program characteristics

• Temporal locality

• Spatial locality

– Cache organization

• Block size, associativity, number of sets

• Other (usually lesser) determiners:

– Replacement Policy

– Write Policy
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Improving Locality

• Instruction text (Instr Mem) placement

– Profile program, place unreferenced or rarely 
referenced paths “elsewhere”

• Maximize temporal locality

• Potentially improve spatial locality as well

– Eliminate taken branches

• Fall-through path has spatial locality
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Improving Locality

• Data placement, access order
– Arrays: “block” loops to access subarray that fits into cache

• Maximize temporal locality

– Structures: pack commonly-accessed fields together
• Maximize spatial, temporal locality

– Trees, linked lists: allocate in usual reference order
• Heap manager usually allocates sequential addresses

• Maximize spatial locality

• Hard problem, not easy to automate:
– C/C++ disallows rearranging structure fields

– OK in Java
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Cache Miss Rates: 3 C’s [Hill]

• Compulsory miss

– First-ever reference to a given block of memory

• Capacity

– Working set exceeds cache capacity

– When accessed again, miss because of eviction

• Conflict

– Lack of sufficient associativity cause useful blocks to be 
displaced

– If had a more associative cache, perhaps miss would have 
been avoided

– Think of as capacity within set
12



Cache Miss Rate Effects (ABCs)

• Associativity
– Higher associativity reduces conflicts

– For a given size: higher assoc. may increase capacity misses

– Often very little benefit beyond 8-way set-associative

• Block size
– Larger blocks exploit spatial locality

– Usually: miss rates improve until 64B-256B

– 512B or more miss rates get worse
• Larger blocks less efficient: more capacity misses

• Fewer placement choices: more conflict misses

• Number of blocks (sets x associativity) → Capacity
– Bigger is better: fewer conflicts, greater capacity
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Cache Miss Rate

• Subtle tradeoffs between cache organization 
parameters
– Large blocks reduce compulsory misses but increase miss 

penalty
• #compulsory = (working set) / (block size)

• #transfers = (block size)/(bus width)

– Large blocks increase conflict misses
• #blocks = (cache size) / (block size)

– Associativity reduces conflict misses

– Associativity increases access time

• Can associative cache ever have higher miss rate than 
direct-mapped cache of same size?
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Cache Misses and Performance

• How does this affect performance?
• Performance = Time / Program 

• Cache organization affects cycle time
– (L1) Hit latency usually part of pipeline

– May need to reduce frequency if want 1 cycle hits

– Or pipeline (common in modern processors)

• Cache misses affect CPI
15

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)



Cache Performance Summary

• Hit latency

– Block size, associativity, number of blocks (capacity)

• Miss penalty

– Overhead, fetch latency, transfer, fill

• Miss rate

– 3 C’s: compulsory, capacity, conflict

– Determined by locality, cache organization
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BACKUP
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Cache Miss Rates: 3 C’s

• Vary size and associativity
– Compulsory misses are constant

– Capacity and conflict misses are reduced
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Cache Miss Rates: 3 C’s

• Vary size and block size
– Compulsory misses drop with increased block size

– Capacity and conflict can increase with larger blocks
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Cache Misses and CPI

• Cycles spent handling misses are strictly additive
• Miss_penalty is recursively defined at next level of 

cache hierarchy as weighted sum of hit latency 
and miss latency
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Cache Misses and CPI

• Pl is miss penalty at each of n levels of cache
• MPIl is miss rate per instruction at each of n levels 

of cache
• Miss rate specification:

– Per instruction: easy to incorporate in CPI

– Per reference: must convert to per instruction
• Local: misses per local reference

• Global: misses per ifetch or load or store
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Cache Performance Example

• Assume following:
– L1 instruction cache with 98% per instruction hit rate

– L1 data cache with 96% per instruction hit rate

– Shared L2 cache with 40% local miss rate

– L1 miss penalty of 8 cycles

– L2 miss penalty of:
• 10 cycles latency to request word from memory

• 2 cycles per 16B bus transfer, 4x16B = 64B block transferred

• Hence 8 cycles transfer plus 1 cycle to fill L2

• Total penalty 10+8+1 = 19 cycles
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Cache Performance Example
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Cache Misses and Performance

• CPI equation
– Only holds for misses that cannot be overlapped with 

other activity

– Store misses often overlapped
• Place store in store queue

• Wait for miss to complete

• Perform store

• Allow subsequent instructions to continue in parallel

– Modern out-of-order processors also do this for loads
• Cache performance modeling requires detailed modeling of entire 

processor core
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