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Memory Hierarchy

Spatial Locality

*Bring neighbors of recently
referenced to higher levels

e Future references satisfied

quickly

Temporal Locality

* Keep recently referenced
items at higher levels

e Future references satisfied
quickly




Four Key Questions

* These are:
— Placement
 Where can a block of memory go?
— Identification
* How do | find a block of memory?
— Replacement
* How do | make space for new blocks?
— Write Policy

* How do | propagate changes?

* Consider for main memory (usually DRAM/HBM)



Placement

Memory Placement Comments

Type

Registers Anywhere; Compiler/programmer
Int, FP, SPR manages

Cache Fixed in H/W | Direct-mapped,

(SRAM) set-associative,

fully-associative

DRAM/HBM | Anywhere O/S manages

Disk Anywhere O/S manages




MMMMMMM

e Use of virtual memory

— Main memory becomes another level in the memory
hierarchy

— Enables programs with address space or working set that
exceed physically available memory
* No need for programmer to manage overlays, etc.
e Sparse use of large address space is OK

— Allows multiple users or programs to timeshare limited
amount of physical memory space and address space

* Bottom line: efficient use of expensive resource, and
ease of programming



Virtual Memory

* Enables
— Use more memory than system has
— Program can think it is the only one running

* Don’t have to manage address space usage across programs
e E.g., each thinks it always starts at address 0x0

— Memory protection

e Each program has private VA space: no-one else can clobber

— Better performance

e Start running a large program before all of it has been loaded from
disk



Virtual Memory — Placement

 Main memory managed in larger blocks
— Page size typically 4K — 16K

* Fully flexible placement; fully associative
— Operating system manages placement
— Indirection through page table

— Maintains mapping between:
 Virtual address (as seen by programmer)
e Physical address (as seen by main memory)
 Where does this virtual page physically reside?



Virtual Memory — Placement

* Fully associative implies expensive lookup?
— In caches, yes: check multiple tags in parallel

* |n virtual memory, expensive lookup is
avoided by using a level of indirection
— Lookup table or hash table =2 page table
— Trades off speed for cost



Virtual Memory — Identification

Virtual Address Physical Address | Dirty bit
0x20004000 0x2000 Y/N

e Similar to cache tag array
— Page table entry contains VA, PA, dirty bit
* Virtual address:
— Matches programmer view; based on register values

— Can be the same for multiple programs sharing same
system, without conflicts

* Physical address:
— Invisible to programmer, managed by O/S
— Created/deleted on demand basis, can change
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Virtual Memory — Replacement

e Similar to caches:
— FIFO

— LRU; overhead too high
* Approximated with reference bit checks
* Clock algorithm

— Random
* O/S decides, manages
— CS537
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Virtual Memory — Write Policy

 Write back

— Disks are too slow to write through

* Page table maintains dirty bit
— Hardware must set dirty bit on first write
— O/S checks dirty bit on eviction
— Dirty pages written to backing store

e Disk write, 10+ ms
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Virtual Memory Implementation

* Caches have fixed policies, hardware FSM for
control, pipeline stall

* VM has very different miss penalties
— Remember disks are 10+ ms!
— Even SSDs are (at best) 1.5ms
— 1.5ms is 3M processor clocks @ 2GHz

* Hence engineered differently
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Page Faults

e Avirtual memory miss is a page fault
— Physical memory location does not exist in page table
* “No translation available”
— Exception is raised, save PC
— Invoke OS page fault handler
* Find a physical page (possibly evict)
* Initiate fetch from disk

— Switch to another task that is ready to run
* Do useful work while waiting a long time for disk to reply

— Interrupt when disk access complete
— Restart original instruction

 Why use O/S and not hardware FSM?
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Address Translation

VA PA Dirty | Ref | Protection
0x20004000 |0x2000 |Y/N |Y/N |Read/Write/
Execute

 O/S and hardware communicate via PTE

* How do we find a PTE?
— &PTE = PTBR + page number * sizeof(PTE)

— PTBR is private for each program
* Context switch replaces PTBR contents
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Address Translation

?
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Page Table Size

* How big is page table?

— 232 /4K * 4B = 4M per program (!)

— Much worse for 64-bit machines (2~ B!)
* To make it smaller

— Use a multi-level page table
— Use an inverted (hashed) page table

18



Multilevel Page Table

L 1
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Hashed Page Table

* Use a hash table or inverted page table

— PT contains an entry for each real address
* Instead of entry for every virtual address

— Entry is found by hashing VA
* May have multiple entries hash to same index
* “Collisions”

— Oversize PT to reduce collisions: #PTE = 4 x (#phys.
pages)
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Hashed Page Table

21



High-Performance VM

* VA translation
— Additional memory reference to PTE

— Each instruction fetch/load/store now 2 memory
references

* Or even more, with multi-level table or hash collisions
— Even if PTE are cached, still slow (mix with data accesses)
e Solution: use special-purpose cache for PTEs
— TLB: translation lookaside buffer
— Special cache specifically for PTE entries
— Exploits temporal and spatial locality (just like a I/D cache)
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VA Synonyms

* Virtually-addressed caches are desirable

— No need to translate VA to PA before cache lookup

— Faster hit time, translate only on misses
 However, VA synonyms cause problems

— Can end up with two copies of same physical line
* Solutions:

— Flush caches/TLBs on context switch

— Extend cache tags to include PID & prevent duplicates
 Effectively a shared VA space (PID becomes part of address)
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Summary

* Memory hierarchy: Virtual Memory
— Placement: fully flexible
— ldentification: through page table
— Replacement: approximate LRU using PT reference bits
— Write policy: write-back
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Summary (Cont.)

* Page tables

— Basic page table
— Multi-level page table
— Inverted or hashed page table

— Also used for protection, sharing at page level
* Translation Lookaside Buffer (TLB)
— Special-purpose cache for PTEs
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Register File

* Registers managed by programmer/compiler
— Assign variables, temporaries to registers

— Limited name space matches available storage
— Learn more in CS536, CS701

Placement Flexible (subject to data type)

ldentification |Implicit (name == location)

Replacement |Spill code (store to stack frame)

Write policy | Write-back (store on replacement)
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Virtual Memory Protection

* Each process/program has private virtual address space
— Automatically protected from rogue programs

e Sharing is possible, necessary, desirable
— Avoid copying, staleness issues, etc.

e Sharing in a controlled manner

— Grant specific permissions
* Read
* Write
* Execute
* Any combination

— Store permissions in PTE and TLB
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VM Sharing

* Share memory locations by:

— Map shared physical location into both address
spaces:

e E.g. PA OxCOODA becomes:
— VA Ox2DOO0O0DA for process O
— VA 0x4DO00DA for process 1

— Either process can read/write shared location

* However, causes synonym problem
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