THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552: Arithmetic and Logic

Matthew D. Sinclair

Lecture notes based in part on slides created by Mark Hill,
David Wood, Mikko Lipasti, Guri Sohi, John Shen and Jim
Smith



Basic Arithmetic and the ALU

Number representations: 2’s complement,
unsigned

Addition/Subtraction
Add/Sub ALU
Full adder, ripple carry, subtraction
Logical operations
and, or, xor, nor, shifts
Overflow




Basic Arithmetic and the ALU

* Covered later in the semester:
— Integer multiplication, division
— Floating point arithmetic

* These are not crucial for the project



Background

* Recall

— n bits enables 2" unique combinations
* Notation: b,, b, .. b, b, b, b,
* No inherent meaning

— f(bs;...by) => integer value

— f(b;,...b,) => control signals



Background

e 32-bit types include
— Unsigned integers
— Signed integers
— Single-precision floating point
— MIPS instructions (refer to book)



Unsigned Integers

f(bsy...bg) = by x 231+ ..+ b, x 21 + by x 2°
Treat as normal binary number
E.g.0...01101010101

=1x27+1x2°+0x2°+1x2%+1x23+0x21+1x20
=128+ 64+16+4+1=213

Max f(111...11) = 232 -1 =4,294,967,295
Min f(000...00) =0
Range [0,232-1] => # values (232-1) -0 + 1 = 232



Signed Integers

2’s complement
f(bsq...bg) =-byy x 231+ . by x 21 + by x 2°
Max f(0111...11) =231 -1 =2147483647

Min f(100...00) = -231 =-2147483648
(asymmetric)

e Range[-231,231-1] => # values(23-1 - -231) = 232

Invert bits and add one: e.g. —6
— 000...0110 =>111...1001 +1=>111...1010



Why 2’s Complement

Why not use sign-magnitude?
2’s complement makes hardware simpler

Just like humans don’t work with Roman
numerals

Representation affects ease of calculation, not
correctness of answer

111 000 001 111 000 001
110 o0 10 010
101 011 101 011

100 100



Addition and Subtraction

* 4-bit unsigned example
O 0 1| 1 3

Iy 0 1] O 10
1 1 O 1 13

* 4-bit 2’s complement —ignoring overflow

o 0 1| 1 3
Iy 0 1] O -6
Iy 17 0] 1 -3




Subtraction

 A—B=A+2's complement of B
* E.g.,3-2




Full Adder

* Full adder (a,b,c,,) => (¢, S)
® Coyt = two or more of (a, b, Cin)
* s =exactly one or three of (a,b,c..)

O

out

11



Ripple-carry Adder

e Just concatenate the full adders

Cin [Full Full Full Full
—Add Add—AdIDt+— - —AddIE
er er er er |-out
aobg a1by a2by a31bs1

12



Ripple-carry Subtractor

* A—-B=A+(-B)=>invertBandsetc, to1l

Full Full Full Full
1—Add—Add—Add— - —{Add— Cout

er er er er

aobgp a1 bq a2bo as bj

13



Combined Ripple-carry

Adder/Subtractor

e Control =1 => subtract

* XOR B with control and set ¢, , to control

Full Full Full Full
{Add—Add Addjl— —Add— Cout
er er er er

% % %b %b operation
a0 0 5,1 4,2 a3t 31

14



Logical Operations

* Bitwise AND, OR, XOR, NOR
— Implement w/ 32 gates in parallel

e Shifts and rotates
— rol => rotate left (MSB->LSB)
— ror => rotate right (LSB->MSB)
— sll -> shift left logical (0->LSB)
— srl -> shift right logical (0->LSB)
— sra -> shift right arithmetic (old MSB->new MSB)

15



Shift by 1

Shift by 2

Shift by 4

* Right shift logic shown: missing inputs are 0
— Left shift logic similar

e Rotate: wraparound instead of O inputs
16



All Together

invert

operation

1,

result

Mux

Add

Mux

17



Overflow

* With n bits only 2" combinations
— Unsigned range [0, 2"-1]
— 2's complement range [-2"1, 2"1-1]

* Unsigned Add
5+6>7:101+110=>1011
f(3:0) = a(2:0) + b(2:0) => overflow = f(3)
Carryout from MSB

18



Overflow

* More involved for 2’s complement
-1+-1=-2:
111+111=1110
110 =-2 is correct

e Can’t just use carry-out to signal overflow

19



Addition Overflow

* When is overflow NOT possible?
(p1, p2)>0and (n1,n2)<0
pl + p2
pl + nl not possible
nl + p2 not possible
nl+n2

e Just checking signs of inputs is not sufficient

20



Addition Overflow

e 2+3=5>4:010+011=101=?-3<0
— Sum of two positive numbers should not be
negative
* Conclude: overflow

e -1+-4:111+100=011>0

— Sum of two negative numbers should not be
positive
e Conclude: overflow

Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

21



Subtraction Overflow

* No overflow on a-b if signs are the same
* Neg— pos => neg ;; overflow otherwise
* Pos—neg=>pos ;; overflow otherwise

Overflow =f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

22



What to do on Overflow?

lgnore ! (C language semantics)
— What about Java? (try/catch?)

Flag — condition code
Sticky flag — e.g. for floating point

— Otherwise gets in the way of fast hardware

Trap — possibly maskable
— MIPS has e.g. add that traps, addu that does not
— Useful for extended precision in software

23



Zero and Negative

o Zero =~[f(2) + (1) + f(0)]
* Negative = f(2) (sign bit)

24



Zero and Negative

May also want correct answer even on
overflow

Negative = (a < b) = (a—b) <0 even if overflow

E.g. is —4 < 2?
100 - 010 =1010 (-4 — 2 = -6): Overflow!

Work it out: negative = f(2) XOR overflow

25



Summary

* Binary representations, sighed/unsigned
* Arithmetic
— Full adder, ripple-carry, adder/subtractor
— Overflow, negative
* Logical
— Shift, and, or
* Next: high-performance adders
— Later: multiply/divide/FP

26



