
CS/ECE 552: Course Introduction

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mikko
Lipasti, Mark Hill, David Wood, Guri Sohi, Josh San 

Miguel, John Shen, and Jim Smith



Who am I?

2

Prof. Matt Sinclair
sinclair@cs.wisc.edu
Computer Sciences 6369

Education:
BS in CMPE & CS, University of Wisconsin-Madison, 2009
MS in ECE, University of Wisconsin-Madison, 2011
PhD, University of Illinois at Urbana-Champaign, 2017

Research Interests:
• Caches, coherence protocols and memory systems
• Heterogeneous systems
• Parallel programming and algorithms
• Mobile computing
• Processor microarchitecture

mailto:Sinclair@cs.wisc.edu


What is Education?

3



What is Education?

4

Provides a set of fundamental axioms for producing 
and interpreting knowledge, which serves as an 
accessible bridge between the student learner and 
the infinite capabilities and complexities of the 
natural world.

everyday people

services

education

sciences

physical world



5

Provides a set of fundamental axioms for producing 
and interpreting knowledge, which serves as an 
accessible bridge between the student learner and 
the infinite capabilities and complexities of the 
natural world.

everyday people

services

education

sciences

physical world

What is Computer Architecture?



What is Computer Architecture?

6

Provides a set of fundamental axioms for producing 
and interpreting data, which serves as an accessible 
bridge between the digital programmers and the 
infinite capabilities and complexities of the analog 
hardware.

everyday people

software services (OS, apps)

computer architecture

hardware circuits

physical world



Computer Architecture 

7

• … the attributes of a [computing] system as seen by the 
programmer.  I.e. the conceptual structure and functional 
behavior, as distinct from the organization of the data flows 
and controls, the logic design, and the physical 
implementation.  -- Amdahl, Blaauw, & Brooks, 1964

Instruction Set Architecture (IBM 360)

• ALUs, Buses, Caches, Memories, etc.

Machine Organization (microarchitecture)

• Gates, cells, transistors, wires

Machine Implementation (realization)



Why Take 552?

• To become a computer designer
– Alumni of this class helped design your computer

• To learn what is under the hood of a computer
– Innate curiosity

– To better understand when things break

– To write better code/applications

– To write better system software (O/S, compiler, etc.)

• Because it is intellectually fascinating!
– CPUs are arguably the most complex highly-integrated 

man-made devices

8



552 In Context

• Prerequisites
– 252/352 – gates, logic, memory, organization

– 252/354 – high-level language down to machine 
language interface or instruction set architecture (ISA)

• This course – 552 – puts it all together
– Implement the logic that provides ISA interface

– Must do datapath and control, but no magic

– Manage tremendous complexity with abstraction

• Follow-on courses explore trade-offs
– CS/ECE 752, ECE 555/ECE 755, CS/ECE 757, CS 758

9



10

Semiconductor devices
ECE335

Electronic circuits
ECE340

Digital Logic
CS/ECE352

Machine Language (ISA)
CS/ECE354

Compiler
CS536

Application Program
CS302

Operating System

CS537Scope 
of this
course

552 In Context



Computer Architecture

• Exercise in engineering tradeoff analysis
– Find the fastest/cheapest/power-efficient/etc. solution

– Optimization problem with 100s of variables

• All the variables are changing
– At non-uniform rates

– With inflection points

– Only one guarantee: Today’s right answer will be wrong 
tomorrow

• Two high-level effects:
– Technology push

– Application pull

11



Technology Push

• What do these two intervals have in common?
– 1776-1999 (224 years)

– 2000-2001 (2 years)

12



Technology Push

• What do these two intervals have in common?
– 1776-1999 (224 years)

– 2000-2001 (2 years)

13

⚫ Answer: Equal progress in processor speed!

⚫ The power of exponential growth!
⚫ Driven by Moore’s Law

– Device per chips doubles every 18-24 months

⚫ Computer architects work to turn the additional 
resources into speed/power 
savings/functionality!



Semiconductor History

Mikko Lipasti -- University of Wisconsin 14

Date Event Comments

1947 1st transistor Bell Labs

1958 1st IC Jack Kilby (MSEE ’50) @TI

Winner of 2000 Nobel prize

1971 1st microprocessor Intel (calculator market)

1974 Intel 4004 2300 transistors

1978 Intel 8086 29K transistors

1989 Intel 80486 1M transistors

1995 Intel Pentium Pro 5.5M transistors

2006 Intel Montecito 1.7B transistors

2015 Oracle SPARC M7 10B+ transistors



Performance Growth

Unmatched by any other industry !
[John Crawford, Intel]

• Doubling every 18 months (1982-1996): 800x
– Cars travel at 44,000 mph and get 16,000 mpg
– Air travel: LA to NY in 22 seconds (MACH 800)
– Wheat yield: 80,000 bushels per acre

15



Performance Growth

Unmatched by any other industry !
[John Crawford, Intel]

• Doubling every 18 months (1982-1996): 800x
– Cars travel at 44,000 mph and get 16,000 mpg
– Air travel: LA to NY in 22 seconds (MACH 800)
– Wheat yield: 80,000 bushels per acre

16

⚫ Doubling every 24 months (1971-1996): 9,000x
– Cars travel at 600,000 mph, get 150,000 mpg

– Air travel: LA to NY in 2 seconds (MACH 9,000)

– Wheat yield: 900,000 bushels per acre



Technology Push

• Technology advances at varying rates
– E.g. DRAM capacity increases at 60%/year
– But DRAM speed only improves 10%/year
– Creates gap with processor frequency!

• Inflection points
– Crossover causes rapid change
– E.g. enough devices for multicore processor (2001)

• Current issues causing an “inflection point”
– Power consumption
– Reliability
– Variability

17



Application Pull

• Corollary to Moore’s Law: 
Cost halves every two years

In a decade you can buy a computer for less than its sales 
tax today. –Jim Gray

• Computers cost-effective for
– National security – weapons design

– Enterprise computing – banking

– Departmental computing – computer-aided design

– Personal computer – spreadsheets, email, web

– Mobile computing – smartphones

18



Application Pull

• What about the future?
• Must dream up applications that are not cost-

effective today
– Augmented/Virtual reality

– Machine learning

– Telepresence

– Mobile applications

– Sensing, analyzing, actuating in real-world 
environments

• This is your job!

19



Future of Computer Architecture?

20

Many-Core Processors

Approximate Computing

Quantum Computers
Energy-Harvesting Processors

Warehouse-Scale Computers

Mobile Computers

Ultra-Low-Power Processors

Neuromorphic Processors

Graphics Processors Intermittent Computing

Stochastic Computing

Reconfigurable Architectures

Near-Threshold Computing

In-Memory Computing

Internet-Of-Things

Cloud Computing

Biodegradable Processors



CS/ECE 552: Introduction (Part 2)

Prof. Matthew D. Sinclair

Lecture notes based in part on slides created by Mikko
Lipasti, Mark Hill, David Wood, Guri Sohi, Josh San 

Miguel, John Shen, and Jim Smith



Last Class

• Computer architecture and 552

• Technology push

• Application pull

22



This Class

• Abstraction

• Amdahl’s Law

• Performance metrics

23



24

Semiconductor devices
ECE335

Electronic circuits
ECE340

Digital Logic
ECE352

Machine Language (ISA)
CS354

Compiler
CS536

Application Program
CS302

Operating System

CS537Scope 
of this
course

552 In Context



Abstraction

• Difference between interface and 
implementation

– Interface: WHAT something does

– Implementation: HOW it does so

25



Abstraction, E.g.

• 2:1 Mux (352)

• Interface

• Implementations

– Gates (fast or slow), pass transistors

26

Mux
S

X Y

F

S F

0 X

1 Y



What’s the Big Deal?

• Tower of abstraction

• Complex interfaces 
implemented by layers below

• Abstraction hides detail

• Hundreds of engineers build 
one product

• Complexity unmanageable 
otherwise

27

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine  Primitives

Visual C++

Firefox, MS Excel

Windows 7



Basic Division of Hardware

• In space:

28

Control

Processor

Data Path

Memory

Output

Input



Basic Division of Hardware

• In time:

– Fetch instruction from memory 001011001001

– Decode the instruction “add r1, r2, r3”

– Read input operands read [r2], [r3]

– Perform operation [r2] + [r3]

– Write results write to [r1]

– Determine the next instruction pc = pc + 4

29



Building Computer Chips

30

• Complex multi-step process



Summary

The ART and Science of Instruction-Set Processor Design
[Gerrit Blaauw & Fred Brooks, 1981] 

• CPU designers must know BOTH software and hardware

• Both contribute to layers of abstraction

31



Iron Law

32



Next Class

• Instruction set architectures (ISAs)

• MIPS

33


