
Spring 2020 – Sinclair

Computer Sciences Department

University of Wisconsin-Madison

CS/ECE 552 – Introduction to Computer Architecture

WISC-SP20 Microarchitecture Specification

In this document, we describe the microarchitecture, including register file specifications, memory

system organization, etc. you will use for your CS/ECE 552 project. The WISC-SP20 architecture

that you will design for the final project shares many resemblances to the MIPS R2000 described

in the text. The major differences are a smaller instruction set and 16-bit words for the WISC-

SP20. Similarities include a load/store architecture and three fixed-length instruction formats.

1. Registers

There are eight user registers, R0-R7. Unlike the MIPS R2000, R0 is not always zero. Register R7

is used as the link register for JAL or JALR instructions. The program counter is separate from the

user register file. A special register named EPC is used to save the current PC upon an exception

or interrupt invocation.

2. Memory System

The WISC-SP20 is a Harvard architecture, meaning instructions and data are located in different

physical memories. It is byte-addressable, word aligned (where a word is 16 bits long – note that

this is different from some of the examples in class), and big-endian. The final version of the

WISC-SP20 will include a multi-cycle memory and one level of cache. However, initial versions

of the machine will contain a single cycle memory. See the project deadlines for more details.

The WISC-SP20 cache replacement policy is deterministic. See the cache module description for

an outline of the algorithm you must use.

NOTE: For phase1 and phase2, you will work with a simplified memory model which supports

un-aligned accesses.

3. Pipeline

The final version of the WISC-SP20 contains a five-stage pipeline identical to the MIPS R2000.

The stages are:

1. Instruction Fetch (IF)

2. Instruction Decode/Register Fetch (ID)

3. Execute/Address Calculation (EX)

4. Memory Access (MEM)

5. Write Back (WB)

See Figure 4.35 on page 289 and Figure 4.36 on page 291 of the text for good starting points.

http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2020/includes/cacheModule.html

Spring 2020 – Sinclair

4. Optimizations

Your goal in optimizations is to reduce the CPI of the processor or the total cycles taken to execute

a program. While the primary concern of the WISC-SP20 is correct functionality, the architecture

must still have a reasonable clock period. Therefore, you may not have more than one of the

following in series during any stage:

• register file

• memory or cache

• 16-bit full adder

• barrel shifter

You may implement any type of optimization to reduce the CPI (as long as it’s a valid

optimization). The required optimizations are:

• Register file bypassing

• There are two register forwarding paths in the WISC-SP20:

o Forwarding from beginning of the MEM stage to beginning of EX stage (EX →

EX forwarding)

o Forwarding from beginning of the WB stage to the beginning of the EX stage

(MEM → EX forwarding)

• All branches should be predicted not-taken. This means that the pipeline should continue

to execute sequentially until the branch resolves, and then squash instructions after the

branch if the branch was actually taken.

5. Exceptions: extra credit

Exception handling is extra credit. If you choose not to implement exception handling, an illegal

instruction should be treated as a NOP.

IllegalOp is the only defined exception in the WISC-SP20 architecture. It is invoked when the

opcode of the currently executing instruction is not a recognized member of the ISA. Upon

finding an illegal opcode, the computer shall save the current PC into the reserved register EPC

and then load address 0x02, which is the location of the IllegalOp exception handler. Note that if

you choose to implement exceptions, address 0x00 must be a jump to the start of the main

program.

The exception handler itself need not be complex. At a minimum it should load the value

0xBADD into R7 and then call the RTI instruction.

